
Lecture 8

More on the influence of variables on boolean
functions

March 4, 2005
Lecturer: Nati Linial

Notes: Neva Cherniavsky & Atri Rudra

In this lecture we will look at the following natural question– do there exist balanced boolean functions
f on n variables such that for every variablex the influence ofx on f is “small” and how small can this
bound be made? (“Balanced” means thatPr(f = 0) = Pr(f = 1) = 1

2 but Ef = α for someα bounded
away from0 and1 is just as interesting.) In the last lecture we showed that for the “tribes” function (which
was defined by Ben-Or and Linial in [1]), every variable has influenceΘ( log n

n ). Today, we will prove the
result of Kahn, Kalai and Linial [2] which shows that this quantity is indeed the best one can hope for. In
the process we will look into the Bonami Beckner Inequality and will also look at threshold phenomena in
random graphs.

8.1 The Kahn Kalai Linial Result

Recall the definition of influence. Letf : {0, 1}n → {0, 1} be a boolean function and letS ⊂ [n]. The
influence of the set of variablesS on the functionf , denoted byInff (S), is the probability thatf is still
undetermined when all variables in[n]− S have been assigned values at random.

We also talk about influences in the case when the function is defined on a solid cube–f : [0, 1]n →
{0, 1}. This formulation has connections to game theory– variables are controlled by the players. Note that
in this case we can talk about things like “influence of a subset of variables towards 0”.

The situation for the case when|S| = 1 is relatively better understood. As we saw in the last class, the
situation for calculatingInff (x) looks like Figure 8.1. In particular, calculating the influence is same as
counting the number of non-solid edges in Figure 8.1.

The situation is much less understood for the more general case, for example when|S| = 2. In a nutshell,
we are interested in situations other than those in Figure 8.2. This scenario is not well understood and is
still a mysterious object. Unlike the case of a single variable, the number of zeroes and ones in a “mixed”
2-dimensional subcube can vary and the whole situation is consequently more complex. As an interesting
special case consider the “tribes” example and the case whenS is an entire tribe. It is easy to see that the
influence ofS towards1 is exactly1 (as any tribe can force the result to be1) while it is not hard to see that
the influence ofS towards0 is onlyO( log n

n ). As another example consider the case whenS consists of one
element from each tribe (one can consider each element ofS as a “spy” in a tribe). Here the influence ofS
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Figure 8.1: Influence of a variable

towards0 is exactly1 (as each spy can force its tribe to be0). Further, its influence towards1 can be shown
to be

√
2−1
4 + o(1).

Let us now turn back to the motivating question for this lecture–

Question 8.1.Find boolean functionsf with Ef = 1
2 for which Inff (x) is small for each variablex.

For any variablexi defineβi = Inff (xi) and letβ = 〈β1, · · · , βn〉. Thus, the quantity we are interested
in is ||β||∞. Note that the edge isoperimetric inequality on the cube implies that

∑n
i=1 βi ≥ 1 which by

an averaging argument gives||β||∞ ≥ 1
n . Also note that for the “tribes” example,||β||∞ = Θ( log n

n ). The
following result due to Kahn, Kalai and Linial shows that this is the best possible–

Theorem 8.1. For anyf : {−1, 1} → {−1, 1} with Ef = 0, there exists a variablex such thatInff (x) ≥
Ω( log n

n ).

Before we start to prove the theorem, let us collect some facts that we know or follow trivially from what
we have covered in previous lectures.

