Lecture 7

The Brunn-Minkowski Theorem and Influences of Boolean Variables

Friday 25, 2005
Lecturer: Nati Linial
Notes: Mukund Narasimhan
Theorem 7.1 (Brunn-Minkowski). If $A, B \subseteq \mathbb{R}^{n}$ satisfy some mild assumptions (in particular, convexity suffices), then

$$
[\operatorname{vol}(A+B)]^{\frac{1}{n}} \geq[\operatorname{vol}(A)]^{\frac{1}{n}}+[\operatorname{vol}(B)]^{\frac{1}{n}}
$$

where $A+B=\{a+b: a \in A$ and $b \in B\}$.
Proof. First, suppose that A and B are axis aligned boxes, say $A=\prod_{j=1}^{n} I_{j}$ and $B=\prod_{i=1}^{n} J_{i}$, where each I_{j} and J_{i} is an interval with $\left|I_{j}\right|=x_{j}$ and $\left|J_{i}\right|=y_{i}$. We may assume WLOG that $I_{j}=\left[0, x_{j}\right]$ and $J_{i}=\left[0, y_{i}\right]$ and hence $A+B=\prod_{i=1}^{n}\left[0, x_{i}+y_{i}\right]$. For this case, the BM inequality asserts that

$$
\begin{aligned}
& \prod_{i=1}^{n}\left(x_{i}+y_{i}\right)^{\frac{1}{n}}
\end{aligned} \geq \prod_{i=1}^{n} x_{i}^{\frac{1}{n}} \cdot \prod_{i=1}^{n} y_{i}^{\frac{1}{n}}, ~=\left[\prod\left(\frac{x_{i}}{x_{i}+y_{i}}\right)\right]^{\frac{1}{n}} \cdot\left[\prod\left(\frac{y_{i}}{x_{i}+y_{i}}\right)\right]^{\frac{1}{n}}
$$

Now, since the arithmetic mean of n numbers is bounded above by their harmonic mean, we have $\left(\prod \alpha_{i}\right)^{\frac{1}{n}} \leq$ $\frac{\sum \alpha_{i}}{n}$ and $\left(\Pi\left(1-\alpha_{i}\right)\right)^{\frac{1}{n}} \leq \frac{\sum\left(1-\alpha_{i}\right)}{n}$. Taking $\alpha_{i}=\frac{x_{i}}{x_{i}+y_{i}}$ and hence $1-\alpha_{i}=\frac{y_{i}}{x_{i}+y_{i}}$, we see that the above inequality always holds. Hence the BM inequality holds whenever A and B are axis aligned boxes.

Now, suppose that A and B are the disjoint union of axis aligned boxes. Suppose that $A=\bigcup_{\alpha \in \mathcal{A}} A_{\alpha}$ and $B=\bigcup_{\beta \in \mathcal{B}} B_{\beta}$. We proceed by induction on $|\mathcal{A}|+|\mathcal{B}|$. We may assume WLOG that $|\mathcal{A}|>1$. Since the boxes are disjoint, there is a hyperplane separating two boxes in \mathcal{A}. We may assume WLOG that this hyperplane is $x_{1}=0$.

Let $A^{+}=\left\{x \in A: x_{1} \geq 0\right\}$ and $A^{-}=\left\{x \in A: x_{1} \leq 0\right\}$ as shown in the figure above. It is clear that both A^{+}and A^{-}are the disjoint union of axis aligned boxes. In fact, we may let $A^{+}=\bigcup_{\alpha \in \mathcal{A}^{+}} A_{\alpha}$ and $A^{-}=\bigcup_{\alpha \in \mathcal{A}^{-}} A_{\alpha}$ where $\left|\mathcal{A}^{+}\right|<|\mathcal{A}|$ and $\left|\mathcal{A}^{-}\right|<|\mathcal{A}|$. Suppose that $\frac{\operatorname{vol}\left(A^{+}\right)}{\operatorname{vol}(A)}=\alpha$. Pick a λ so that

$$
\frac{\operatorname{vol}\left(\left\{x \in B: x_{1} \geq \lambda\right\}\right)}{\operatorname{vol}(B)}=\alpha
$$

