Lecture 6
MRRW Bound and Isoperimetric Problems

Feb 18, 2005
Lecturer: Nati Linial
Notes: Ethan Phelps-Goodman and Ashish Sabharwal

6.1 Preliminaries

First we recall the main ideas from the last lecture. Let

g*xg
92107 f: |C|'

Then we can bound the code si#én, d) using Delsarte’s linear program:
A(n,d) < mj@xme{z&:l}n f(x)
subject to
f>0 f(0)=1
F>0 Ji,a-1=0

-----

By averaging over a solutiofi, we can get an equivalent solution that is symmetric about permutations
of the input bits. That is, we can assume w.l.0.g. tha@lhat depends only on the hamming weight of the
input. f is then determined by + 1 coordinate weightsl; by

A=Y f(x)
x| |z[=j
Or equivalently,
not
j=0 \J
Central to our proof will be the Krawtchouk polynomials, which are related to our linear program by
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6.2 Primal and Dual Programs

Making the substitutions above we can now write Delsarte’s program in terms of Krawtchouk polynomials
and symmeterized.

Aln,d) < max Z;Ai

subject to
Ap=1
Ay, .., A1 =0

vk € {0,...,n} zn:?ij,»(k;) > 0.
i=0 \t

This can be further simplified with the following identity for Krawtchouk polynomials.

Fact6.1.

Proof.

Lo iRy (e k ~ il(n — i)kl (n — k)!
i) = (J’)(i—j) ;( D nljl(k — )G — ) (n —k —i+j)!

“m = 0)65)

J

O]

Using this in the last constraint, and removing Ilh/e{Z) term, which pulls out of the sum and doesn't
affect the sign, we get the constraints

VE€{0,...,n} > AK(i) > 0.
=0

Our approach will be to use LP duality to give a bound on the maximum of this program. Recall that
duality tells us that the maximum value of the primal is at most the minimum value of the dual. Strong
duality states that the optima are exactly equal, but we will not use this.

Start by multiplying each of th&""" ; A, K (i) > 0 constraints by3;,, and summing all of the con-
straints. This gives
D B AR =Y A Buki(i) > 0
k=1 =0 i=0 k=1
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Let v(z) = > 7, BeKy(i). If we add the constraint thatz,v(z) < —1, then using4, =
1,Aq,...,A3-1 =0, we get

Y Ar(i) =(2) + ) Ain(i) 20
1=0 i=d
¥(0) = = > Any(i)
i=d

> A;

@.
I M:
2 l

v0)+1>S"4; > A(n,d)

-

Il
—_

)

What we have done here is just an explicit construction of the dual. The reader can check that this dual
can be arrived at by any standard method for computing the dual.

Let 3(z) =1+ Y ,_, BxKx(z). Then our final program is given by
A(n, d) < min 4(0)
Bk

subject to:

6.3 The Upper Bound
To show an upper bound ofi(n, d) we need to demonstrate a feasible soluticand bound3(0). First we
need two additional facts about Krawtchouk polynomials.

Fact 6.2 (Christoffel-Darboux). Let P;, P, ... be a family of orthonormal polynomials, and tgtbe the
leading coefficient of?;,. Then

Py(2)Pry1(y) — Per1(2)Pe(y)  apya é () P
- = iZ;PZ( )Pi(y)

For the case of Krawtchouk polynomials, the leading termkpfx) is ;—2, Also, to normalize we need
to divide K, by |/ (""). Putting these together, we get

K1 (2) K (y) — Kp(2) K (y) _ 2 (n) —~ Ki(2)Ki(y)
r)—=
=0 ?

Yy—x r+1
The second fact we need is that the product of two Krawtchouk polynomials can be expressed as a
non-negative combination of Krawtchouk polynomials.
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Fact 6.3. For anyp, g, there existy, . .., a4+, > 0 such that

p+q
Ky -Ky=> ojK;
=0

This can be seen easily from the harmonic analysis perspective/Sinc&, = TLP -TLq = 1Lp/*\1Lq,
and the convolution is a positive combination.

