Lecture 8

More on the influence of variables on boolean
functions

March 4, 2005
Lecturer: Nati Linial
Notes: Neva Cherniavsky & Atri Rudra

In this lecture we will look at the following natural question— do there exist balanced boolean functions
f onn variables such that for every variablethe influence ofc on f is “small” and how small can this
bound be made? (“Balanced” means tRa{ f = 0) = Pr(f = 1) = 3 butEf = « for somea bounded
away from0 and1 is just as interesting.) In the last lecture we showed that for the “tribes” function (which
was defined by Ben-Or and Linial inl[1]), every variable has ianue@Q@%). Today, we will prove the
result of Kahn, Kalai and Linial [2] which shows that this quantity is indeed the best one can hope for. In
the process we will look into the Bonami Beckner Inequality and will also look at threshold phenomena in
random graphs.

8.1 The Kahn Kalai Linial Result

Recall the definition of influence. Left : {0,1}" — {0,1} be a boolean function and It C [n]. The
influence of the set of variables on the functionf, denoted byln f(S), is the probability thaf is still
undetermined when all variables|im| — S have been assigned values at random.

We also talk about influences in the case when the function is defined on a solid gubjé-1]" —
{0,1}. This formulation has connections to game theory— variables are controlled by the players. Note that
in this case we can talk about things like “influence of a subset of variables towards 0”.

The situation for the case whefi| = 1 is relatively better understood. As we saw in the last class, the
situation for calculatingn f(x) looks like Figur. In particular, calculating the influence is same as
counting the number of non-solid edges in Fiduré 8.1.

The situation is much less understood for the more general case, for examplgsivhe. In a nutshell,
we are interested in situations other than those in Figufe 8.2. This scenario is not well understood and is
still a mysterious object. Unlike the case of a single variable, the number of zeroes and ones in a “mixed”
2-dimensional subcube can vary and the whole situation is consequently more complex. As an interesting
special case consider the “tribes” example and the case Whg@n entire tribe. It is easy to see that the
influence ofS towardsl is exactlyl (as any tribe can force the result to Dewhile it is not hard to see that
the influence of5 towards0 is onIyO(lo%). As another example consider the case wh@onsists of one
element from each tribe (one can consider each elemesiasfa “spy” in a tribe). Here the influence 6f
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Figure 8.1: Influence of a variable

towards0 is exactlyl (as each spy can force its tribe to®e Further, its influence towardscan be shown
to be Y2=1 1 o(1).

Let us now turn back to the motivating question for this lecture—

Question 8.1.Find boolean functiong with Ef = 1 for which Inf;(x) is small for each variable.

For any variabler; defines; = Inf¢(x;) andletd = (41, - - , 3,). Thus, the quantity we are interested
inis ||B||. Note that the edge isoperimetric inequality on the cube impliesXfiat, 5, > 1 which by
an averaging argument givéi$||.. > 1. Also note that for the “tribes” examplg3||c = @(IO;‘L”). The

following result due to Kahn, Kalai and Linial shows that this is the best possible—

Theorem8.1.Forany f : {—1,1} — {—1,1} withEf = 0, there exists a variable such that/n f(x) >
Q(logn)_

n

Before we start to prove the theorem, let us collect some facts that we know or follow trivially from what
we have covered in previous lectures.

> (f(9)*=1 8.1)
SCln]
f) =0 (8.2)
Bi=4-> (f(9))? (8.3)
S>i
> Bi=4-) ISI(£(9)” (8.4)
i=1 SCin]

Equation [(8.]L) follows from Parseval’s identity and the fact thaakes values i{—1,1}. Equation
) follows from the fact thak, = 1 which impliesf(0) = (f,xy) = 2"Ef = 0. Equation|(8.B)was
proved in the last lecture. Equatign (8.4) follows from summing Equafion (8.3) for all
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Figure 8.2: Influence of a general subset of variables

We will first show that if “most” of thezégn](f(S))2 comes from ’large’ set$§' then the conclusion
of Theore holds. In fact, in this case even #@verageinfluence isQ(loin). To be more precise
let T = &% and H = Y 41(f(S))?. Further assume thai > {;. Then by ),Z?Zlﬁi >
4.3 s> 11(f(5))? > AHT > "%,

It follows that it suffices to prove the theorem under the complementary assumpticﬁthatlio. In

view of |E this is the same as showi@m<T(J‘A‘(S))2 > 0.9. In the proof we will need to estimate the
following quantity—

Y@= Wr(S)((5))?
S

|S|<T

for ¢ = £ (recall from the last lecture thagt? (z) = f(2) — f(z @ e;)). HereWy(-) is the step function
which takes valué for any setS C [n] such thatS| < T and0 otherwise. We use two ideas to solve the
problem in hand—
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e Try and approximatéV (-) by functions which are sufficiently close to the step functi@i(-) and
are easy to analyze.

e Asthe bound|3||; > 1is tight (which is insufficient for our purposes) and since it is difficult to work
directly with ||3||~, we could perhaps estiméfg||, for someco > p > 1. In the proof we will use
p = 3 but this is quite arbitrary.

