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4.1 Useful Facts

Most of our applications of harmonic analysis to computer science will involve only Parseval’s identity.

Theorem 4.1 (Parseval’s Identity).
‖f‖2 = ‖f̂‖2

Corollary 4.2.
〈f, g〉 = 〈f̂ , ĝ〉.

Proof. Note that〈f + g, f + g〉 = ‖f + g‖2 = ‖f̂ + g‖2 = ‖f̂ + ĝ‖2. Now as〈f + g, f + g〉 =
‖f‖2

2 + ‖g‖2
2 + 2〈f, g〉, and similarly‖f̂ + ĝ‖2

2 = ‖f̂‖2
2 + ‖ĝ‖2

2 + 2〈f̂ , ĝ〉, applying Parseval to‖f‖2 and
‖g‖2 and equating finishes the proof.

The other basic identity is the following.

Lemma 4.3.
f̂ ∗ g = f̂ · ĝ

Proof. We will show this for the unit circleT, but one should note that it is true more generally. Recall that
by definitionh = f ∗ g means that

h(t) =
1
2π

∫
T

f(s)g(t− s)ds.

Now to calculatêf ∗ g we manipulatêh.

ĥ(r) =
1
2π

∫
T

h(x)e−irxdx

=
1

4π2

∫∫
T2

f(s)g(x− s)e−irxds dx

=
1

4π2

∫∫
T2

f(s)g(x− s)e−irse−ir(x−s)dx ds
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usinge−irx = e−irse−ri(x−s) and interchanging the order of integration. Then by takingu = x− s we have

=
1

4π2

∫∫
T2

f(s)g(u)e−irse−irudu ds

=
1

4π2

∫
T

f(s)e−irsds

∫
T

g(u)e−irudu

=
(

1
2π

∫
T

f(s)e−irsds

) (
1
2π

∫
T

g(u)ds

)
= f̂ · ĝ.

4.2 Hurwitz’s Proof of the Isoperimetric Inequality

Recall from last lecture that the isoperimetric problem is to show that a circle encloses the largest area for
all curves of a fixed length. Formally, ifL is the length of a curve andA the area enclosed, then we want
to show thatL2 − 4πA ≥ 0 with equality if and only if the curve is a circle. We will prove the following
stronger theorem.

Theorem 4.4.Let(x, y) : T → R2 be an anticlockwise arc length parametrization of a non self-intersecting
curveΓ of lengthL enclosing an areaA. If x, y ∈ C1, then

L2 − 4πA = 2π2
(∑

n6=0

|nx̂(n)− iŷ(n)|2 + |nŷ(n) + ix̂(n)|2 + (n2 − 1)
(
|x̂(n)|2 + |ŷ(n)|2

))
.

In particular, L2 ≥ 4πA with equality if and only ifΓ is a circle.

We will not define “arc length parameterization” formally, only remark that intuitively it means that
if one views the parameterization as describing the motion of a particle in the plane, then an arc length
parameterization is one so that the speed of the particle is constant. In our context, where we view time as
the unit circleT of circumference2π, we have that(ẋ)2+(ẏ)2 is a constant so that the total distance covered

is
(

L
2π

)2
.

Proof. First we use our identity about the parameterization to relate the length to the transform of the
parameterization.(

L

2π

)2

=
1
2π

∫
T

((
ẋ(s)

)2 +
(
ẏ(s)

)2
)

ds

= ‖ˆ̇x‖2
2 + ‖ˆ̇y‖2

2 by Parseval’s

=
∞∑
−∞

|inx̂(n)|2 + |inŷ(n)|2 by Fourier differentiation identities

=
∞∑
−∞

−n2
(
|x̂(n)|2 + |ŷ(n)|2

)
(4.1)
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dx/ds

y

Figure 4.1: Computing the area enclosed by a curve

Now we compute the area. As the curve is anticlockwise,

A = −
∫

y
dx

ds
ds,

where the negative sign comes from the fact that the curve is anticlockwise. See Figure 4.1. This area
integral looks like an inner product, so we write

A

2π
= −〈y, ẋ〉 = −〈ŷ, ˆ̇x〉.

By symmetry, considering the area integral from the other direction, we also have that

A

2π
= 〈x̂, ˆ̇y〉,

note there is no negative sign in this expression. Hence by adding we have that

A

π
= 〈x̂, ˆ̇y〉 − 〈ŷ, ˆ̇x〉

=
∞∑
−∞

in
(
x̂(n)∗ŷ(n)− x̂(n)ŷ(n)∗

)
, (4.2)

using the Fourier differentiation identities and using the notationa∗ for the complex conjugate ofa. Now
subtract (4.1) and (4.2) to prove the theorem.

To see why the right hand side is zero if and only ifΓ is a circle, consider when the right hand side
vanishes. As it is a sum of many squares,x̂ and ŷ must vanish for alln 6= 0 or ±1. Looking carefully at
what those terms mean shows that they vanish if and only ifΓ is a circle.

