Lecture 5

Isoperimetric Problems

Feb 11, 2005
Lecturer: Nati Linial
Notes: Yuhan Cai \& Ioannis Giotis

Codes: densest sphere packing in $\{0,1\}^{n}$.
$A(n, d)=\max \left\{|\varphi|, \varphi \subseteq\{0,1\}^{n}, \operatorname{dist}(\varphi) \geq d\right\}$
$R(\delta)=\limsup \left\{\left.\frac{1}{n} \log _{2}(\varphi) \right\rvert\, \varphi \subseteq\{0,1\}^{n}, \operatorname{dist}(\varphi) \geq \delta_{n}\right\}$
'Majority is the stablest' -

- Gaussian: $\frac{1}{(2 \pi)^{(n / 2)}} e^{-\|x\|^{2} / 2}$
- Borell: isoperimetric problem is solved by a half-space

Isoperimetric Questions on the cube (Harper): Vertex and Edge isoperimetric questions.
The edge problem is defined as follows: Given that $S \subseteq\{0,1\}^{n},|S|=R$, how small $e(S, \bar{S})$ be?
Answer: $\forall S \subseteq\{0,1\}^{n}, e(S) \leq 1 / 2|S| \log _{2}|S|,|S|=2^{k}, S=\{(* \ldots * 0 \ldots 0\}$ with k *s.
Proof (induction on dim):
$e(S) \leq e\left(S_{0}\right)+e\left(S_{1}\right)+\left|S_{0}\right|,|S|=x,\left|S_{0}\right| \geq \alpha x, \alpha<1 / 2$.
$\left.1 / 2 x \log _{2} x \geq 1 / 2(\alpha x) \log _{2} \alpha x\right)+1 / 2(1-\alpha) x \log [(1-\alpha) x]+\alpha x$
$0 \geq \alpha \log \alpha+(1-\alpha) \log (1-\alpha)+2 \alpha$
$H(\alpha) \geq 2 \alpha$ at $\alpha=0,1 / 2$.
The vertex isoperimetric problem is defined as $\min \sharp\{y \mid y \notin S, \exists x \in S\}$ such that $x y \in E\left(\langle 0,1\rangle^{n}\right)$, $S \subseteq\{0,1\}^{n},|S| \leq k$. The answer is an optimal S-ball. Specifically, if $k=|S|=\sum_{j=0}^{t}\binom{n}{j}$, then $|S| \geq\binom{ n}{t+1}$.

We will use the Kraskal-Katona theorem. If $f \subseteq\binom{[\mathrm{n}]}{\mathrm{k}}$, then the shadow off is

$$
\sigma(f)=\left\{\left.y \in\binom{[\mathrm{n}]}{\mathrm{k}} \right\rvert\, \exists x \in f, x \supseteq y\right\}
$$

We wish to minimize $|\sigma(f)|$.

To do this, take f as an initial segment in the reverse lexicographic order. The lexicographic order is defined as

$$
A<B, \text { if } \min (A \backslash B)<\min (B \backslash A)
$$

while the reverse lexicographic order is

$$
A<_{R L} B, \text { if } \max (A \backslash B)<_{R L} \max (B \backslash A)
$$

For example:

$$
\begin{aligned}
\text { Lex } & :\langle 1,2\rangle\langle 1,3\rangle\langle 1,4\rangle, \ldots \\
R L e x & :\langle 1,2\rangle\langle 1,3\rangle\langle 2,3\rangle, \ldots
\end{aligned}
$$

Margulis and Talagrand gave the following definition for $S \subseteq\langle 0,1\rangle^{n}$

$$
h(x)=\{y \notin S \mid x y \in E\}, x \in S
$$

We now have the 2 problems

- Vertex Isoperimetric, $\min _{|S|=k} \sum_{x \in S}(h(x))^{0 \rightarrow \rho=0}$
- Edge Isoperimetric, $\min _{|S|=k} \sum_{x \in S}(h(x))^{\rightarrow \rho=1}$

We have $|S| \geq 2^{n-1} \Rightarrow \Sigma \sqrt{h(x)} \geq \Omega\left(2^{n}\right)$, for $p=1 / 2$.
Kleitman: $|S|=\Sigma_{j=0}^{t}\binom{n}{j}, S \subseteq\{0,1\}^{n}, t<n / 2 \Rightarrow \operatorname{diam}(S) \geq 2 t$. Can you show that S necessarily contains a large code?