We can always do this by the mean value theorem because the function $f(\lambda)=\frac{\operatorname{vol}\left(\left\{x \in B: x_{1} \geq \lambda\right\}\right)}{\operatorname{vol}(B)}$ is continuous, and $f(\lambda) \rightarrow 0$ as $\lambda \rightarrow \infty$ and and $f(\lambda) \rightarrow 1$ as $\lambda \rightarrow-\infty$.

Let $B^{+}=\left\{x \in B: x_{1} \geq \lambda\right\}$ and $B^{-}=\left\{x \in B: x_{1} \leq \lambda\right\}$. By induction, we may apply BM to both $\left(A^{+}, B^{+}\right)$and $\left(A^{-}, B^{-}\right)$, obtaining

$$
\begin{aligned}
& {\left[\operatorname{vol}\left(A^{+}+B^{+}\right)\right]^{\frac{1}{n}} \geq\left[\operatorname{vol}\left(A^{+}\right)\right]^{\frac{1}{n}}+\left[\operatorname{vol}\left(B^{+}\right)\right]^{\frac{1}{n}}} \\
& {\left[\operatorname{vol}\left(A^{-}+B^{-}\right)\right]^{\frac{1}{n}} \geq\left[\operatorname{vol}\left(A^{-}\right)\right]^{\frac{1}{n}}+\left[\operatorname{vol}\left(B^{-}\right)\right]^{\frac{1}{n}}}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& {\left[\operatorname{vol}\left(A^{+}\right)\right]^{\frac{1}{n}}+\left[\operatorname{vol}\left(B^{+}\right)\right]^{\frac{1}{n}}=\alpha^{\frac{1}{n}}\left[[\operatorname{vol}(A)]^{\frac{1}{n}}+[\operatorname{vol}(B)]^{\frac{1}{n}}\right]} \\
& {\left[\operatorname{vol}\left(A^{-}\right)\right]^{\frac{1}{n}}+\left[\operatorname{vol}\left(B^{-}\right)\right]^{\frac{1}{n}}=(1-\alpha)^{\frac{1}{n}}\left[[\operatorname{vol}(A)]^{\frac{1}{n}}+[\operatorname{vol}(B)]^{\frac{1}{n}}\right]}
\end{aligned}
$$

Hence

$$
\left[\operatorname{vol}\left(A^{+}+B^{+}\right)\right]^{\frac{1}{n}}+\left[\operatorname{vol}\left(A^{-}+B^{-}\right)\right]^{\frac{1}{n}} \geq\left[[\operatorname{vol}(A)]^{\frac{1}{n}}+[\operatorname{vol}(B)]^{\frac{1}{n}}\right]
$$

The general case follows by a limiting argument (without the analysis for the case where equality holds).
Suppose that $f: \mathbb{S}^{1} \rightarrow \mathbb{R}$ is a mapping having a Lipshitz constant 1 . Hence

$$
\|f(x)-f(y)\| \leq\|x-y\|_{2}
$$

Let μ be the median of f, so

$$
\mu=\operatorname{prob}\left[\left\{x \in \mathbb{S}^{n}: f(x)<\mu\right\}\right]=\frac{1}{2}
$$

We assume that the probability distribution always admits such a μ (at least approximately). The following inequality holds for every $\epsilon>0$ as a simple consequence of the isoperimetric inequality on the sphere.

$$
\left\{\mathrm{x} \in \mathbb{S}^{\mathrm{n}}:|\mathrm{f}-\mu|>\epsilon\right\}<2 e^{-\epsilon n / 2}
$$