4.3 Harmonic Analysis on the Cube for Coding Theory

The theory of error correcting codes is broad and has numerous practical applications. We will look at the
asymptotic theory of block coding, which like many problems in coding theory is well-known, has a long
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history and is still not well understood. The Boolean or Hamming cube{0, 1}n is the set of alln-bit strings
over{0, 1}. The usual distance on{0, 1}n is theHamming distancedH(x, y), defined overx, y ∈ {0, 1}n

by the number of positions wherex andy are not equal:dH(x, y) = |{i : xi 6= yi}|. A codeC is a subset of
{0, 1}n. Theminimum distanceof C is the minimum distance between any two elements ofC:

dist(C) = min{dH(x, y) : x, y ∈ C}.

The asymptotic question is to estimate the size of the largest code for any given minimum distance,

A(d, n) = max{|C|, C ⊂ {0, 1}n,dist(C) ≥ d},

asn → ∞. The problem is easier if we restrict the parameter space by fixingd to be a constant fraction of
the bit-lengthn, that is, considerA(δn, n). Simple constructions show for1/2 > δ > 0 thatA(δn, n) is
exponential inn, so the interesting quantity will be the bit-rate of the code. Accordingly, we define therate
of a code as1n log |C|, and then define the asymptotic rate limit as

R(δ) = lim sup
n→∞

{
1
n

log |C| : C ⊂ {0, 1}n,dist(C) ≥ δn

}
.

It is a sign of our poor knowledge of the area that we do not even know if in the above we can replace the
lim sup by lim, i.e., if the limit exists. If|C| = 2k, we may think of the code as mappingk-bit strings into
n-bit strings which are then communicated over a channel. The rate is then the ratiok/n, and measures the
efficiency with which we utilize the channel.

A code islinear if C is a linear subspace of{0, 1}n, viewed as a vector space overGF(2). In a linear
code, if the minimum distance is realized by two codewordsx andy, thenx − y is a codeword whose
(Hamming) length equals the minimum distance. Hence for linear codes we have that

dist(C) = min
{
|w| : w ∈ C \ {0}

}
.

Here we use| · | to indicate theHamming weightof a codeword, the number of nonzero positions. Note that
this is equal to several other, common norms onGF(2).

A useful entity is theorthogonal codeto a given code. IfC a linear code, we define

C⊥ = {y : ∀x ∈ C, 〈x, y〉 = 0},

where we compute the inner product〈·, ·〉 overGF(2), that is,〈x, y〉 =
∑n

i=1 xiyi (mod 2).

4.3.1 Distance Distributions and the MacWilliams Identities

Our first concrete study of codes will be into thedistance distribution, which are the probabilities

Pr[|x− y| = k : x, y chosen randomly fromC]

for 0 ≤ k ≤ n. If C is linear, our discussion above shows that the question of distance distribution is
identical to the weight distribution of a code, the probabilities that a randomly selected codeword has a
specified weight.

The MacWilliams Identities are important identities about this distribution that are easily derived using
Parseval’s Identity. Letf = 1C , the indicator function for the code. We first need the following lemma.
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Lemma 4.5.

f̂ =
|C|
2n

1C⊥

Proof.

f̂(u) =
1
2n

∑
v

f(v)χv(u)

=
1
2n

∑
v

f(v)(−1)〈u,v〉

=
1
2n

∑
v∈C

(−1)〈u,v〉

If u ∈ C⊥, then 〈u, v〉 = 0 for all v ∈ C, so thatf̂(u) = |C|/2n. Suppose otherwise, so that∑
C(−1)〈u,v〉 = |C0| − |C1|, whereC0 are the codewords ofC that are perpendicular tou, andC1 = C \ C1.

As u 6∈ C⊥, C1 is nonempty. Pick an arbitraryw in C1. Then, anyy ∈ C1 \ {w} corresponds to a unique
x ∈ C0, namelyw + y. Similarly, anyx ∈ C0 \ {0} corresponds tow + x ∈ C1 \w. As w ∈ C1 corresponds
to 0 ∈ C0, we have that|C0| = |C1|. Hence

∑
C(−1)〈e1,v〉 = 0, so that

f̂(u) =
{
|C|/2n if u ∈ C⊥

0 otherwise

which proves the lemma.

We now define theweight enumeratorof a code to be

PC(x, y) =
∑
w∈C

x|w|yn−|w|.

The MacWilliams Identity connects the weight enumerators ofC andC⊥ for linear codes.

Theorem 4.6 (The MacWilliams Identity).