∑
S⊆[n]

(f̂(S))2 = 1 (8.1)

f̂(∅) = 0 (8.2)

βi = 4 ·
∑
S3i

(f̂(S))2 (8.3)

n∑
i=1

βi = 4 ·
∑

S⊆[n]

|S|(f̂(S))2 (8.4)

Equation (8.1) follows from Parseval’s identity and the fact thatf takes values in{−1, 1}. Equation
(8.2) follows from the fact thatχ∅ = 1 which impliesf̂(∅) = 〈f, χ∅〉 = 2nEf = 0. Equation (8.3)was
proved in the last lecture. Equation (8.4) follows from summing Equation (8.3) for alli.
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Figure 8.2: Influence of a general subset of variables

We will first show that if “most” of the
∑

S⊆[n](f̂(S))2 comes from ’large’ setsS then the conclusion

of Theorem 8.1 holds. In fact, in this case even theaverageinfluence isΩ( log n
n ). To be more precise

let T = log n
10 and H =

∑
|S|≥T (f̂(S))2. Further assume thatH ≥ 1

10 . Then by (8.4),
∑n

i=1 βi ≥
4 ·

∑
|S|≥T |S|(f̂(S))2 ≥ 4HT ≥ log n

25 .

It follows that it suffices to prove the theorem under the complementary assumption thatH < 1
10 . In

view of (8.1) this is the same as showing
∑

|S|<T (f̂(S))2 > 0.9. In the proof we will need to estimate the
following quantity– ∑

|S|<T

(φ̂(S))2 ≡
∑
S

WT (S)(φ̂(S))2

for φ = f (i) (recall from the last lecture thatf (i)(z) = f(z)− f(z ⊕ ei)). HereWT (·) is the step function
which takes value1 for any setS ⊆ [n] such that|S| ≤ T and0 otherwise. We use two ideas to solve the
problem in hand–
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• Try and approximateW (·) by functions which are sufficiently close to the step functionWT (·) and
are easy to analyze.

• As the bound||β||1 ≥ 1 is tight (which is insufficient for our purposes) and since it is difficult to work
directly with ||β||∞, we could perhaps estimate||β||p for some∞ > p > 1. In the proof we will use
p = 4

3 but this is quite arbitrary.

We focus on the second alternative and use the Bonami Beckner inequality which we consider in the
next section.

8.2 Bonami Beckner Inequality

Let Tε be a linear operator which maps real functions on{−1, 1}n to real functions on{−1, 1}n. By
linear, we mean that the following holds for functionsf andg and scalarsa andb: Tε(a · f + b · g) =
a · Tε(f) + b · Tε(g).

As Tε(·) is a linear operator, one can fully determine it by just specifying it at the basis of the functions
{χS}. We define the operator as follows

Tε(χS) = ε|S|χS

By linearity, Tε(f) =
∑

S⊆[n] ε
|S|f̂(S)χS(·). Note thatT1(f) = f . In other words,T1 is the identity

operator.

We will now state the main result of this section–

Theorem 8.2. Let 0 < ε < 1 and considerTε as an operator fromLp to L2 wherep = 1 + ε2. Then its
operator norm is1.1

Let us first explain the terms used in the statement above. LetT : (X, || · ||X) → (Y, || · ||Y ) be a linear
operator– hereX andY are normed spaces and|| · ||X and|| · ||Y are their respective norms. The operator
norm ofT is defined as

||T ||op = supx∈X
||Tx||Y
||x||X

This quantity measures how much the “length” (norm) of an elementx ∈ X can grow by an application of
the operatorT . We now turn to the proof.

What is the size off? How expanding is the operator? These are very narrow passages; we have no
wiggle room. We can only use Parseval’s inL2, so the norm on the right hand side needs to beL2. On the
left hand side, our norm isLp, which is usually very difficult to calculate. But because our functions (the
f (i)) only take on the values{−1, 0, 1}, we can calculate the necessaryLp norms.

That the operator norm ofTε is at least 1 is obvious. Letf be identically 1 everywhere. Then̂f(T ) =∑
f(S)(−1)|S∩T | = 0 for T 6= ∅ and f̂(∅) = 1. So ||Tεf ||2 = 1 = ||f ||p. What the Bonami-Beckner

inequality says is that for everyf : {−1, 1}n → R, ||Tεf ||2 ≤ ||f ||p.

We’ll do a part of the proof only. The proof is via induction onn, the dimension of the cube. The base
case is the main part of the proof; the method for inducting is standard in analysis and we’ll skip it.