We can now present the feasible solution for the dual. Let

(K@) K (2) = K (@) o)

ale) = a—x

Then setf(x) = o) "\whereay is chosen to make the constant term equal 1. Now we need to set

ag

values fora and¢. Denote bya:ﬁl) the leftmost root of,.. We know from last lecture that the roots of the
Krawtchouk polynomials are real, lie i, n], and interleave with one another. Therefore we can pitk a
such tha < a:ﬂzl < a:gl) < d. Inthe region(xgl,xgl)), K41 is negative andy; is positive, so we can
pick ana such thati;(a) = —K;41(a).

Now we need to show that(x) satisfies the two constraints from the dual. First, note that at 2lld,
a(z) < 0. Then we just need to show thatz) is non-negative combination of Krawtchouk polynomials.
Using the above settings, and Christoffel-Darboux, we can fagtoy as

a(z) = (Ki(a) K1 () — Kiy1(a)Ky(z)) |:Kt(a)Kt+1(12 - ftﬂ(a)Kt(z)]

Ki(a)Kiga(z) — Kt+1(a)Kt(fU)}

= Kt(a)(Kt—i—l(x) + Kt(x)) |:

1=0 7

Since all terms are positive, this can be expanded as a positive combination of Krawtchouk polynomials.

Now that we have a feasible solution to the dual, we just need to find the vali(@ pfWe can use the
fact that fort ~ 7n, the leftmost root is atgl) = (140(1))(3 — \/7(1 — 7))n. Given this we can conclude

thatR(6) < H(3 — 1/d(1 — 6)). Both the lecture and van Liritl[1] seem to imply that this step is obvious,
but your scribe has been unable to see any connection.

6.4 More on Isoperimetric Problems on the Cube

We now turn our attention to isoperimetric problems. In a previous lecture, we studied isoperimetric ques-
tions on then-dimensional cube, namely the vertex isoperimetric problem and the edge isoperimetric prob-
lem. Why is the study of such problems important? The reason is that Computer Science deals with Boolean
functions which are simply partitions of tmedimensional cube into two parts. Understanding the geometry

of the cube is therefore critical to understand Boolean functions. Here is one more isoperimetric problem
that is open.
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Open Problem 6.1 (Chung-Riredi-Grahan-Seymour, 1988 J.C.T.A.).What is the largesf = d(n) such
that for allS C {0,1}",|S| > 2"~1, there existx € S with dg(z) > d?

Hereds(z) denotes the number of neighbors:oih S. Note that for|S| < 2”1, S can be an indepen-
dent set, i.e.yz € S.ds(z) = 0. Further, for|S| > 2"~!, S may not be independent. In general, all we
know is thatd(n) is bothO(y/n) and2(log n). This leaves a huge gap open.

Consider any Boolean functigh: {0,1}" — {0, 1} represented as(a 1-labeling of then-dimensional
cube seen as a layered lattice. This lattice has four types of edges as depicted i@igure%.:l.]l_@t(o).
The two edges frond to 1 and from1 to 0 belong to the cu®(.S, S¢) and thus contribute to the cut size
e(S,S°).

€T; = 1
\ /
o 7 --:Edgesin thel (S, 5°) cut
L —| I
=0 0 1 1

Figure 6.1: The cut defined in terms of the four types of edges in the lattice

If |S| = 2771, thene(S, S¢) > 2"~L. This is sharp forS = {x | z; = 0}. In the edge isoperimetry
problem, given S|, we want to minimize the cut siz€ S, S¢). What about trying tanaximizethe cut size
instead? The maximum cut size can really be anything. Indeed, Wirethe parity functione(.S, S¢) =
n2n1,

6.4.1 Maximizing Edge Cut Size for Monotone Functions

Consider the setting of the previous section. How can we maximize the edge cuifvidhisronotonei.e.,
x =y = f(z) > f(y), wherex > y meansvi.x; > y;? In the following, we use Parseval’s identity to
answer this question.

Theorem 6.1. Let.S C {0,1}" correspond to a monotone Boolean functipn {0,1}" — {0,1}. f =
majority maximizes the edge cut siz&5, S¢).

