Lecture 7

The Brunn-Minkowski Theorem and Influences of Boolean Variables

Friday 25, 2005 Lecturer: Nati Linial Notes: Mukund Narasimhan

Theorem 7.1 (Brunn-Minkowski). If $A, B \subseteq \mathbb{R}^n$ satisfy some mild assumptions (in particular, convexity suffices), then

$$[\operatorname{vol}(A+B)]^{\frac{1}{n}} \ge [\operatorname{vol}(A)]^{\frac{1}{n}} + [\operatorname{vol}(B)]^{\frac{1}{n}}$$

where $A + B = \{a + b : a \in A \text{ and } b \in B\}.$

Proof. First, suppose that A and B are axis aligned boxes, say $A = \prod_{j=1}^{n} I_j$ and $B = \prod_{i=1}^{n} J_i$, where each I_j and J_i is an interval with $|I_j| = x_j$ and $|J_i| = y_i$. We may assume WLOG that $I_j = [0, x_j]$ and $J_i = [0, y_i]$ and hence $A + B = \prod_{i=1}^{n} [0, x_i + y_i]$. For this case, the BM inequality asserts that

$$\prod_{i=1}^{n} (x_i + y_i)^{\frac{1}{n}} \ge \prod_{i=1}^{n} x_i^{\frac{1}{n}} \cdot \prod_{i=1}^{n} y_i^{\frac{1}{n}}$$

$$\Rightarrow \qquad 1 \ge \left[\prod \left(\frac{x_i}{x_i + y_i} \right) \right]^{\frac{1}{n}} \cdot \left[\prod \left(\frac{y_i}{x_i + y_i} \right) \right]^{\frac{1}{n}}$$

Now, since the arithmetic mean of n numbers is bounded above by their harmonic mean, we have $(\prod \alpha_i)^{\frac{1}{n}} \leq \frac{\sum \alpha_i}{n}$ and $(\prod (1 - \alpha_i))^{\frac{1}{n}} \leq \frac{\sum (1 - \alpha_i)}{n}$. Taking $\alpha_i = \frac{x_i}{x_i + y_i}$ and hence $1 - \alpha_i = \frac{y_i}{x_i + y_i}$, we see that the above inequality always holds. Hence the BM inequality holds whenever A and B are axis aligned boxes.

Now, suppose that A and B are the disjoint union of axis aligned boxes. Suppose that $A = \bigcup_{\alpha \in \mathcal{A}} A_{\alpha}$ and $B = \bigcup_{\beta \in \mathcal{B}} B_{\beta}$. We proceed by induction on $|\mathcal{A}| + |\mathcal{B}|$. We may assume WLOG that $|\mathcal{A}| > 1$. Since the boxes are disjoint, there is a hyperplane separating two boxes in \mathcal{A} . We may assume WLOG that this hyperplane is $x_1 = 0$.

Let $A^+ = \{x \in A : x_1 \ge 0\}$ and $A^- = \{x \in A : x_1 \le 0\}$ as shown in the figure above. It is clear that both A^+ and A^- are the disjoint union of axis aligned boxes. In fact, we may let $A^+ = \bigcup_{\alpha \in \mathcal{A}^+} A_{\alpha}$ and $A^- = \bigcup_{\alpha \in \mathcal{A}^-} A_{\alpha}$ where $|\mathcal{A}^+| < |\mathcal{A}|$ and $|\mathcal{A}^-| < |\mathcal{A}|$. Suppose that $\frac{\operatorname{vol}(A^+)}{\operatorname{vol}(A)} = \alpha$. Pick a λ so that

$$\frac{\operatorname{vol}\left(\left\{x \in B : x_1 \ge \lambda\right\}\right)}{\operatorname{vol}\left(B\right)} = \alpha$$

We can always do this by the mean value theorem because the function $f(\lambda) = \frac{\operatorname{vol}(\{x \in B : x_1 \ge \lambda\})}{\operatorname{vol}(B)}$ is continuous, and $f(\lambda) \to 0$ as $\lambda \to \infty$ and and $f(\lambda) \to 1$ as $\lambda \to -\infty$.

