Lecture 17: Reed Solomon List Decoding

1 Dec '06
Lecturer: Venkatesan Guruswami
Scribe: Gyanit Singh

In this lecture we discuss list decoding for Reed Solomon codes. RS-Decoding a given message $\mathrm{m}=\left(m_{1}, \ldots, m_{n}\right)$ means, finding a degree k polynomial $\mathrm{p}(\mathrm{x})$, which satisfies the message at more than error correction bound $((\mathrm{D}-1) / 2 ; \mathrm{D}=$ min distance) number of places. For the scribes define $\mathrm{Q}(\mathrm{x}, \mathrm{y})=\sum q_{i j} x^{i} y^{j}$.

1 RS List Decoding Problem

For RS codes list decoding a message m with parameters t is to find all the codewords(polynomials) which satisfy the message at atleast t places. This problem can be stated as:

List Decoding Problem

Given n distinct pairs $\left(\alpha_{i}, y_{i}\right) \in \mathbb{F} \times \mathbb{F}$, a degree parameter k and an agreement parameter t , find all degree k polynomial $\mathrm{p}(\mathrm{x})$ such that $\mathrm{p}\left(\alpha_{i}\right)=y_{i}$ for atleast t values of $\mathrm{i} \in 1,2, \ldots, n$.
Goal: Solve for $\mathrm{t}>\sqrt{k n}$, decoding a $1-\sqrt{R}$ fraction of errors.
[1] has the following lemma.
Lemma 1.1. Given any n points $\left(\alpha_{i}, y_{i}\right) \in \mathbb{F} \times \mathbb{F}, \exists$ nonzero $Q(X, Y)$ with $\operatorname{deg}_{X}(Q) \leq \frac{n}{l}$ and $\operatorname{deg}_{Y}(Q) \leq$ l, s.t. $Q\left(\alpha_{i}, y_{i}\right)=0, \forall i$.

Proof. Note that $\mathrm{Q}(\mathrm{x}, \mathrm{y})=\sum_{0 \leq i \leq d_{x}, 0 \leq j \leq d_{y}} q_{i j} x^{i} y^{j}$, and we get there are $\left(\frac{n}{l}+1\right)(1+1) \geq \mathrm{n}$ variables (variables being $q_{i j}$). So we have a system of homogeneous equation with n constraints and more than n variable. Hence a non-zero solution exists.

2 Algorithm Schema

1. Find non-zero $\mathrm{Q}(\mathrm{X}, \mathrm{Y})$ (with some degree restrictions), s.t. Q explains all the points.
2. Factor $\mathrm{Q}(\mathrm{X}, \mathrm{Y})$ and for each factor of form $\mathrm{y}-\mathrm{p}(\mathrm{x})$ with $\operatorname{deg}(\mathrm{p}) \leq \mathrm{k}$; check if $\mathrm{p}\left(\alpha_{i}\right)=y_{i}$ for atleast t values of i. If so output $p(X)$.

Why the above algorithm runs in polynomial time?
Step 1 is solving a system of homogeneous linear equation. Which can be done in polynomial time.
Step 2: Step can also be done in the polynomial time. For details see ([2])

Lemma 2.1. For a polynomial $p(x)$, s.t. $\operatorname{deg}(p(x)) \leq k, p\left(\alpha_{i}\right)=y_{i}$ for atleast t values and $t>\frac{n}{l}+l k$ then $y-p(x)$ is a factor of $Q(x, y)$.