Question: (answered by Friedgut) suppose that $|S| \simeq 2^{n-1}$ and $\varphi\left(S, S^{C}\right) \sim 2^{n-1}$, then is S roughly a dictatorship?

Answer: yes. subcube $x_{1}=0 \Leftrightarrow f\left(x_{1}, \ldots, x_{n}\right)=x_{1} . \quad R(\delta)=\limsup _{n \rightarrow \infty}\left\{\left.\frac{1}{n} \log (\varphi) \right\rvert\, \varphi \subseteq\right.$ $\left.\{0,1\}^{n}, \operatorname{dist}(\varphi) \geq \delta n\right\}$.

5.1 Delsarte's LP

Having $g=1_{C}, f=2^{n} g * g /|C|$, Delsarte's LP is

$$
\begin{array}{rl}
A(n, d) \leq \max \Sigma_{x \in\{0,1\}^{n}} & f(x) \\
f & \geq 0 \\
f(\mathbf{0}) & =1 \\
\hat{f} & \geq 0 \\
\left.f\right|_{1, \ldots, d-1} & =0
\end{array}
$$

Some useful equations

$$
\begin{array}{r}
g * g(0)=\frac{1}{2^{n}} \sum g(y) g(y)=\frac{|C|}{2^{n}} \\
g * g(S)=\frac{1}{2^{n}} \sharp\{x, y \in C \mid x \oplus y=S\}
\end{array}
$$

We start with an observation. Without loss of generality, f is symmetric or in other words $f(x)$ depends only on $|x|=\alpha_{|x|}$. We look for $\alpha_{0}=1, \alpha_{1}=\ldots=\alpha_{d-1}=0, \alpha_{d}, \ldots, \alpha_{n} \geq 0$.

We've expressed $f \geq 0, f(\hat{0})=1$ and we are trying to maximize $\sum\binom{n}{j} \alpha_{j}$.

$$
\begin{aligned}
L_{j} & =\left\{x \in\{0,1\}^{n},|x|=j\right\} \\
f & =\sum_{j=0}^{n} \alpha_{j} 1_{L_{j}} \\
\hat{f} & =\sum_{j} \alpha_{j} \hat{1}_{L_{j}}
\end{aligned}
$$

Note that L_{j} is symmetric. It also follows that $\hat{1}_{L_{j}}$ is symmetric. We need to know $\hat{1}_{L_{j}}$ if $|y|=t$.

$$
\begin{aligned}
\hat{\phi}(T) & =\sum \phi(S)(-1)^{|S \cap T|} \\
\hat{1}_{L_{j}}(T) & =\sum_{|S|=j}(-1)^{|S \cap T|} \\
K_{j}^{(n)}(x) & =\sum_{i}(-1)^{i}\binom{t}{i}\binom{n-t}{j-i}
\end{aligned}
$$

This is the Krawtchouk polynomial presented in the next section.

5.2 Orthogonal Polynomials on \mathbb{R}

Interesting books for this section are "Interpolation and Approximation" by Davis and "Orthogonal polynomials" by Szegö.

The weights of orthogonal polynomials on \mathbb{R} are defined by

$$
w: \mathbb{R} \rightarrow \mathbb{R}^{+}, \int_{\mathbb{R}} w(x)<\infty
$$

The inner product on $f: \mathbb{R} \rightarrow \mathbb{R}$ is

$$
\langle f, g\rangle=\int_{\mathbb{R}} f(x) g(x) w(x) d x
$$

and with weights w_{1}, w_{2}, \ldots, and points x_{1}, x_{2}, \ldots

$$
\langle f, g\rangle=\sum w_{i} f\left(x_{i}\right) g\left(x_{i}\right)
$$

Let's now talk about orthogonality. Start from the functions $1, x, x^{2}, \ldots$ and carry out a Gram-Schmidt orthogonalization process. You'll end up with a sequence of polynomials $P_{0}(x), P_{1}(x), \ldots$ s.t. P_{i} has degree i and $\left\langle P_{i}, P_{j}\right\rangle=\delta_{i j}$.