Let $B^+ = \{x \in B : x_1 \ge \lambda\}$ and $B^- = \{x \in B : x_1 \le \lambda\}$. By induction, we may apply BM to both (A^+, B^+) and (A^-, B^-) , obtaining

$$\left[\operatorname{vol} \left(A^{+} + B^{+} \right) \right]^{\frac{1}{n}} \ge \left[\operatorname{vol} \left(A^{+} \right) \right]^{\frac{1}{n}} + \left[\operatorname{vol} \left(B^{+} \right) \right]^{\frac{1}{n}}$$
$$\left[\operatorname{vol} \left(A^{-} + B^{-} \right) \right]^{\frac{1}{n}} \ge \left[\operatorname{vol} \left(A^{-} \right) \right]^{\frac{1}{n}} + \left[\operatorname{vol} \left(B^{-} \right) \right]^{\frac{1}{n}}$$

Now,

$$\left[\operatorname{vol} \left(A^+ \right) \right]^{\frac{1}{n}} + \left[\operatorname{vol} \left(B^+ \right) \right]^{\frac{1}{n}} = \alpha^{\frac{1}{n}} \left[\left[\operatorname{vol} \left(A \right) \right]^{\frac{1}{n}} + \left[\operatorname{vol} \left(B \right) \right]^{\frac{1}{n}} \right]$$
$$\left[\operatorname{vol} \left(A^- \right) \right]^{\frac{1}{n}} + \left[\operatorname{vol} \left(B^- \right) \right]^{\frac{1}{n}} = (1 - \alpha)^{\frac{1}{n}} \left[\left[\operatorname{vol} \left(A \right) \right]^{\frac{1}{n}} + \left[\operatorname{vol} \left(B \right) \right]^{\frac{1}{n}} \right]$$

Hence

$$\left[\operatorname{vol}\left(A^{+}+B^{+}\right)\right]^{\frac{1}{n}}+\left[\operatorname{vol}\left(A^{-}+B^{-}\right)\right]^{\frac{1}{n}} \ge \left[\left[\operatorname{vol}\left(A\right)\right]^{\frac{1}{n}}+\left[\operatorname{vol}\left(B\right)\right]^{\frac{1}{n}}\right]$$

The general case follows by a limiting argument (without the analysis for the case where equality holds). \Box

Suppose that $f : \mathbb{S}^1 \to \mathbb{R}$ is a mapping having a Lipshitz constant 1. Hence

$$||f(x) - f(y)|| \le ||x - y||_2$$

Let μ be the median of f, so

$$\mu = \text{prob} \left[\{ x \in \mathbb{S}^n : f(x) < \mu \} \right] = \frac{1}{2}$$

We assume that the probability distribution always admits such a μ (at least approximately). The following inequality holds for every $\epsilon > 0$ as a simple consequence of the isoperimetric inequality on the sphere.

$$\{\mathbf{x}\in\mathbb{S}^n: |\mathbf{f}-\boldsymbol{\mu}|>\epsilon\}<2e^{-\epsilon n/2}$$

For $A \subseteq \mathbb{S}^n$ and for $\epsilon > 0$, let

$$A_{\epsilon} = \{ x \in \mathbb{S}^n : \text{dist} \, x, A < \epsilon \}$$

Question 7.1. Find a set $A \subseteq \mathbb{S}^n$ with A = a for which A_{ϵ} is the smallest.

The probability used here is the (normalized) Haar measure. The answer is always a spherical cap, and in particular if $a = \frac{1}{2}$, then the best A is the hemisphere (and so $A_{\epsilon} = \{x \in \mathbb{S}^n : x_1 < \epsilon\}$). We will show that for $A \subseteq \mathbb{S}^n$ with $A = \frac{1}{2}$, $A_{\epsilon} \ge 1 - 2e^{-\epsilon^2 n/4}$. If A is the hemisphere, then $A_{\epsilon} = 1 - \Theta(e^{-\epsilon^2 n/2})$, and so the hemisphere is the best possible set.

But first, a small variation on BM :

$$\operatorname{vol}\left(\frac{A+B}{2}\right) \ge \sqrt{\operatorname{vol}\left(A\right) \cdot \operatorname{vol}\left(B\right)}$$

This follows from BM because

$$\operatorname{vol}\left(\frac{A+B}{2}\right)^{\frac{1}{n}} \ge \operatorname{vol}\left(\frac{A}{2}\right)^{\frac{1}{n}} + \operatorname{vol}\left(\frac{B}{2}\right)^{\frac{1}{n}}$$
$$= \frac{1}{2}\left[\operatorname{vol}\left(A\right)^{\frac{1}{n}} + \operatorname{vol}\left(B\right)^{\frac{1}{n}}\right]$$
$$\ge \sqrt{\operatorname{vol}\left(A\right)^{\frac{1}{n}} + \operatorname{vol}\left(B\right)^{\frac{1}{n}}}$$