Proof. We show this by showing that $\mathrm{R}(\mathrm{x})=\mathrm{Q}(\mathrm{x}, \mathrm{p}(\mathrm{x}))$ is a 0 polynomial. For this, we will show that number of roots are greater than the degree of $R(x)$. Note that, $\operatorname{deg}(R) \leq n / l+l k$; because y is replaced by a (atmost) k degree polynomial and $d e g_{y}<l$. If $\mathrm{p}\left(\alpha_{i}\right)=y_{i}$, then $\mathrm{R}\left(\alpha_{i}\right)=\mathrm{Q}\left(\alpha_{i}, \mathrm{P}\left(\alpha_{i}\right)\right)$ $=\mathrm{Q}\left(\alpha_{i}, y_{i}\right)=0$. Number of roots is atleast t . Now $\mathrm{t}>\frac{n}{l}+l k, \mathrm{R}$ is a 0 polynomial.

We can try to optimize for t by choosing 1 appropiately. Now $\mathrm{n} / \mathrm{l}+\mathrm{lk} \geq 2 \sqrt{n k}$, (AM-GM). For $\mathrm{l}=\sqrt{n / k}, \mathrm{n} / \mathrm{l}+\mathrm{lk}=2 \sqrt{n k}$. Hence this choice of 1 optimizes for t , which now has to follow t $>2 \sqrt{k n}$.

2.1 Improvement using (1,k)-weighted deg)

Definition 2.2. For a polynomial $Q(x, y)=\sum_{i \geq 0, j \geq 0} q_{i j} x^{i} y^{j}$, define $(1, k)$-weighted degree of $Q(x, y)$ as maximum $(i+k j)$.

Lemma 2.3. Given any n points $\left(\alpha_{i}, y_{i}\right) \in \mathbb{F} \times \mathbb{F}, \exists$ nonzero $Q(X, Y)$ with $(1, k)$-weighted degree D, s.t. $Q\left(\alpha_{i}, y_{i}\right)=0, \forall i$, for $D=\lfloor\sqrt{2 k n}\rfloor$.

Proof. Let us count the number of coefficient $q_{i j}$ for $\mathrm{i} \geq 0, \mathrm{j} \geq 0$ and $\mathrm{i}+\mathrm{kj} l e \mathrm{D}$ let there be N .

$$
\begin{aligned}
& N=\sum_{j=0}^{\left\lfloor\frac{d}{k}\right\rfloor} \sum_{i=0}^{D-k j} 1=\sum_{j=0}^{\left\lfloor\frac{d}{k}\right\rfloor}(D-k j+1) \\
& =(D+1)\left(\left\lfloor\frac{d}{k}\right\rfloor+1\right)-\frac{k\left\lfloor\frac{d}{k}\right\rfloor\left(\left\lfloor\frac{d}{k}\right\rfloor+1\right)}{2} \\
& =\frac{\left(\left\lfloor\frac{d}{k}\right\rfloor+1\right)}{2}\left(2 D+2-k\left\lfloor\frac{d}{k}\right\rfloor\right) \\
& \geq \frac{\left(\left\lfloor\frac{d}{k}\right\rfloor+1\right)}{2}(D+2) \geq \frac{D(D+2)}{2 k}
\end{aligned}
$$

For $\mathrm{D}=\lfloor\sqrt{2 k n}\rfloor, \mathrm{N} \geq \frac{2 k n}{2 k}=n$. And hence the system of equation has non-zero solution.
Now $\mathrm{Q}(\mathrm{x}, \mathrm{y})$ be the polynomial with $(1, \mathrm{k})$-weighted degree $\mathrm{D}=\lfloor\sqrt{2 k n}\rfloor$.
Theorem 2.4. For a polynomial $p(x)$, s.t. $\operatorname{deg}(p(x)) \leq k$, if $p\left(\alpha_{i}\right)=y_{i}$ for atleast t values and t $>\sqrt{2 k n}$ then $y-p(x)$ is a factor of $Q(x, y)$.