One case of orthogonal polynomials are the Krawtchouk polynomials, on discrete points $x_{0}=0, x_{1}=$ $1, \ldots, x_{n}=n$ with $w_{j}=\binom{n}{j} / 2^{n}$. The j-th Krawtchouk polynomial $K_{j}(x)$ is a degree j polynomial in x. It is also the value of $\hat{1}_{L_{j}}(T)$ whenever $|T|=x$.

$$
K_{j}^{(n)}(x)=\sum_{i=0}^{n}(-1)^{i}\binom{x}{i}\binom{n-x}{j-i}
$$

Let's see why are they orthogonal or in other words

$$
\frac{1}{2^{n}} \sum_{i=0} K_{p}(i) K_{q}(i)\binom{n}{i}=\delta_{p q}\binom{n}{p}
$$

Starting from

$$
\left\langle 1_{p}, 1_{q}\right\rangle=\frac{1}{2^{n}}\binom{n}{p} \delta_{p q}
$$

and using Parseval's identity we get

$$
\left\langle\hat{1}_{L_{p}}, \hat{1}_{L_{q}}\right\rangle=\frac{1}{2^{n}} \sum K_{p}(|S|) K_{q}(|S|)=\frac{1}{2^{n}} \sum_{i=0} K_{p}(i) K_{q}(i)\binom{n}{i}
$$

The first K_{j} 's are

$$
K_{0}(x)=1, K_{1}(x)=n-2 x, K_{2}(x)=\binom{x}{2}-(n-x)+\binom{n-x}{2}=\frac{(n-2 x)^{2}-n}{2}
$$

We also have the following identity

$$
K_{j}(n-x)=(-1)^{j} K_{j}(x)
$$

Lemma 5.1. Every system of orthogonal polynomials satisfies a 3-term recurrence

$$
x P_{j}=\alpha_{j} P_{j+1}+\beta_{j} P_{j}+\gamma_{j} P_{j-1}
$$

Proof.

$$
\begin{aligned}
1_{L_{i}} * 1_{L_{j}}(S) & =\frac{1}{2^{n}} \sum_{i} 1_{L_{j}}(S \oplus i)= \\
& =\frac{1}{2^{n}}\left((j+1) 1_{L_{j+1}}+(n-j+1) 1_{L_{j-1}}\right)= \\
& =\frac{1}{2^{n}}\left((j+1) 1_{L_{j+1}}+(n-j+1) 1_{L_{j-1}}\right)
\end{aligned}
$$

For the Krawtchouk polynomials

$$
\begin{aligned}
K_{i} K_{j} & =(j+1) K_{j+1}+(n-j+1) K_{j-1} \\
(n-2 x) K_{j} & =(j+1) K_{j+1}+(n-j+1) K_{j-1}
\end{aligned}
$$

Theorem 5.2. For every family of orthogonal polynomials there is

1. a 3-term recurrence relation

$$
x \cdot P_{j}=\alpha_{j} P_{j+1}+\beta_{j} P_{j}+\gamma_{j} P_{j-1}
$$

2. P_{j} has j real roots all in conv $[$ supp $w]$.

Proof. Observe that $P_{0}, P_{1}, \ldots, P_{t}$ form a basis for the space of all polynomials of degree $\leq t$, which means that $\langle P, Q\rangle=0, \forall Q$ polynomials of degree j

$$
\begin{equation*}
x \cdot P_{j}=\sum_{i=0}^{j+1} \lambda_{i} P_{i} \tag{5.1}
\end{equation*}
$$

We now claim that $\lambda_{0}=\lambda_{1}=\cdots=\lambda_{j-2}=0$. Let's take in (5.1) an inner product with $P_{l}, l<j-1$.

$$
\begin{aligned}
& \left\langle x P_{j}, P_{l}\right\rangle=\sum_{i=0}^{j+1} \lambda_{i}\left\langle P_{i}, P_{j}\right\rangle=\lambda_{l}\left\|P_{l}\right\|^{2} \\
& \left\langle P_{j}, x P_{l}\right\rangle=\lambda_{l}\left\|P_{l}\right\|^{2}
\end{aligned}
$$

which is 0 for P_{l} of degree $\leq j-1$.

If u_{i} 's are the zeros of P_{j} of odd multiplicity then

$$
0=\left\langle P_{j}, \prod\left(x-u_{i}\right)\right\rangle=P_{j} \prod\left(x-u_{j}\right)>0
$$