1 This is called ahypercontractive inequality.
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Again, the surprising thing here is thatp < 2 and still||T ||op ≤ 1.

For n = 1, every functionf has the formf = a + bx and thenTεf = a + εbx. (There are only two
characters,χ∅ andχ{x}). Then atx = −1, f = a − b andTεf = a − εb. At x = 1, f = a + b and
Tεf = a + εb. So

||f ||p =
[
|a + b|p + |a− b|p

2

] 1
p

||Tεf ||2 =

√
(a + εb)2 + (a− εb)2

2
=

√
a2 + ε2b2

We want to prove||Tεf ||2 ≤ ||f ||p, i.e., we want to prove[
|a + b|p + |a− b|p

2

] 1
p

≥
√

a2 + ε2b2. (8.5)

Suppose|a| ≥ |b|. Let b = ta and divide by|a|:(
|a + b|p + |a− b|p

2

) 1
p

=
(
|a + ta|p + |a− ta|p

2

) 1
p

= |a|
(
|1 + t|p + |1− t|p

2

) 1
p

√
a2 + ε2b2 =

√
a2 + ε2(at)2

= |a|
√

1 + ε2t2

So we will prove
|1 + t|p + |1− t|p

2
≥ (1 + ε2t2)

p
2 when|t| ≤ 1 (8.6)

and (8.5) will follow. Note that if|a| < |b|, we’d substitutea = bt and divide by|b|, and would want to
prove

|t + 1|p + |t− 1|p

2
≥ (ε2 + t2)

p
2 when|t| ≤ 1 (8.7)

But since
(1 + ε2t2) ≥ ε2 + t2,

once we prove equation (8.6), (8.7) will follow immediately.

Proof of (8.6) is via the Taylor expansion. For the left hand side, terms in odd places will cancel out,
and terms in even places will double. Recallp = 1 + ε2 and|t| ≤ 1. The left hand side becomes

∞∑
j=0

t2j

(
p
2j

)
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and the right hand side becomes
∞∑

j=0

ε2jt2j

(
p/2
j

)
.

Let’s examine the first two terms of each side. On both sides, the first term is 1. On the left hand side, the
second term ist2(p(p− 1))/2 and on the right hand side the second term isε2t2p/2; sinceε2 = p− 1, this
means the second terms are also equal on both sides. Therefore it is sufficient to compare the terms from
j ≥ 2.

What we discover is that on the left hand side, all terms are positive, whereas on the right hand side,
the j = 2k andj = 2k + 1 terms have a negative sum for allk ≥ 1. First we show the left hand side is
positive. The(2j)th coefficient equalsp(p− 1)(p− 2) . . . (p− 2j + 1) divided by some positive constant.
Note thatp(p− 1) is positive and all the terms(p− 2) . . . (p− 2j + 1) are negative. But since there are an
even number of these negative terms, the product as a whole is positive. Therefore, on the left hand side, all
terms are positive.

Now consider the right hand side. We will show that thej = 2k andj = 2k + 1 terms have a negative
sum for allk ≥ 1. Consider the sum

ε4kt4k

(
p/2
2k

)
+ ε4k+2t4k+2

(
p/2

2k + 1

)
.

We can divide outε4kt4k without affecting the sign. Since the second term is the positive one, and|t| ≤ 1,
we can replacet2 by 1 without loss of generality. So now we have(

p/2
2k

)
+ ε2

(
p/2

2k + 1

)
=

(
p/2
2k

)
+ (p− 1)

(
p/2

2k + 1

)
=

p/2(p/2− 1) . . . (p/2− 2k + 1)
2k!

+ (p− 1)
p/2(p/2− 1) . . . (p/2− 2k)

(2k + 1)!

=
[
(2k + 1)

p

2
(
p

2
− 1) . . . (

p

2
− 2k + 1) + (p− 1)

p

2
(
p

2
− 1) . . . (

p

2
− 2k)

]
/(2k + 1)!

=
[p

2
(
p

2
− 1) . . . (

p

2
− 2k + 1)

] [
2k + 1 + (p− 1)(

p

2
− 2k)

]
/(2k + 1)!