Proof. Again consider $\mathrm{R}(\mathrm{x})=\mathrm{Q}(\mathrm{x}, \mathrm{p}(\mathrm{x}))$. We will show that number of roots of $\mathrm{R}(\mathrm{x})$ are greater than the degree of $\mathrm{R}(\mathrm{x})$. Note that, $\operatorname{deg}(\mathrm{R}) \leq$. If $\mathrm{p}\left(\alpha_{i}\right)=y_{i}$, then $\mathrm{R}\left(\alpha_{i}\right)=\mathrm{Q}\left(\alpha_{i}, \mathrm{P}\left(\alpha_{i}\right)\right)=\mathrm{Q}\left(\alpha_{i}, y_{i}\right)$ $=0$. Number of roots is atleast t . Now $\mathrm{t}>\sqrt{2 k n}$, R is a 0 polynomial or $\mathrm{y}-\mathrm{p}(\mathrm{x})$ is a factor of $\mathrm{Q}(\mathrm{x}, \mathrm{y})$.

So this will give us a decoding fraction of $\mathrm{p}=1-\sqrt{2 R}$. Note that as $\mathrm{R} \longrightarrow 0, \mathrm{p} \longrightarrow 1$.

3 Improvements to match Johnson Bound

Now, we will consider improvements to match Johnson bound, $\mathrm{t}>\sqrt{k n}$. The main idea here is weighted polynomial reconstruction. For each pair $\left(\alpha_{i}, y_{i}\right)$ we are also given an integer weight w_{i} as input.
Let $\mathrm{Q}(\mathrm{x}, \mathrm{y})$ be polynomial such that $\mathrm{Q}\left(\alpha_{i}, y_{i}\right)=0, \forall \mathrm{i}$. We impose a stronger condition for the points $\left(\alpha_{i}, y_{i}\right)$ with higher w_{i}; i.e. $\mathrm{Q}(\mathrm{x}, \mathrm{y})$ has a root of multiplicity w_{i} at $\left(\alpha_{i}, y_{i}\right)$.

Definition 3.1. Given a polynomial $Q(x, y)$, define $Q^{i}(x, y)$ as the polynomial, s.t. $Q\left(\alpha_{i}, y_{i}\right)=$ $Q^{i}(0,0)$. In general $Q^{i}(x, y)=Q\left(x+\alpha_{i}, y+y_{i}\right)$.

Given $\mathrm{Q}(\mathrm{x}, \mathrm{y})$ and a pair $\left(\alpha_{i}, y_{i}\right), Q^{i}(\mathrm{x}, \mathrm{y})=\sum q_{r s}^{i} x^{r} y^{s}$. To see how $q_{r s}^{i}$ is related to coefficients of $\mathrm{Q}(\mathrm{x}, \mathrm{y})$, note that

$$
\begin{aligned}
Q^{i}(x, y) & =\sum_{r, s} q_{r} s\left(x+\alpha_{i}\right)^{r}\left(y+y_{i}\right)^{s} \quad \text { This gives } \\
q_{r s}^{i} & =\sum_{r^{\prime} \geq r, s^{\prime} \geq s} q_{r^{\prime} s^{\prime}}\left(\binom{r^{\prime}}{r} \alpha_{i}^{r^{\prime}-r}\binom{s^{\prime}}{s} y_{i}^{s^{\prime}-s}\right)
\end{aligned}
$$

The w_{i} multiplicity of root implies that partial derivaties upto total of w_{i} order are all zero at that point. More precisely

$$
\left[\frac{\partial}{\partial x^{r}} \frac{\partial}{\partial y^{s}} Q(x, y)\right]\left(\alpha_{i}, y_{i}\right)=0 \quad \forall r, s, \quad \text { s.t. } r+s<w_{i}
$$

or

$$
\left[\frac{\partial}{\partial x^{r}} \frac{\partial}{\partial y^{s}} Q^{i}(x, y)\right](0,0)=0 \quad \forall r, s, \quad \text { s.t. } r+s<w_{i}
$$

i.e. $q_{r s}^{i}=0$ whenever $\mathrm{r}+\mathrm{s}<0$.