PC(x, y) = |C|PC⊥(y − x, y + x)

Proof. Harmonic analysis provides a nice proof of the identity by viewing it as an inner product. Define
f = 1C andg(w) = x|w|yn−|w|. Then, using Parseval’s,

PC(x, y) = 2n〈f, g〉 = 2n〈f̂ , ĝ〉.

f̂ has already been computed in Lemma 4.5, so we turn our attention toĝ.

ĝ(u) =
1
2n

∑
v

g(v)(−1)〈u,v〉

=
1
2n

∑
v

x|v|yn−|v|(−1)〈u,v〉
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Let u havek ones andn− k zeros. For a givenv, let s be the number of ones ofv that coincide with those
of u, and lett be the number ones ofv coinciding with the zeros ofu. Then we rewrite the sum as

=
1
2n

∑
s,t,k

(
k

s

)(
n− k

t

)
xs+tyn−s−t(−1)s

=
yn

2n

∑
s

(
k

s

) (
−x

y

)s ∑
t

(
n− k

t

) (
x

y

)t

=
yn

2n

(
1− x

y

)k (
1 +

x

y

)n−k

=
1
2n

(y − x)k(y + x)n−k

=
1
2n

(y − x)|u|(y + x)n−|u|

Now, as〈f, g〉 = 〈f̂ , ĝ〉 = 2−nPC(x, y), we plug in our expressions for̂f andĝ to get

2−nPC(x, y) =
|C|
2n

∑
w∈C⊥

1
2n

(y − x)|w|(y + x)n−|w|

=
|C|
2n

PC⊥(y − x, y + x),

which implies
PC = |C|PC⊥(y − x, y + x).

4.3.2 Upper and Lower Bounds on the Rate of Codes

We now turn our attention to upper and lower bounds for codes. We remind any complexity theorists reading
these notes that the senses of “upper bound” and “lower bound” are reversed from their usage in complexity
theory. Namely, a lower bound onR(δ) shows that good codes exist, and an upper bound shows that superb
codes don’t.

In the remainder of this lecture we show several simple upper and lower bounds, an then set the stage
for the essentially strongest known upper bound on the rate of codes, the MacEleiece, Rumsey, Rodemich
and Welsh (MRRW) upper bound. This is also referred to as the JPL bound, after the lab the authors worked
in, or the linear programming (LP) bound, after its proof method.

Our first bound is a lower bound. Recall the binary entropy function

H(x) = −x log x− (1− x) log(1− x).

Theorem 4.7 (Gilbert-Varshamov Bound).

R(δ) ≥ 1−H(δ),

and there exists a linear code satisfying the bound.
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Proof. We will sequentially pick codewords where each new point avoids allδn-spheres around previously
selected points. The resulting codeC will satisfy

|C| ≥ 2n

vol(sphere of radiusδn)
=

2n∑δn
j=0

(
n
j

) .

Now, note thatlog
(

n
αn

)
/n → H(α) asn → ∞, so that2n/

∑δn (
n
j

)
∼ 2n(1−H(δ)), and take logs to prove

the first part of the theorem.

We now show that there’s a linear code satisfying this rate bound. This proof is different than the one
given in class, as I couldn’t get that to work out. The presentation is taken from Trevison’s survey of coding
theory for computational complexity. We can describe a lineark-dimensional codeCA by a k × n 0-1
matrix A by CA = {Ax : x ∈ {0, 1}k}. We’ll show that ifk/n ≤ 1 − H(δ), with positive probability
dist(CA) ≥ δn. As the code is linear, it suffices to show that the weight of all nonzero codewords is at least
δn. As for a givenx ∈ {0, 1}k, Ax is uniformly distributed over{0, 1}n, we have

Pr[|Ax| < δn] = 2−n
δn−1∑
i=0

(
n

i

)
≤ 2−n2nH(δ)+o(n),

using our approximation to the binomial sum. Now we take a union bound over all2k choices forx to get

Pr[∃x 6= 0 : Ax < d] ≤ 2k · 2−n · 2nH(δ)+o(n) = 2k+n(H(δ)−1)+o(1) < 1

by our choice ofk ≤ n(1−H(δ)).

We now turn to upper bounds onR(δ).

Theorem 4.8 (Sphere-Packing Bound).

R(δ) ≤ 1−H(δ/2)

Proof. The theorem follows from noting that balls of radiusδn/2 around codewords must be disjoint, and
applying the approximations used above for the volume of spheres in the cube.

We note in Figure 4.2 that the sphere-packing bound is far from the GV bound. In particular, that GV
bound reaches zero atδ = 1/2, while the sphere-packing bound is positive untilδ = 1. However, we have
the following simple claim.

Claim 4.1. R(δ) = 0 for δ > 1/2.