For $A \subseteq \mathbb{S}^n$, let $\tilde{A} = \{\lambda a : a \in A, 1 \ge \lambda \ge 0\}$. Then $A = \mu_{n+1}(\tilde{A})$. Let $B = \mathbb{S}^n \setminus A_{\epsilon}$. Lemma 7.2. If $\tilde{x} \in \tilde{A}$ and $\tilde{y} \in \tilde{B}$, then

$$\left|\frac{\tilde{x}+\tilde{y}}{2}\right| \le 1 - \frac{\epsilon^2}{8}$$

It follows that $\frac{\tilde{A}+\tilde{B}}{2}$ is contained in a ball of radius at most $1-\frac{\epsilon^2}{8}$. Hence

$$\left(1 - \frac{\epsilon^2}{8}\right)^{n+1} \ge \operatorname{vol}\left(\frac{\tilde{A} + \tilde{B}}{2}\right)$$
$$\ge \sqrt{\operatorname{vol}\left(\tilde{A}\right) \cdot \operatorname{vol}\left(\tilde{B}\right)}$$
$$\ge \sqrt{\frac{\operatorname{vol}\left(\tilde{B}\right)}{2}}$$

Therefore, $2e^{-\epsilon^2 n/4} \ge \operatorname{vol}\left(\tilde{B}\right)$.

7.1 Boolean Influences

Let $f : \{0,1\}^n \to \{0,1\}$ be a boolean function. For a set $S \subseteq [n]$, the influence of S on f, $I_f(S)$ is defined as follows. When we pick $\{x_i\}_{i \notin S}$ uniformly at random, three things can happen.

1. f = 0 regardless of $\{x_i\}_{i \in S}$ (suppose that this happens with probability q_0).

2. f = 1 regardless of $\{x_i\}_{i \in S}$ (suppose that this happens with probability q_1).

3. With probability $\text{Inf}_{f}(S) := 1 - q_0 - q_1$, f is still undetermined.

Some examples:

• (Dictatorship) $f(x_1, x_2, \dots, x_n) = x_1$. In this case

$$\operatorname{Inf}_{\mathsf{dictatorship}}\left(S\right) = \begin{cases} 1 & \text{ if } i \in S\\ 0 & \text{ if } i \notin S \end{cases}$$

• (Majority) For n = 2k + 1, $f(x_1, x_2, ..., x_n)$ is 1 if and only if a majority of the x_i are 1. For example, if $S = \{1\}$,

$$\operatorname{Inf}_{\mathsf{majority}}(\{1\}) = \operatorname{prob}(x_1 \text{ is the tie breaker })$$

$$=\frac{\binom{2k}{k}}{2^{2k}}=\Theta\left(\frac{1}{\sqrt{k}}\right)$$

For fairly small sets S,

$$\operatorname{Inf}_{\mathsf{majority}}(S) = \Theta\left(\frac{|S|}{\sqrt{n}}\right)$$

• (Parity) $f(x_1, x_2, ..., x_n) = 1$ if and only if an even number of the x_i 's are 1. In this case

$$\operatorname{Inf}_{\mathsf{parity}}\left(\{x_i\}\right) = 1$$

for every $1 \le i \le n$.

Question 7.2. What is the smallest $\delta = \delta(n)$ such that there exists a function $f : \{0,1\}^n \to \{0,1\}$ which is balanced (i.e., $Ef = \frac{1}{2}$) for which $\operatorname{Inf}_f(\{x_i\}) < \delta$ for all x_i ?

Consider the following example, called tribes. The set of inputs $\{x_1, x_2, \ldots, x_n\}$ is partitioned into tribes of size *b* each. Here, $f(x_1, x_2, \ldots, x_n) = 1$ if and only if there is a tribe that unanimously 1.

Since we want $Ef = \frac{1}{2}$, we must have $\operatorname{prob}(f = 0) = \left(1 - \frac{1}{2^b}\right)^{\frac{n}{b}} = \frac{1}{2}$. Therefore, $\frac{n}{b}\ln\left(1 - \frac{1}{2^b}\right) = -\ln 2$. We use the Taylor series expansion for $\ln(1 - \epsilon) = -\epsilon - \epsilon^2/2 - \cdots = -\epsilon - O(\epsilon^2)$ to get $\frac{n}{b}\left(\frac{1}{2^b} + O\left(\frac{1}{4^b}\right)\right) = -\ln 2$. This yields $n = b \cdot 2^b \ln 2 (1 + O(1))$. Hence $b = \log_2 n - \log_2 \ln n + \Theta(1)$. Hence,

$$\begin{aligned} \text{Inf}_{\text{tribes}} \left(x \right) &= \left(1 - \frac{1}{2^b} \right)^{\frac{n/b}{-}1} \cdot \left(\frac{1}{2} \right)^{b-1} \\ &= \frac{\left(1 - \frac{1}{2^b} \right)^{\frac{n}{b}}}{1 - \frac{1}{2^b}} \cdot \frac{1}{2^{b-1}} \\ &= \frac{1}{1 - \frac{1}{2^b}} \cdot \frac{1}{2^b} \\ &= \frac{1}{2^{b-1}} = \Theta \left(\frac{\log b}{n} \right) \end{aligned}$$

In this example, each individual variable has influence $\Theta(\log n/n)$. It was later shown that this is lowest possible influence.