Proof. It is clear from the lattice corresponding fo= majority (see Figurg 6]2) that the size of the cut
corresponding to it iﬂn?zj) = O(y/n 2"). We will use Parseval’s identity to prove that this is the optimal.

Let f be any monotone Boolean function 'mdimgnsions. Regall that for characte;@gZ) =
(—=1)I#71 the functionf can be represented fis= 3" f(T)xr wheref(T) = (f, xr). Whatisf({i})?
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Figure 6.2: The lattice corresponding to the majority function

X (Z2) = (D)2 whichis+1if i ¢ Z and—1if i € Z. Therefore

Ay = (foxgy)

= 5 @ (2)
Z

= = (Zf<z>zf<z>)
Z%i Z3i

1 . . .
= o0 (number of cut edges in thedirection)

For ease of computation, convert everything from{bel } basis to thg —1, +1} basis. This quantity
is then(2/2™) times the number of cut edges in thelirection. Using Parseval’s identity and Cauchy-

Sehwartz inequality) = 113 = S5 (7(5))" > =, (F((1)" = a/n) (S 7(4i) " Hencey/ >
S F{i}) = (2/2") e(S, 5¢), which finishes the proof. O

We give an alternativeombinatorialproof of the fact thae(S, 5¢) = 27~13. f({i}) based on the
following claim.

Claim 6.1. Let f be a monotone Boolean function. If the expectationfds given and fixed, then to
maximizee(f~1(0), f~1(1)), itis best to takef symmetric.

Proof of claim. Consider} . ;,)_o(n — 2|z|). This is the sum of the first Krawtchouk polynomials and
is equal to the cut size(f~1(0), f~1(1)) becausgn — |z|) edges in the lattice corresponding fahat
go upwards frome contributing+1 each while|z| edges go downward from contributing—1 each (see
Figure. Maximizing this quantity means minimiziriggc:f(%):O |z| which happens exactly whefis
“pushed down” as much as possible.

Formally, let us change the basis froif, 1} to {—1,+1} and reinterpret the summation. It is equal
0>, py=1(m = 2|z]) = X4 py=—1(n — 2[z|) = 2"(f, K1). Observe however th@x(f@ —2)z|) =
(K1, Ko) = 0. Thereforey_ ;. (n — 2[z|) = 2"=1(f, K1), which is the same a%_, f({i}) by the
properties of Krawtchouk polynomials. O
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__-- (n—|z|) edges contributing-1 each

T |z| edges contributing-1 each

Figure 6.3: Contribution of to the cut

6.4.2 The Brunn-Minkowski Inequality

Let v be a volume measure on subsetRaof

Theorem 6.2 (Brunn-Minkowski [2]). For A, B measurable subsets Rf*,
((A+B)Y" = (oAD" + (u(B)"
Moreover, equality holds if and only £ and B are homothetic, i.eB = A\A + C for A € R.

Here A + B is the Minkowski sum defined d& + b | a € A,b € B}, wherea+ b is the standard vector
sum overR™. For A € R, AA is similarly defined agXa | a € A}. We will not be using the second part of
the theorem.

Let us try to understand what this inequality says. Take a convex RoutyR™ and slide a hyperplane
At € R, through it (see Figure 6.4). What can we say about the fungtioh= 11,,—1(A4; N K) which
is the volume of the intersection of the body with the hyperplane? Brunn-Minkowski inequality says that
(f(t)Y =1 is convex.

Figure 6.4: Sliding a hyperplanég, through a convex bodi

Theorem 6.3. Brunn-Minkowski inequality implies the classigaldimensional isoperimetric inequality.
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Proof. We want to show that if{ C R™ andB is the unit ball inR"”, then

oK)\ " _ (ST
v(B)) T \S8(B)
whereS denotes the surface area. Far-dimensional plane, the LHS equa}éﬂ while the RHS equals

L/(2). To prove LHS> RHS, we need.? > 47 A, which we know to be true. Let's try to generalize this
to higher dimensions.

The surface area dt is, by definition,

By Brunn-Minkowski inequality,

S = :
o, KD T (0(B)" +0()
e—0

The last termm v(B)/S(B) is, however, always 1 in any number of dimensions. We have therefore proved
the isoperimetric inequality. O
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