For $A \subseteq \mathbb{S}^{n}$ and for $\epsilon>0$, let

$$
A_{\epsilon}=\left\{x \in \mathbb{S}^{n}: \operatorname{dist} x, A<\epsilon\right\}
$$

Question 7.1. Find a set $A \subseteq \mathbb{S}^{n}$ with $\mathrm{A}=a$ for which A_{ϵ} is the smallest.
The probability used here is the (normalized) Haar measure. The answer is always a spherical cap, and in particular if $a=\frac{1}{2}$, then the best A is the hemisphere (and so $A_{\epsilon}=\left\{x \in \mathbb{S}^{n}: x_{1}<\epsilon\right\}$). We will show that for $A \subseteq \mathbb{S}^{n}$ with $\mathrm{A}=\frac{1}{2}, \mathrm{~A}_{\epsilon} \geq 1-2 e^{-\epsilon^{2} n / 4}$. If A is the hemisphere, then $\mathrm{A}_{\epsilon}=1-\Theta\left(e^{-\epsilon^{2} n / 2}\right)$, and so the hemisphere is the best possible set.

But first, a small variation on BM :

$$
\operatorname{vol}\left(\frac{A+B}{2}\right) \geq \sqrt{\operatorname{vol}(A) \cdot \operatorname{vol}(B)}
$$

This follows from BM because

$$
\begin{aligned}
\operatorname{vol}\left(\frac{A+B}{2}\right)^{\frac{1}{n}} & \geq \operatorname{vol}\left(\frac{A}{2}\right)^{\frac{1}{n}}+\operatorname{vol}\left(\frac{B}{2}\right)^{\frac{1}{n}} \\
& =\frac{1}{2}\left[\operatorname{vol}(A)^{\frac{1}{n}}+\operatorname{vol}(B)^{\frac{1}{n}}\right] \\
& \geq \sqrt{\operatorname{vol}(A)^{\frac{1}{n}}+\operatorname{vol}(B)^{\frac{1}{n}}}
\end{aligned}
$$

For $A \subseteq \mathbb{S}^{n}$, let $\tilde{A}=\{\lambda a: a \in A, 1 \geq \lambda \geq 0\}$. Then $\mathrm{A}=\mu_{n+1}(\tilde{A})$. Let $B=\mathbb{S}^{n} \backslash A_{\epsilon}$.
Lemma 7.2. If $\tilde{x} \in \tilde{A}$ and $\tilde{y} \in \tilde{B}$, then

$$
\left|\frac{\tilde{x}+\tilde{y}}{2}\right| \leq 1-\frac{\epsilon^{2}}{8}
$$

It follows that $\frac{\tilde{A}+\tilde{B}}{2}$ is contained in a ball of radius at most $1-\frac{\epsilon^{2}}{8}$. Hence

$$
\begin{aligned}
\left(1-\frac{\epsilon^{2}}{8}\right)^{n+1} & \geq \operatorname{vol}\left(\frac{\tilde{A}+\tilde{B}}{2}\right) \\
& \geq \sqrt{\operatorname{vol}(\tilde{A}) \cdot \operatorname{vol}(\tilde{B})} \\
& \geq \sqrt{\frac{\operatorname{vol}(\tilde{B})}{2}}
\end{aligned}
$$

Therefore, $2 e^{-\epsilon^{2} n / 4} \geq \operatorname{vol}(\tilde{B})$.

7.1 Boolean Influences

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a boolean function. For a set $S \subseteq[n]$, the influence of S on $f, I_{f}(S)$ is defined as follows. When we pick $\left\{x_{i}\right\}_{i \notin S}$ uniformly at random, three things can happen.

1. $f=0$ regardless of $\left\{x_{i}\right\}_{i \in S}$ (suppose that this happens with probability q_{0}).
2. $f=1$ regardless of $\left\{x_{i}\right\}_{i \in S}$ (suppose that this happens with probability q_{1}).
3. With probability $\operatorname{Inf}_{f}(S):=1-q_{0}-q_{1}, f$ is still undetermined.