We focus on the second alternative and use the Bonami Beckner inequality which we consider in the
next section.

8.2 Bonami Beckner Inequality

Let 7. be a linear operator which maps real functions{efl, 1}" to real functions on{—1,1}". By
linear, we mean that the following holds for functiofissndg and scalars andb: Tc(a - f +b-g) =
a-Te(f) +b-Te(g).

AsT.(-) is a linear operator, one can fully determine it by just specifying it at the basis of the functions
{xs}. We define the operator as follows

T.(xs) = e®lxs

By linearity, T.(f) = > gcp 1f(S)xs(-). Note thatTi(f) = f. In other words,T; is the identity
operator.

We will now state the main result of this section—

Theorem 8.2. Let0 < € < 1 and considefl; as an operator fronL, to L, wherep = 1 + €2. Then its
operator norm st [1

Let us first explain the terms used in the statement abovel'L€tX, || - ||x) — (Y,]|| - ||y') be alinear
operator— hereX andY” are normed spaces afid || x and|| - ||y are their respective norms. The operator

norm of 7T’ is defined as
| T||y

2] x

This quantity measures how much the “length” (norm) of an elementX can grow by an application of
the operatofl’. We now turn to the proof.

I Tlop = supzex

What is the size off? How expanding is the operator? These are very narrow passages; we have no
wiggle room. We can only use Parseval'sfin, so the norm on the right hand side needs td.heOn the
left hand side, our norm i%,, which is usually very difficult to calculate. But because our functions (the
@)y only take on the value§—1,0, 1}, we can calculate the necessdrynorms.

That the operator norm df, is at Iegst 1is obvious. Let be identically 1 everywhere. Th@ﬁT) =
S ST = 0 for T # ¢ and f(0) = 1. So||T.f|]2 = 1 = ||f||,- What the Bonami-Beckner
inequality says is that for everfy: {—1,1}" — R, [|T.f||2 < || f]],-

We'll do a part of the proof only. The proof is via induction anthe dimension of the cube. The base
case is the main part of the proof; the method for inducting is standard in analysis and we’ll skip it.

! This is called anypercontractive inequality

57



Again, the surprising thing here is that 2 and still||T||,, < 1.

Forn = 1, every functionf has the formf = a + bx and thenl.f = a + ebx. (There are only two
charactersyy andxy,;). Thenatr = —1, f = a—-bandT.f =a—eb. Atz =1, f =a+band
T.f =a+eb. SO

1
B la +bP + |a —bP]»
Il = [
a+eb)?+ (a—eb)?
[T (CETU RS

= +Va?+ e2b?

We want to prove|T. f||2 < || f||, i.€., we want to prove

1
P _ P
[|a—|—b| —;—|a bl ]” > /a2 + b2, (8.5)

Supposeéa| > |b|. Letb = ta and divide byjal:

<m+mp+m—hw>é
2

Ca+mP+M—uM>;
2

1+t + 1 -t »
= al ;

Va2 4 e? = a? + €2(at)?
= |a|V1+ €2t?

So we will prove
L+ ¢P +[1—tfP
2
and [8.5) will follow. Note that ifja| < |b|, we'd substitutex = bt and divide by|b|, and would want to
prove

ya
2

> (1+ €t%)2 whenlt| < 1 (8.6)

p _qp
It + 1] —;—|t 1] >

(2 + %)% when|t| < 1 (8.7)

But since
(1+ €%t?) > € + 2,

once we prove equatiop (8.6), (B.7) will follow immediately.

Proof of [8.6) is via the Taylor expansion. For the left hand side, terms in odd places will cancel out,
and terms in even places will double. Rega# 1 + €2 and|t| < 1. The left hand side becomes

OO2' p
]Z:;“<2j>
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and the right hand side becomes

o

g ( p/2 ) .