Notice that the first term in brackets is negative and the second term in brackets is positive. Thus the
sum of thekth even and odd term is negative for allk, and we’ve proved equation (8.6). Equation (8.6)
implies equation (8.7); equations (8.6) and (8.7) together imply equation (8.5); and equation (8.5) implies
||f ||p ≥ ||Tεf ||2 for p = 1 + ε2. Thus we’ve proved the base case for the Bonami-Beckner inequality.

8.3 Back to Kahn Kalai Linial

In general it is not obvious how to utilize this inequality, since it’s hard to compute thep-norm. But we’re
looking at an easy case. Specifically, ifg : {0, 1}n → {−1, 0, 1}, the inequality says that

Pr(g 6= 0) = t ⇒ t
2

1+δ ≥
∑
S

δ|S|(ĝ(S))2 (8.8)
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To see this, letδ = ε2. We know||g||p ≥ ||Tεg||2.

||g||p =
(

1
2n

∑
|g(x)|p

) 1
p

=

 1
2n

∑
g(x) 6=0

1

 1
p

= t
1
p = t

1
1+ε2

So the Bonami-Beckner inequality tells us

t
1

1+ε2 ≥
√∑

S

ε2|S|(ĝ(S))2

and squaring both sides and substitutingδ gives us equation (8.8).

We applied this inequality forg = f (i). Thent = βi, the influence of theith variable, which is exactly
what we’re looking for. Recall that

f̂ (i)(S) =
{

0 i /∈ S

f̂(S) i ∈ S

We want to prove thatmax βi ≥ Ω(log n/n). By substituting the new values into (8.8), we get

β
2

1+δ

i ≥
∑
S3i

δ|S|(f̂(S))2

The δ|S| terms are theWS ’s that we want to behave sufficiently close to the step function. Recall, we
also know that

∑
0≤|S|<T (f̂(S))2 > 0.9 whereT = log n/10. Since we assumef to be balanced (i.e.

Pr(f = 1) = 1/2), we can ignore the 0 term becausef̂(S) = 0 whenS = ∅, but we cannot ignore it for
imbalanced functions. Still, it won’t matter, and we’ll come back to this point later.

So we know
∑

0<|S|<T (f̂(S))2 > 0.9. Let δ = 1/2 (the choice is arbitrary).

n ·max β
4
3
i ≥

∑
i

β
4
3
i

≥
∑

i

∑
S3i

(
1
2
)|S|(f̂(S))2

=
∑
S

(
1
2

)|S|
|S|(f̂(S))2

≥
∑
|S|<T

(
1
2

)|S|
|S|(f̂(S))2

≥
(

1
2

)T ∑
|S|<T

(f̂(S))2

≥ (n−
1
10 )(0.9)

Therefore,n ·max β
4/3
i ≥ 0.9/n1/10 and so

max βi ≥
( c

n11/10

)3/4
= Ω(n−33/40) >>

log n

n
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There is some progress in understanding what the vector of influences is in general, but we have a long
way to go.

We return to an issue we had left open. What happens when we deal with functions that are imbalanced?
What if f : {0, 1}n → {0, 1}, Ef = p (not necessarilyp = 1/2). Now we cannot ignorêf(∅) in the
previous argument.

Indeed,f(∅) = p.
∑

(f̂(S))2 = p. We’d have to subtract(f̂(∅))2 = p2 off of p in general. But this is
fine as long as0 < p < 1. We mention this because this technique is used often.

8.4 Sharp thresholds in graphs

Theorem 8.3. Every monotone graph property has a sharp threshold.