Some examples:

- (Dictatorship) $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}$. In this case

$$
\operatorname{Inf}_{\text {dictatorship }}(S)= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { if } i \notin S\end{cases}
$$

- (Majority) For $n=2 k+1, f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is 1 if and only if a majority of the x_{i} are 1 . For example, if $S=\{1\}$,

$$
\begin{aligned}
\operatorname{Inf}_{\text {majority }}(\{1\}) & =\operatorname{prob}\left(x_{1} \text { is the tie breaker }\right) \\
& =\frac{\binom{2 k}{k}}{2^{2 k}}=\Theta\left(\frac{1}{\sqrt{k}}\right)
\end{aligned}
$$

For fairly small sets S,

$$
\operatorname{Inf}_{\text {majority }}(S)=\Theta\left(\frac{|S|}{\sqrt{n}}\right)
$$

- (Parity) $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$ if and only if an even number of the x_{i} 's are 1 . In this case

$$
\operatorname{Inf}_{\text {parity }}\left(\left\{x_{i}\right\}\right)=1
$$

for every $1 \leq i \leq n$.
Question 7.2. What is the smallest $\delta=\delta(n)$ such that there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ which is balanced (i.e., $E f=\frac{1}{2}$) for which $\operatorname{Inf}_{f}\left(\left\{x_{i}\right\}\right)<\delta$ for all x_{i} ?

Consider the following example, called tribes. The set of inputs $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is partitioned into tribes of size b each. Here, $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$ if and only if there is a tribe that unanimously 1.

Since we want $E f=\frac{1}{2}$, we must have $\operatorname{prob}(f=0)=\left(1-\frac{1}{2^{b}}\right)^{\frac{n}{b}}=\frac{1}{2}$. Therefore, $\frac{n}{b} \ln \left(1-\frac{1}{2^{b}}\right)=$ $-\ln 2$. We use the Taylor series expansion for $\ln (1-\epsilon)=-\epsilon-\epsilon^{2} / 2-\cdots=-\epsilon-O\left(\epsilon^{2}\right)$ to get $\frac{n}{b}\left(\frac{1}{2^{b}}+O\left(\frac{1}{4^{b}}\right)\right)=-\ln 2$. This yields $n=b \cdot 2^{b} \ln 2(1+O(1))$. Hence $b=\log _{2} n-\log _{2} \ln n+\Theta(1)$.

Hence,

$$
\begin{aligned}
\operatorname{Inf}_{\text {tribes }}(x) & =\left(1-\frac{1}{2^{b}}\right)^{\frac{n / b}{-} 1} \cdot\left(\frac{1}{2}\right)^{b-1} \\
& =\frac{\left(1-\frac{1}{2^{b}}\right)^{\frac{n}{b}}}{1-\frac{1}{2^{b}}} \cdot \frac{1}{2^{b-1}} \\
& =\frac{1}{1-\frac{1}{2^{b}}} \cdot \frac{1}{2^{b}} \\
& =\frac{1}{2^{b-1}}=\Theta\left(\frac{\log b}{n}\right)
\end{aligned}
$$

In this example, each individual variable has influence $\Theta(\log n / n)$. It was later shown that this is lowest possible influence.

Proposition 7.3. If $E f=\frac{1}{2}$, then $\sum_{x} \operatorname{Inf}_{f}(x) \geq 1$.
This is a special case of the edge isoperimetric inequality for the cube, and the inequality is tight if f is dictatorship.

The variable x is influential in the cases indicated by the solid lines, and hence

$$
\operatorname{Inf}_{f}(x)=\frac{\# \text { of mixed edges }}{2^{n-1}}
$$

Let $S=f^{-1}(0)$. Then $\sum \operatorname{Inf}_{f}(x)=\frac{1}{2^{n-1}} e\left(S, S^{c}\right)$.

