
Lecture 6

MRRW Bound and Isoperimetric Problems

Feb 18, 2005
Lecturer: Nati Linial

Notes: Ethan Phelps-Goodman and Ashish Sabharwal

6.1 Preliminaries

First we recall the main ideas from the last lecture. Let

g = 1C , f =
g ∗ g

|C|
.

Then we can bound the code sizeA(n, d) using Delsarte’s linear program:

A(n, d) ≤ max
f

∑
x∈{0,1}n

f(x)

subject to

f ≥ 0 f(0) = 1

f̂ ≥ 0 f|1,...,d−1 = 0

By averaging over a solutionf , we can get an equivalent solution that is symmetric about permutations
of the input bits. That is, we can assume w.l.o.g. thatf that depends only on the hamming weight of the
input. f is then determined byn + 1 coordinate weightsAj by

Aj =
∑

x | |x|=j

f(x)

Or equivalently,

f =
n∑

j=0

Aj(
n
j

)1Lj

Central to our proof will be the Krawtchouk polynomials, which are related to our linear program by

1̂Lr = Kr(x) =
r∑

j=0

(−1)j

(
x

j

)(
n− x

r − j

)

f̂ =
n∑

j=0

Aj(
n
j

)Kj
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6.2 Primal and Dual Programs

Making the substitutions above we can now write Delsarte’s program in terms of Krawtchouk polynomials
and symmeterizedf .

A(n, d) ≤ max
A0,...,An

n∑
i=0

Ai

subject to

A0 = 1
A1, . . . , Ad−1 = 0

∀k ∈ {0, . . . , n}
n∑

i=0

Ai(
n
i

)Ki(k) ≥ 0.

This can be further simplified with the following identity for Krawtchouk polynomials.

Fact 6.1.
Ki(k)(

n
i

) =
Kk(i)(

n
k

)
Proof.

1(
n
i

) i∑
j=0

(−1)j

(
k

j

)(
n− k

i− j

)
=

i∑
j

(−1)j i!(n− i)!k!(n− k)!
n!j!(k − j)!(i− j)!(n− k − i + j)!

=
1(
n
k

) i???∑
j

(−1)j

(
i

j

)(
n− i

k − j

)

Using this in the last constraint, and removing the1/
(
n
k

)
term, which pulls out of the sum and doesn’t

affect the sign, we get the constraints

∀k ∈ {0, . . . , n}
n∑

i=0

AiKk(i) ≥ 0.

Our approach will be to use LP duality to give a bound on the maximum of this program. Recall that
duality tells us that the maximum value of the primal is at most the minimum value of the dual. Strong
duality states that the optima are exactly equal, but we will not use this.

Start by multiplying each of the
∑n

i=0 AiKk(i) ≥ 0 constraints byβk, and summing all of the con-
straints. This gives

n∑
k=1

βk

n∑
i=0

AiKk(i) =
n∑

i=0

Ai

n∑
k=1

βkKk(i) ≥ 0
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Let γ(x) =
∑n

k=1 βkKk(i). If we add the constraint that∀x, γ(x) ≤ −1, then usingA0 =
1, A1, . . . , Ad−1 = 0, we get

n∑
i=0

Aiγ(i) = γ(x) +
n∑

i=d

Aiγ(i) ≥ 0

γ(0) ≥ −
n∑

i=d

Aiγ(i)

≥
n∑

i=d

Ai

γ(0) + 1 ≥
n∑

i=1

Ai ≥ A(n, d)

What we have done here is just an explicit construction of the dual. The reader can check that this dual
can be arrived at by any standard method for computing the dual.

Let β(x) = 1 +
∑n

k=1 βkKk(x). Then our final program is given by

A(n, d) ≤ min
βk

β(0)

subject to:

∀k = 1, . . . , n, βk ≥ 0
∀j = d, . . . , n, β(j) ≤ 0

6.3 The Upper Bound

To show an upper bound onA(n, d) we need to demonstrate a feasible solutionβ and boundβ(0). First we
need two additional facts about Krawtchouk polynomials.

Fact 6.2 (Christoffel-Darboux). Let P1, P2, . . . be a family of orthonormal polynomials, and letai be the
leading coefficient ofPi. Then

Pk(x)Pk+1(y)− Pk+1(x)Pk(y)
y − x

=
ak+1

ak

k∑
i=0

Pi(x)Pi(y)

For the case of Krawtchouk polynomials, the leading term ofKr(x) is −2r

r! . Also, to normalize we need

to divideKr by
√(

n
r

)
. Putting these together, we get

Kr+1(x)Kr(y)−Kr(x)Kr+1(y)
y − x

=
2

r + 1

(
n

r

) r∑
i=0

Ki(x)Ki(y)(
n
i

) .

The second fact we need is that the product of two Krawtchouk polynomials can be expressed as a
non-negative combination of Krawtchouk polynomials.
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Fact 6.3. For anyp, q, there existα0, . . . , αp+q ≥ 0 such that

Kp ·Kq =
p+q∑
j=0

αjKj

This can be seen easily from the harmonic analysis perspective sinceKp ·Kq = 1̂Lp · 1̂Lq = ̂1Lp ∗ 1Lq ,
and the convolution is a positive combination.