=0 J

Let's examine the first two terms of each side. On both sides, the first term is 1. On the left hand side, the
second term ig?(p(p — 1))/2 and on the right hand side the second terrtidp/2; sincee? = p — 1, this

means the second terms are also equal on both sides. Therefore it is sufficient to compare the terms from
j>2.

What we discover is that on the left hand side, all terms are positive, whereas on the right hand side,
thej = 2k andj = 2k + 1 terms have a negative sum for &lI> 1. First we show the left hand side is
positive. The(2j)th coefficient equalg(p — 1)(p — 2) ... (p — 2j + 1) divided by some positive constant.

Note thatp(p — 1) is positive and all the term® — 2) ... (p — 25 + 1) are negative. But since there are an
even number of these negative terms, the product as a whole is positive. Therefore, on the left hand side, all
terms are positive.

Now consider the right hand side. We will show that the 2k andj = 2k + 1 terms have a negative
sum for allk > 1. Consider the sum

akak [ D/2 Ak+2,4k+2 p/2
et <2k>+€ t k1 )

We can divide out**+** without affecting the sign. Since the second term is the positive onel¢jaadl,
we can replace’ by 1 without loss of generality. So now we have

<p2/k2>+62<2lf/fl> - (%/k2>+(p_1><2/f/f1>

p/?(p/?—1)---(19/2—21<7+1)+ ) p/2(p/2 —1)...(p/2 — 2k)

- 2% (p—1) (2k +1)!
- [(2k+1>§(§_1)...(§_2k+1)+( )g(g )...(g_zk)}/(zkﬂ)!
- [g(g_n...(g_%ﬂ)} [2k+1+(p >(§ )}/(2k+1)1

Notice that the first term in brackets is negative and the second term in brackets is positive. Thus the
sum of thekth even and odd term is negative for &lland we've proved equatioh (8.6). Equatipn [8.6)

implies equation[(8]7); equatiors (B.6) ahd |8.7) together imply equétion (8.5); and equation (8.5) implies
| f]lp > ||Te f||2 for p = 1 + €2. Thus we've proved the base case for the Bonami-Beckner inequality.

8.3 Back to Kahn Kalai Linial

In general it is not obvious how to utilize this inequality, since it's hard to compute-therm. But we're
looking at an easy case. Specificallygif {0,1}" — {—1,0, 1}, the inequality says that

Prig #0) =t = t755 > 3 61%(5(5))? (8.8)
S
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To see this, lef = 2. We know||g||, > ||T.g]]2-

1
1 P 1 1
gllp = <2nZ\g(3})p> (271 1) _tp — t1+e2
g(z)#0

So the Bonami-Beckner inequality tells us

= \/Z 2I51(3(5) 2

S

=

and squaring both sides and substitudngjves us equatiot (8.8).

We applied this inequality fog = f(*). Thent = 3;, the influence of théth variable, which is exactly
what we're looking for. Recall that

Fs) =4

P 0 i¢ S
{f(S) 1e s

We want to prove thathax 3; > Q(logn/n). By substituting the new values info (B.8), we get
_2 ~
BT =N T aI(f(9))?
53i

The 61! terms are theVs’s that we want to behave sufficiently close to the step function. Recall, we
also know thatZOS‘SKT(f(S))2 > 0.9 whereT' = logn/10. Since we assumg to be balanced (i.e.

Pr(f = 1) = 1/2), we can ignore the 0 term becauﬁ(eS) = 0 whenS = (, but we cannot ignore it for
imbalanced functions. Still, it won’t matter, and we’ll come back to this point later.

So we knOWZO<\S\<T(f(S))2 > 0.9. Letd = 1/2 (the choice is arbitrary).
> Zﬂ
> Y Z SI(f(S)

ol
ol

n - max [3;

i S3i
B s
- g@ SIF()
N
> D) sty
=)
T
> (;) ST (f(9))?
|S|<T

> (n10)(0.9)

Thereforep - max ﬂf/g > 0.9/n'/1° and so

c \3/4 _ logn
max [3; > (m> — Q(n 8310y 55 —
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There is some progress in understanding what the vector of influences is in general, but we have a long
way to go.

We return to an issue we had left open. What happens when we deal with functions that are imbalanced?
What if f : {0,1}" — {0,1},Ef = p (not necessarilp = 1/2). Now we cannot ignoref(() in the
previous argument.