Proof. We will show the stronger statement that if|C| is substantial then not only is it impossible for
dH(x, y) > δn for all x, y ∈ C, but even the average of allx, y ∈ C will be at mostn/2. This average
distance is

1(|C|
2

) ∑
C×C

d(x, y),
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0.5 1

R(δ)

δ

GV bound

Sphere-Packing Bound

Elias Bound

Figure 4.2: The GV bound contrasted with the Sphere-Packing Bound

and we will expand the distanced(x, y) = |{i : xi 6= yi}|. Reversing the order of summation,

Average distance=
1(|C|
2

) ∑
i

∑
x,y

1xi 6=yi

=
1(|C|
2

) ∑
i

zi(|C| − zi),

wherezi is the number of zeros in theith position of all the codewords ofC.

≤ 1(|C|
2

) ∑ |C|2

4

≤ 1
2
n · |C|

|C| − 1
.

So unlessC is very small, the average distance is essentiallyn/2.

Our next upper bound improves on the sphere packing bounds, at least achievingR(δ) = 0 for δ > 1/2.
It still leaves a substantial gap with the GV bound.

Theorem 4.9 (Elias Bound).

R(δ) ≤ 1−H

(
1−

√
1− 2δ

2

)
Proof. The proof begins by considering the calculation of average distance from the previous theorem. It
follows from Jensen’s inequality that if the average weight of the vectors inC is αn, then the maximum of∑

zi(|C| − zi) is obtained if for alli, zi = (1 − α)C for someα. We sketch the argument for those not
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familiar with Jensen’s inequality. The inequality states that iff is convex, then forx1, . . . , xn, 1
n

∑
f(xi) ≤

f(
∑

xi/n), with equality if and only ifx1 = · · · = xn. For our case, the functionf(x) = x(|C| − x) is
easily verified convex and so its maximum over a set ofzi is achieved when thezi are all equal. This makes
the average distance inC at most2α(1− α)n.

With this calculation in mind, chose a spherical shellS in {0, 1}n centered at somex0 with radiusr
such that

|S ∩ C| ≥ |C| · |S|
2n

.

Such a shell exists as the right hand side of the inequality is the expected intersection size if the sphere is
chosen randomly. Setr = pn so that|S| ≈ 2nH(p), which means

|S ∩ C| ≥ |C|

2n
(
1−H(p)

) .

Now apply the argument above onx0 + C ∩ S. It follows from our discussion that we actually have a
p fraction of ones in each row, so ifδ > 2p(1 − p), the |S ∩ C| is subexponential, but this is equal to

|C|2−n
(
1−H(p)

)
, implying

1
n

log |C| < 1−H(p).

Let us rewrite our conditionδ > 2p(1− p) as follows:

1− 2p ≥
√

1− 2δ ⇒ p =
1−

√
1− 2δ

2
.

This is the critical value ofp—whenp is below this the code is insubstantially small.

Figure 4.2 shows how the Elias bound improves the sphere-packing bound to something reasonable. The
gap between it and the GV bound is still large, however.

4.4 Aside: Erdoös-Ko-Rado Theorem

The proof of the Elias bound that we just saw is based on the following clever idea: we investigate and
unknown object (the codeC) by itersecting it with random elements of a cleverly chosen set (the sphere).
This method of “a randomly chosen fish-net” is also the basis for the following beautiful proof, due to
Katona, of the Erd̈os-Ko-Rado theorem.

Definition 4.1. An intersecting familyis a familyF of k-sets in1 . . . n (compactly,F ⊆
([n]

k

)
), with 2k ≤ n,

such that for anyA,B ∈ F , A ∩B 6= ∅.

Informally, an intersecting family is a collection of sets which are pairwise intersecting. One way to
construct such a set is to pick a common point of intersection, and then choose all possible(k − 1)-sets to
fill out the sets. The Erdöos-Ko-Rado Theorem says that this easy construction is the best possible.

Theorem 4.10 (Erd̈os-Ko-Rado). If F ⊆
([n]

k

)
is an intersecting family with2k ≤ n, then

F ≤
(

n− 1
k − 1

)
.
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Proof (Katona).Given an intersecting familyF , arrange1 . . . n in a random permutationπ along a circle,
and count the number of setsA ∈ F such thatA appears as an arc inπ. This will be our random fish-net.

There are(n− 1)! cyclic permutations—that is,n! permutations, divided byn as rotations of the circle
are identical. There arek! ways for a givenk-set to be arranged, and(n − k)! ways of the other elements
not interfering with that arc, so that the set appears consecutively on the circle. Hence the probability that a
givenk-set appears as an arc is

k!(n− k)!
(n− 1)!

=
n(
n
k

) ,

which by linearity of expectation implies

E

[
# arcs belonging

toF

]
=

n|F|(
n
k

) .

Now, as2k ≤ n, at mostk member of an intersecting family can appear as arcs on the circle, otherwise two
of the arcs wouldn’t intersect. Hence

n|F|(
n
k

) ≤ k

implying

|F| ≤ k

n

(
n

k

)
=

(
n− 1
k − 1

)
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