
Lecture 5

Isoperimetric Problems

Feb 11, 2005
Lecturer: Nati Linial

Notes: Yuhan Cai & Ioannis Giotis

Codes: densest sphere packing in{0, 1}n.

A(n, d) = max{|ϕ|, ϕ ⊆ {0, 1}n, dist(ϕ) ≥ d}
R(δ) = limsup{ 1

n log2(ϕ)|ϕ ⊆ {0, 1}n, dist(ϕ) ≥ δn}
’Majority is the stablest’ -

• Gaussian: 1
(2π)(n/2)

e−‖x‖
2/2

• Borell: isoperimetric problem is solved by a half-space

Isoperimetric Questions on the cube (Harper): Vertex and Edge isoperimetric questions.

The edge problem is defined as follows: Given thatS ⊆ {0, 1}n, |S| = R, how smalle(S, S̄) be?

Answer:∀S ⊆ {0, 1}n, e(S) ≤ 1/2|S| log2 |S|, |S| = 2k, S = {(∗ . . . ∗ 0 . . . 0} with k *s.

Proof (induction on dim):

e(S) ≤ e(S0) + e(S1) + |S0|, |S| = x, |S0| ≥ αx, α < 1/2.

1/2x log2 x ≥ 1/2(αx) log2 αx) + 1/2(1− α)x log[(1− α)x] + αx

0 ≥ α log α + (1− α) log(1− α) + 2α

H(α) ≥ 2α atα = 0, 1/2.

The vertex isoperimetric problem is defined asmin]{y | y /∈ S,∃x ∈ S} such thatxy ∈ E(〈0, 1〉n),
S ⊆ {0, 1}n, |S| ≤ k. The answer is an optimal S-ball. Specifically, ifk = |S| =

∑t
j=0

(
n
j

)
, then

|S| ≥
(

n
t+1

)
.

We will use the Kraskal-Katona theorem. Iff ⊆
(

[n]
k

)
, then theshadow of fis

σ(f) =
{

y ∈
(

[n]
k

)
| ∃x ∈ f, x ⊇ y

}

We wish to minimize|σ(f)|.
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To do this, takef as an initial segment in the reverse lexicographic order. The lexicographic order is
defined as

A < B, if min(A\B) < min(B\A)

while the reverse lexicographic order is

A <RL B, if max(A\B) <RL max(B\A)

For example:

Lex : 〈1, 2〉〈1, 3〉〈1, 4〉, . . .
RLex : 〈1, 2〉〈1, 3〉〈2, 3〉, . . .

Margulis and Talagrand gave the following definition forS ⊆ 〈0, 1〉n

h(x) = {y /∈ S | xy ∈ E} , x ∈ S

We now have the 2 problems

• Vertex Isoperimetric,min|S|=k

∑
x∈S(h(x))0→ρ=0

• Edge Isoperimetric,min|S|=k

∑
x∈S(h(x))→ρ=1

We have|S| ≥ 2n−1 ⇒ Σ
√

h(x) ≥ Ω(2n), for p = 1/2.

Kleitman: |S| = Σt
j=0

(
n
j

)
, S ⊆ {0, 1}n, t < n/2 ⇒ diam(S) ≥ 2t. Can you show thatS necessarily

contains a large code?

Question: (answered by Friedgut) suppose that|S| ' 2n−1 andϕ(S, SC) ∼ 2n−1, then isS roughly a
dictatorship?

Answer: yes. subcubex1 = 0 ⇔ f(x1, . . . , xn) = x1. R(δ) = limsupn→∞{ 1
n log(ϕ)|ϕ ⊆

{0, 1}n, dist(ϕ) ≥ δn}.

5.1 Delsarte’s LP

Havingg = 1C , f = 2ng ∗ g/|C|, Delsarte’s LP is

A(n, d) ≤ maxΣx∈{0,1}nf(x)
f ≥ 0

f(0) = 1
f̂ ≥ 0

f |1,...,d−1 = 0

Some useful equations

g ∗ g(0) =
1
2n

∑
g(y)g(y) =

|C|
2n

g ∗ g(S) =
1
2n

]{x, y ∈ C | x⊕ y = S}
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We start with an observation. Without loss of generality,f is symmetric or in other wordsf(x) depends
only on|x| = α|x|. We look forα0 = 1, α1 = . . . = αd−1 = 0, αd, . . . , αn ≥ 0.