Indeed,f(0) = p. S2(F(S))? = p. We'd have to subtradtf ()))2 = p? off of p in general. But this is
fine as long a® < p < 1. We mention this because this technique is used often.

8.4 Sharp thresholds in graphs

Theorem 8.3. Every monotone graph property has a sharp threshold.

This theorem is also the title of the paper, by Friedgut and Kalai. The background is that in the late 1950s,
Erdds and Renyi defined random graphs, which became an important ingredient for many investigations in
modern discrete mathematics and theoretical computer science. A randomcgrap} is a graph om
vertices in which the probability thdtr, y) is an edge inG is p. That is, for each pair of vertices, flip a
p-weighted coin, and put an edge in the graph if the coin comes up heads. We do this independently for each
pair of vertices. So

Pr(G) = pD(1 - p)(3) (@

Already Erdds and Renyi had noticed that some properties of graphs have special behavior. For example,
take the property that is connected. WritéPr(G is connecteflas f(p). Whenp is small, the graph is
unlikely to be connected; whenis big, it is almost certain to be connected. The shapg(pf = Pr(G is
connectedlis shown in Figurée 8|3.

-lg

Figure 8.3: Sharp threshold
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The transition from disconnected to connected is very rapid. This is related to a class of physical phe-
nomena called phase transition; there is some physical system that is dependent on a single parameter, such
as temperature or pressure, and the system goes from one phase to the other very sharply (for instance, the
system goes from not magnetized to magnetized).

There are other graph properties that also exhibit this behavior (e.g Hamiltonian cycle, planarity, etc).
But there was no satisfactory general theorem until Freidgut-Kalai.

To have a precise form of the theorem, we define the terms:

Definition 8.1. A graph propertyis a class of labeled graphs that is closed under permutations of the vertex
labels.

Intuitively, a graph property holds or does not hold regardless of the labeling of the vertices, such as
connectedness, “the graph contains a triangle”, the graph is 17-colorable, etc.

Definition 8.2. A graph property is callechonotondf it continues to hold after adding more edges to the
graph.

Again, connectedness is monotone; non-planarity is also. An example of a graph property which is

non-monotone is “the number of edges in the graph is even”.
Let A be a monotone graph property.

pp(A) = Pr(A|G €r G(n,p))

whereG is sampled randomly. Clearly,(A) is an increasing function gf. The theorem says thab,
wherey,, (A) = ¢, andp;, wherey,, (A) = 1 — € are very close. Namely,

pl—poéo(log(l/é)>

logn

In the connectivity example, this is not very interesting. The transition from almost surely disconnected
to almost surely connected takes place aroprd log n/n, and1/logn is much bigger. In other words,
the gap is much bigger than the critical value where the threshold occurs.

Later, Bourgain and Kalai showed that for all monotone graph properties, the same bound holds with
p1—po <O (ﬁ) for everyy > 0 andn large enough. This theorem is nearly tight, since there exist
examples of monotone graph properties where the width of the @[éﬁgg—n) For instance, G contains
ak-clique” for specifick = ©(log n) where the criticap = 1/2.

So what can we do about the problem in the connectivity example, where the threshold comes at a point
much smaller than the gap? We can ask a tougher question: is it true that the transitiq,freme to
ip, = 1 — e occurs betweefll + o(1))q, whereg is the critical probability (i.ey,(A) = 1/2)?

If the answer were yes, we'd have a more satisfactory gap in relation to our critical value in the con-
nectivity case. However, the answer is negative for certain graph properties: this is asking too much. For
example, suppose the property is thatontains a triangle. Here the critigal= ¢/n. The expected number

of triangles inG is
3
n 3 C 1 2
=—(1--)1-=
(3)p (-1
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f(p)

Figure 8.4:G contains a triangle

The picture looks like Figure 8.4. At the smaller scale, the threshold isn’'t as sharp. As we ivary
p = ¢/n, the probability thatG contains no triangle changes from one constant to another constant, both
bounded away from zero and from one. The reason behind this picture is the number of triangles is a random
variable with a Poisson distribution. Therefore, the probability there is no triangte(iX = 0) = e,
wherey is the expectation ok .

One of Freidgut's major contributions was to characterize which graph properties have a sharp threshold
and which don’tin this stronger sense. It's a little complicated to even state his result precisely, but the spirit
of the theorem is this: properties like “G contains a triangle” are considered “local”. Friedgut’s theorem

says that “a graph property has a sharp threshold (in the strong sense)” is roughly equivalent to the property
being “non-local”.
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