This theorem is also the title of the paper, by Friedgut and Kalai. The background is that in the late 1950s,
Erdős and Renyi defined random graphs, which became an important ingredient for many investigations in
modern discrete mathematics and theoretical computer science. A random graphG(n, p) is a graph onn
vertices in which the probability that(x, y) is an edge inG is p. That is, for each pair of vertices, flip a
p-weighted coin, and put an edge in the graph if the coin comes up heads. We do this independently for each
pair of vertices. So

Pr(G) = pe(G)(1− p)(
n
2)−e(G)

Already Erd̋os and Renyi had noticed that some properties of graphs have special behavior. For example,
take the property thatG is connected. WritePr(G is connected) asf(p). Whenp is small, the graph is
unlikely to be connected; whenp is big, it is almost certain to be connected. The shape off(p) = Pr(G is
connected) is shown in Figure 8.3.

log n

n

p

f(p)

Figure 8.3: Sharp threshold
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The transition from disconnected to connected is very rapid. This is related to a class of physical phe-
nomena called phase transition; there is some physical system that is dependent on a single parameter, such
as temperature or pressure, and the system goes from one phase to the other very sharply (for instance, the
system goes from not magnetized to magnetized).

There are other graph properties that also exhibit this behavior (e.g Hamiltonian cycle, planarity, etc).
But there was no satisfactory general theorem until Freidgut-Kalai.

To have a precise form of the theorem, we define the terms:

Definition 8.1. A graph propertyis a class of labeled graphs that is closed under permutations of the vertex
labels.

Intuitively, a graph property holds or does not hold regardless of the labeling of the vertices, such as
connectedness, “the graph contains a triangle”, the graph is 17-colorable, etc.

Definition 8.2. A graph property is calledmonotoneif it continues to hold after adding more edges to the
graph.

Again, connectedness is monotone; non-planarity is also. An example of a graph property which is
non-monotone is “the number of edges in the graph is even”.

Let A be a monotone graph property.

µp(A) = Pr(A|G ∈R G(n, p))

whereG is sampled randomly. Clearlyµp(A) is an increasing function ofp. The theorem says thatp0,
whereµp0(A) = ε, andp1, whereµp1(A) = 1− ε are very close. Namely,

p1 − p0 ≤ O

(
log(1/ε)

log n

)
In the connectivity example, this is not very interesting. The transition from almost surely disconnected

to almost surely connected takes place aroundp = log n/n, and1/ log n is much bigger. In other words,
the gap is much bigger than the critical value where the threshold occurs.

Later, Bourgain and Kalai showed that for all monotone graph properties, the same bound holds with

p1 − p0 ≤ O
(

1
log2−γ n

)
, for everyγ > 0 andn large enough. This theorem is nearly tight, since there exist

examples of monotone graph properties where the width of the gap isΘ
(

1
log2 n

)
. For instance, “G contains

ak-clique” for specifick = Θ(log n) where the criticalp = 1/2.

So what can we do about the problem in the connectivity example, where the threshold comes at a point
much smaller than the gap? We can ask a tougher question: is it true that the transition fromµp0 = ε to
µp1 = 1− ε occurs between(1± o(1))q, whereq is the critical probability (i.e.µq(A) = 1/2)?

If the answer were yes, we’d have a more satisfactory gap in relation to our critical value in the con-
nectivity case. However, the answer is negative for certain graph properties: this is asking too much. For
example, suppose the property is thatG contains a triangle. Here the criticalp = c/n. The expected number
of triangles inG is (

n
3

)
p3 =

c3

6
(1− 1

n
)(1− 2

n
)
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Figure 8.4:G contains a triangle

The picture looks like Figure 8.4. At the smaller scale, the threshold isn’t as sharp. As we varyc in
p = c/n, the probability thatG contains no triangle changes from one constant to another constant, both
bounded away from zero and from one. The reason behind this picture is the number of triangles is a random
variable with a Poisson distribution. Therefore, the probability there is no triangle isPr(X = 0) = e−µ,
whereµ is the expectation ofX.

One of Freidgut’s major contributions was to characterize which graph properties have a sharp threshold
and which don’t in this stronger sense. It’s a little complicated to even state his result precisely, but the spirit
of the theorem is this: properties like “G contains a triangle” are considered “local”. Friedgut’s theorem
says that “a graph property has a sharp threshold (in the strong sense)” is roughly equivalent to the property
being “non-local”.
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