We can now present the feasible solution for the dual. Let

α(x) =

(
Kt(a)Kt+1(x)−Kt+1(a)Kt(x)

)2

a− x
.

Then setβ(x) = α(x)
α0

, whereα0 is chosen to make the constant term equal 1. Now we need to set

values fora andt. Denote byx(l)
r the leftmost root ofKr. We know from last lecture that the roots of the

Krawtchouk polynomials are real, lie in[0, n], and interleave with one another. Therefore we can pick at

such that0 < x
(l)
t+1 < x

(l)
t < d. In the region(x(l)

t+1, x
(l)
t ), Kt+1 is negative andKt is positive, so we can

pick ana such thatKt(a) = −Kt+1(a).

Now we need to show thatα(x) satisfies the two constraints from the dual. First, note that at allx > d,
α(x) < 0. Then we just need to show thatα(x) is non-negative combination of Krawtchouk polynomials.
Using the above settings, and Christoffel-Darboux, we can factorα(x) as

α(x) =
(
Kt(a)Kt+1(x)−Kt+1(a)Kt(x)

) [
Kt(a)Kt+1(x)−Kt+1(a)Kt(x)

a− x

]
= Kt(a)(Kt+1(x) + Kt(x))

[
Kt(a)Kt+1(x)−Kt+1(a)Kt(x)

a− x

]
= Kt(a)(Kt+1(x) + Kt(x))

[
2

r + 1

(
n

r

) r∑
i=0

Ki(x)Ki(y)(
n
i

) ]

Since all terms are positive, this can be expanded as a positive combination of Krawtchouk polynomials.

Now that we have a feasible solution to the dual, we just need to find the value ofβ(0). We can use the

fact that fort ≈ τn, the leftmost root is atx(l)
t = (1+ o(1))(1

2 −
√

τ(1− τ))n. Given this we can conclude
thatR(δ) ≤ H(1

2 −
√

δ(1− δ)). Both the lecture and van Lint [1] seem to imply that this step is obvious,
but your scribe has been unable to see any connection.

6.4 More on Isoperimetric Problems on the Cube

We now turn our attention to isoperimetric problems. In a previous lecture, we studied isoperimetric ques-
tions on then-dimensional cube, namely the vertex isoperimetric problem and the edge isoperimetric prob-
lem. Why is the study of such problems important? The reason is that Computer Science deals with Boolean
functions which are simply partitions of then-dimensional cube into two parts. Understanding the geometry
of the cube is therefore critical to understand Boolean functions. Here is one more isoperimetric problem
that is open.
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Open Problem 6.1 (Chung-F̈uredi-Grahan-Seymour, 1988 J.C.T.A.).What is the largestd = d(n) such
that for allS ⊆ {0, 1}n , |S| > 2n−1, there existsx ∈ S with dS(x) ≥ d?

HeredS(x) denotes the number of neighbors ofx in S. Note that for|S| ≤ 2n−1, S can be an indepen-
dent set, i.e.,∀x ∈ S.dS(x) = 0. Further, for|S| > 2n−1, S may not be independent. In general, all we
know is thatd(n) is bothO(

√
n) andΩ(log n). This leaves a huge gap open.

Consider any Boolean functionf : {0, 1}n → {0, 1} represented as a0, 1-labeling of then-dimensional
cube seen as a layered lattice. This lattice has four types of edges as depicted in Figure 6.1. LetS = f−1(0).
The two edges from0 to 1 and from1 to 0 belong to the cutE(S, Sc) and thus contribute to the cut size
e(S, Sc).

f = 0 0 1 1

f = 0 1 0 1

xi = 0

xi = 1

Edges in theE(S, Sc) cut

Figure 6.1: The cut defined in terms of the four types of edges in the lattice

If |S| = 2n−1, thene(S, Sc) ≥ 2n−1. This is sharp forS = {x | x1 = 0}. In the edge isoperimetry
problem, given|S|, we want to minimize the cut sizee(S, Sc). What about trying tomaximizethe cut size
instead? The maximum cut size can really be anything. Indeed, whenf is the parity function,e(S, Sc) =
n2n−1.

6.4.1 Maximizing Edge Cut Size for Monotone Functions

Consider the setting of the previous section. How can we maximize the edge cut whenf is monotone, i.e.,
x � y ⇒ f(x) ≥ f(y), wherex � y means∀i.xi ≥ yi? In the following, we use Parseval’s identity to
answer this question.

Theorem 6.1. Let S ⊆ {0, 1}n correspond to a monotone Boolean functionf : {0, 1}n → {0, 1}. f =
majoritymaximizes the edge cut sizee(S, Sc).

Proof. It is clear from the lattice corresponding tof = majority (see Figure 6.2) that the size of the cut
corresponding to it is

(
n

bn/2c
)

= Θ(
√

n 2n). We will use Parseval’s identity to prove that this is the optimal.