We’ve expressedf ≥ 0, f(0̂) = 1 and we are trying to maximize
∑(

n
j

)
αj .

Lj = {x ∈ {0, 1}n, |x| = j}

f =
n∑

j=0

αj1Lj

f̂ =
∑

j

αj 1̂Lj

Note thatLj is symmetric. It also follows that̂1Lj is symmetric. We need to knoŵ1Lj if |y| = t.

φ̂(T ) =
∑

φ(S)(−1)|S∩T |

1̂Lj (T ) =
∑
|S|=j

(−1)|S∩T |

K
(n)
j (x) =

∑
i

(−1)i

(
t

i

)(
n− t

j − i

)

This is theKrawtchoukpolynomial presented in the next section.

5.2 Orthogonal Polynomials onR

Interesting books for this section are “Interpolation and Approximation” by Davis and “Orthogonal polyno-
mials” by Szeg̈o.

The weights of orthogonal polynomials onR are defined by

w : R → R+ ,

∫
R

w(x) < ∞

The inner product onf : R → R is

〈f, g〉 =
∫

R
f(x)g(x)w(x) dx

and with weightsw1, w2, . . ., and pointsx1, x2, . . .

〈f, g〉 =
∑

wif(xi)g(xi)

Let’s now talk about orthogonality. Start from the functions1, x, x2, . . . and carry out a Gram-Schmidt
orthogonalization process. You’ll end up with a sequence of polynomialsP0(x), P1(x), . . . s.t.Pi has degree
i and〈Pi, Pj〉 = δij .
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One case of orthogonal polynomials are theKrawtchoukpolynomials, on discrete pointsx0 = 0, x1 =
1, . . . , xn = n with wj =

(
n
j

)
/2n. Thej-th Krawtchouk polynomialKj(x) is a degreej polynomial inx.

It is also the value of̂1Lj (T ) whenever|T | = x.

K
(n)
j (x) =

n∑
i=0

(−1)i

(
x

i

)(
n− x

j − i

)

Let’s see why are they orthogonal or in other words

1
2n

∑
i=0

Kp(i)Kq(i)
(

n

i

)
= δpq

(
n

p

)

Starting from

〈1p, 1q〉 =
1
2n

(
n

p

)
δpq

and using Parseval’s identity we get

〈1̂Lp , 1̂Lq〉 =
1
2n

∑
Kp(|S|)Kq(|S|) =

1
2n

∑
i=0

Kp(i)Kq(i)
(

n

i

)

The firstKj ’s are

K0(x) = 1,K1(x) = n− 2x,K2(x) =
(

x

2

)
− (n− x) +

(
n− x

2

)
=

(n− 2x)2 − n

2

We also have the following identity

Kj(n− x) = (−1)jKj(x)

Lemma 5.1. Every system of orthogonal polynomials satisfies a 3-term recurrence

xPj = αjPj+1 + βjPj + γjPj−1

Proof.

1Li ∗ 1Lj (S) =
1
2n

∑
i

1Lj (S ⊕ i) =

=
1
2n

((j + 1)1Lj+1 + (n− j + 1)1Lj−1) =

=
1
2n

((j + 1)1Lj+1 + (n− j + 1)1Lj−1)

For the Krawtchouk polynomials

KiKj = (j + 1)Kj+1 + (n− j + 1)Kj−1

(n− 2x)Kj = (j + 1)Kj+1 + (n− j + 1)Kj−1
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Theorem 5.2. For every family of orthogonal polynomials there is

1. a 3-term recurrence relation

x · Pj = αjPj+1 + βjPj + γjPj−1

2. Pj hasj real roots all inconv[supp w].

Proof. Observe thatP0, P1, . . . , Pt form a basis for the space of all polynomials of degree≤ t, which means
that〈P,Q〉 = 0, ∀Q polynomials of degreej

x · Pj =
j+1∑
i=0

λiPi (5.1)

We now claim thatλ0 = λ1 = · · · = λj−2 = 0. Let’s take in (5.1) an inner product withPl,l < j − 1.

〈xPj , Pl〉 =
j+1∑
i=0

λi〈Pi, Pj〉 = λl‖Pl‖2

〈Pj , xPl〉 = λl‖Pl‖2

which is 0 forPl of degree≤ j − 1.

If ui’s are the zeros ofPj of odd multiplicity then

0 = 〈Pj ,
∏

(x− ui)〉 = Pj

∏
(x− uj) > 0
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