One can use \hat{f} to compute influences. For example, if f is monotone (so $x \prec y \Rightarrow f(x) \leq f(y)$), then

$$
\hat{f}(S)=\sum_{T} \frac{(-1)^{|S \cap T|}}{2^{n}}
$$

Therefore,

$$
\begin{aligned}
\hat{f}(\{i\}) & =\frac{1}{2^{n}} \sum_{i \notin T} f(T)-\frac{1}{2^{n}} \sum_{i \in T} f(T) \\
& =\frac{1}{2^{n}} \sum_{i \notin T}(f(T)-f(T \cup\{i\})) \\
& =\frac{-1}{2^{n}} \cdot \# \text { mixed edges in the direction of } i \\
& =-\frac{1}{2} \operatorname{Inf}_{f}\left(x_{i}\right)
\end{aligned}
$$

Hence $\operatorname{Inf}_{f}\left(x_{i}\right)=-2 \hat{f}(\{i\})$. What can be done to express $\operatorname{Inf}_{f}(x)$ for a general f ? Define

$$
f^{(i)}(z)=f(z)-f\left(z \oplus e_{i}\right)
$$

$x=1$
$x=0$

Then

$$
\operatorname{Inf}_{f}\left(x_{i}\right)=\left|\operatorname{support} f^{(i)}\right|=\sum_{w}\left(f^{(i)}(w)\right)^{2}
$$

The last term will be evaluated using Parseval. For this, we need to compute the Fourier expression of $f^{(i)}$ (expressed in terms of \hat{f}).

$$
\begin{aligned}
\widehat{f^{(i)}}(S) & =\frac{1}{2^{n}} \sum_{T} f^{(i)}(T)(-1)^{|S \cap T|} \\
& =\frac{1}{2^{n}} \sum_{T}[f(T)-f(T \oplus\{i\})](-1)^{|S \cap T|} \\
& =\frac{1}{2^{n}} \sum_{i \notin T}\left(\left[f(T)-f(T \cup\{i\}](-1)^{|S \cap T|}+[f(T \cup\{i\})-f(T)](-1)^{|S \cap(T \cup\{i\})|}\right)\right. \\
& =\frac{1}{2^{n}} \sum_{i \notin T}\left[f(T)-f(T \cup\{i\}]\left((-1)^{|S \cap T|}-(-1)^{|S \cap(T \cup\{i\})|}\right)\right. \\
& = \begin{cases}0 & \text { if } i \notin S \\
2 \hat{f}(S) & \text { if } i \in S\end{cases}
\end{aligned}
$$

Using Parseval on $\widehat{f^{(i)}}$ along with the fact that $\widehat{f^{(i)}}$ takes on only values $\{0, \pm 1\}$, we conclude that

$$
\operatorname{Inf}_{f}\left(x_{i}\right)=4 \sum_{i \in S}|h a t f(S)|^{2}
$$

Next time, we will show that if $E f=\frac{1}{2}$, then there exists a i such that $\sum_{i \in S}(\hat{f}(S))^{2}>\Omega(\ln n / n)$.
Lemma 7.4. For every $f:\{0,1\}^{n} \rightarrow\{0,1\}$, there is a monotone $g:\{0,1\}^{n} \rightarrow\{0,1\}$ such that

- $E g=E f$.
- For every $s \subseteq[n], \operatorname{Inf}_{g}(S) \leq \operatorname{Inf}_{f}(S)$.

Proof. We use a shifting argument.

$x=0$

Clearly $E \tilde{f}=E f$. We will show that for all $S, \operatorname{Inf}_{\tilde{f}}(S) \leq \operatorname{Inf}_{f}(S)$. We may keep repeating the shifting step until we obtain a monotone function g. It is clear that the process will terminate by considering the progress measure $\sum f(x)|x|$ which is strictly increasing. Therefore, we only need show that $\operatorname{Inf}_{\tilde{f}}(() S) \leq$ $\operatorname{Inf}_{f}(S)$.