Let f be any monotone Boolean function inn dimensions. Recall that for charactersχT (Z) =
(−1)|Z∩T |, the functionf can be represented asf =

∑
T f̂(T )χT wheref̂(T ) = 〈f, χT 〉. What isf̂({i})?
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f = 1

f = 0 (
n

bn/2c
)

points

Figure 6.2: The lattice corresponding to the majority function

χ{i}(Z) = (−1)|Z∩{i}| which is+1 if i 6∈ Z and−1 if i ∈ Z. Therefore

f̂({i}) = 〈f, χ{i}〉

=
1
2n

∑
Z

f(Z)χ{i}(Z)

=
1
2n

∑
Z 63i

f(Z)−
∑
Z3i

f(Z)


= − 1

2n
· (number of cut edges in thei-direction)

For ease of computation, convert everything from the{0, 1} basis to the{−1,+1} basis. This quantity
is then(2/2n) times the number of cut edges in thei-direction. Using Parseval’s identity and Cauchy-

Schwartz inequality,1 = ||f ||22 =
∑

S

(
f̂(S)

)2
≥

∑
i

(
f̂({i})

)2
≥ (1/n)

(∑
i f̂({i})

)2
. Hence

√
n ≥∑

i f̂({i}) = (2/2n) e(S, Sc), which finishes the proof.

We give an alternativecombinatorialproof of the fact thate(S, Sc) = 2n−1
∑

i f̂({i}) based on the
following claim.

Claim 6.1. Let f be a monotone Boolean function. If the expectation off is given and fixed, then to
maximizee(f−1(0), f−1(1)), it is best to takef symmetric.

Proof of claim. Consider
∑

x:f(x)=0(n − 2|x|). This is the sum of the first Krawtchouk polynomials and

is equal to the cut sizee(f−1(0), f−1(1)) because(n − |x|) edges in the lattice corresponding tof that
go upwards fromx contributing+1 each while|x| edges go downward fromx contributing−1 each (see
Figure 6.3. Maximizing this quantity means minimizing

∑
x:f(x)=0 |x| which happens exactly whenf is

“pushed down” as much as possible.

Formally, let us change the basis from{0, 1} to {−1,+1} and reinterpret the summation. It is equal
to

∑
x:f(x)=1(n − 2|x|) −

∑
x:f(x)=−1(n − 2|x|) = 2n〈f,K1〉. Observe however that

∑
x(n − 2|x|) =

〈K1,K0〉 = 0. Therefore
∑

x:f(x)=1(n − 2|x|) = 2n−1〈f,K1〉, which is the same as
∑

i f̂({i}) by the
properties of Krawtchouk polynomials.
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f = 1

f = 0
|x| edges contributing−1 each

(n− |x|) edges contributing+1 each

x

Figure 6.3: Contribution off to the cut

6.4.2 The Brunn-Minkowski Inequality

Let v be a volume measure on subsets ofRn.

Theorem 6.2 (Brunn-Minkowski [2]). For A,B measurable subsets ofRn,

(v(A + B))1/n ≥ (v(A))1/n + (v(B))1/n .

Moreover, equality holds if and only ifA andB are homothetic, i.e.B = λA + C for λ ∈ R.

HereA+B is the Minkowski sum defined as{a + b | a ∈ A, b ∈ B}, wherea+b is the standard vector
sum overRn. Forλ ∈ R, λA is similarly defined as{λa | a ∈ A}. We will not be using the second part of
the theorem.

Let us try to understand what this inequality says. Take a convex bodyK in Rn and slide a hyperplane
At, t ∈ R, through it (see Figure 6.4). What can we say about the functionf(t) = µn−1(At ∩ K) which
is the volume of the intersection of the body with the hyperplane? Brunn-Minkowski inequality says that
(f(t))1/(n−1) is convex.

At

K

t

Figure 6.4: Sliding a hyperplaneAk through a convex bodyK

Theorem 6.3. Brunn-Minkowski inequality implies the classicaln-dimensional isoperimetric inequality.
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Proof. We want to show that ifK ⊆ Rn andB is the unit ball inRn, then(
v(K)
v(B)

) 1
n

≤
(

S(K)
S(B)

) 1
n−1

whereS denotes the surface area. For a2-dimensional plane, the LHS equals
√

A/π while the RHS equals
L/(2π). To prove LHS≥ RHS, we needL2 ≥ 4πA, which we know to be true. Let’s try to generalize this
to higher dimensions.

The surface area ofK is, by definition,

S(K) = lim
ε→0

v(K + εB)− v(K)
ε

.

By Brunn-Minkowski inequality,

S(K) ≥ lim
ε→0

(
(v(K))

1
n + ε (v(B))

1
n

)n
− v(K)

ε

= lim
ε→0

nε (v(K))
n−1

n (v(B))
1
n + O(ε2)

ε

= n (v(K))
n−1

n (v(B))
1
n

= S(B)
(

v(K)
v(B)

)n−1
n n v(B)

S(B)

The last termn v(B)/S(B) is, however, always 1 in any number of dimensions. We have therefore proved
the isoperimetric inequality.
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