Proposition 7.3. If $Ef = \frac{1}{2}$, then $\sum_{x} \text{Inf}_{f}(x) \ge 1$.

This is a special case of the edge isoperimetric inequality for the cube, and the inequality is tight if f is dictatorship.

The variable x is influential in the cases indicated by the solid lines, and hence

$$\operatorname{Inf}_{f}(x) = \frac{\# \text{ of mixed edges}}{2^{n-1}}$$

Let $S = f^{-1}(0)$. Then $\sum Inf_f(x) = \frac{1}{2^{n-1}}e(S, S^c)$.

One can use \hat{f} to compute influences. For example, if f is monotone (so $x \prec y \Rightarrow f(x) \leq f(y)$), then

$$\hat{f}(S) = \sum_{T} \frac{(-1)^{|S \cap T|}}{2^n}$$

Therefore,

$$\begin{split} \hat{f}(\{i\}) &= \frac{1}{2^n} \sum_{i \notin T} f(T) - \frac{1}{2^n} \sum_{i \in T} f(T) \\ &= \frac{1}{2^n} \sum_{i \notin T} \left(f(T) - f(T \cup \{i\}) \right) \\ &= \frac{-1}{2^n} \cdot \# \text{ mixed edges in the direction of } i \\ &= -\frac{1}{2} \text{Inf}_f(x_i) \end{split}$$

Hence $\text{Inf}_{f}(x_{i}) = -2\hat{f}(\{i\})$. What can be done to express $\text{Inf}_{f}(x)$ for a general f? Define

$$f^{(i)}(z) = f(z) - f(z \oplus e_i)$$

The last term will be evaluated using Parseval. For this, we need to compute the Fourier expression of $f^{(i)}$ (expressed in terms of \hat{f}).

$$\begin{split} \widehat{f^{(i)}}(S) &= \frac{1}{2^n} \sum_T f^{(i)}(T)(-1)^{|S \cap T|} \\ &= \frac{1}{2^n} \sum_T \left[f(T) - f(T \oplus \{i\}) \right] (-1)^{|S \cap T|} \\ &= \frac{1}{2^n} \sum_{i \notin T} \left(\left[f(T) - f(T \cup \{i\}) \right] (-1)^{|S \cap T|} + \left[f(T \cup \{i\}) - f(T) \right] (-1)^{|S \cap (T \cup \{i\})|} \right) \\ &= \frac{1}{2^n} \sum_{i \notin T} \left[f(T) - f(T \cup \{i\}) \right] \left((-1)^{|S \cap T|} - (-1)^{|S \cap (T \cup \{i\})|} \right) \\ &= \begin{cases} 0 & \text{if } i \notin S \\ 2\hat{f}(S) & \text{if } i \in S \end{cases} \end{split}$$

Using Parseval on $\widehat{f^{(i)}}$ along with the fact that $\widehat{f^{(i)}}$ takes on only values $\{0, \pm 1\}$, we conclude that

$$\operatorname{Inf}_{f}(x_{i}) = 4 \sum_{i \in S} |hatf(S)|^{2}$$

Next time, we will show that if $Ef = \frac{1}{2}$, then there exists a *i* such that $\sum_{i \in S} \left(\hat{f}(S) \right)^2 > \Omega(\ln n/n)$. Lemma 7.4. For every $f : \{0,1\}^n \to \{0,1\}$, there is a monotone $g : \{0,1\}^n \to \{0,1\}$ such that

- Eg = Ef.
- For every $s \subseteq [n]$, $\operatorname{Inf}_{g}(S) \leq \operatorname{Inf}_{f}(S)$.

Proof. We use a shifting argument.

Clearly $E\tilde{f} = Ef$. We will show that for all S, $\mathrm{Inf}_{\tilde{f}}(S) \leq \mathrm{Inf}_{f}(S)$. We may keep repeating the shifting step until we obtain a monotone function g. It is clear that the process will terminate by considering the progress measure $\sum f(x) |x|$ which is strictly increasing. Therefore, we only need show that $\mathrm{Inf}_{\tilde{f}}(()S) \leq \mathrm{Inf}_{f}(S)$.