Let $N_{i}=$ Number of constraints introduced to impose the w_{i} multiplicity of root $\left(\alpha_{i}, y_{i}\right)$ for $\mathrm{Q}(\mathrm{x}, \mathrm{y})$.

$$
\begin{gathered}
N_{i}=\sum_{r=0}^{w_{i}-1} \sum_{s=0}^{w_{i}-r-1} 1=\sum_{r=0}^{w_{i}-1} w_{i}-r=w_{i} * w_{i}-\frac{w_{i} *\left(w_{i}-1\right)}{2} \\
=w_{i} * \frac{w_{i}+1}{2}=\binom{w_{i}+1}{2}
\end{gathered}
$$

Lemma 3.2. Given any n points $\left(\alpha_{i}, y_{i}\right) \in \mathbb{F} \times \mathbb{F}$ and corresponding integer weights w_{i}, \exists nonzero $Q(X, Y)$ with $(1, k)$-weighted degree D, s.t. $Q(x, y)$ has $\left(\alpha_{i}, y_{i}\right)$ as a root with w_{i} multiplicity, $\forall i$, for $D=\left\lfloor\sqrt{2 k \sum\binom{w_{i}+1}{2}}\right\rfloor$.

Proof. Let us count, the number of constraints. Total constraints $=\sum N_{i}=\sum\binom{w_{i}+1}{2}$. Now let us count,the number of variables. As in the proof of 2.3 we know that number of variables $>$ $\frac{\left.D^{2}\right)}{2 k}$ For $\mathrm{D}=\left\lfloor\sqrt{2 k \sum\binom{w_{i}+1}{2}}\right\rfloor$, number of variables $>\sum\binom{w_{i}+1}{2}$. Number of variables are greater than the number of constraints, hence the system of equation has non-zero solution.

Lemma 3.3. If $p\left(\alpha_{i}\right)=y_{i}$ and $Q(x, y)$ has w_{i} roots at $\left(\alpha_{i}, w_{i}\right)$ then $R(x)$, defined as $Q(x, p(x))$ is divisible by $\left(x-\alpha_{i}\right)^{w_{i}}$.

Given n distinct pairs $\left(\alpha_{i}, y_{i}\right) \in \mathbb{F} \times \mathbb{F}$, with associated integer weights $w_{i} \geq 1$, find all degree k polynomial $\mathrm{p}(\mathrm{x})$ such that $\sum_{i: p\left(\alpha_{i}\right)=y_{i}} w_{i}>W$, for some weighted arguement parameter W .
We will solve this for $\mathrm{W}=\sqrt{2 k \sum\binom{w_{i}+1}{2}}$.
Lemma 3.4. For a polynomial $p(x)$, s.t $\operatorname{deg}(p(x)) \leq k$, if $\sum_{i: p\left(\alpha_{i}\right)=y_{i}} w_{i}>W$ and $W=\sqrt{2 k \sum\binom{w_{i}+1}{2}}$, then $y-p(x)$ is a factor of $Q(x, y)$.

Proof. Consider $\mathrm{R}(\mathrm{x})=\mathrm{Q}(\mathrm{x}, \mathrm{p}(\mathrm{x}))$. Degree of $\mathrm{R}(\mathrm{x})=\mathrm{D}$, as $\mathrm{Q}(\mathrm{x}, \mathrm{y})$ is of $(1, \mathrm{k})$-weighted degree D . Now Lemma 3.3 says that if $p\left(\alpha_{i}\right)=w_{i}$ then α_{i} is a root of multiplicatiy w_{i} of $\mathbf{R}(\mathbf{x})$. Number of roots of $\mathrm{R}(\mathrm{x})=\sum_{i: p\left(\alpha_{i}\right)=y_{i}} w_{i}$. Now number of roots $i \mathrm{~W}=\mathrm{D}$. Hence $\mathrm{R}(\mathrm{x})$ is a 0 polynomial or $\mathrm{y}-$ $\mathrm{p}(\mathrm{x})$ divides $\mathrm{Q}(\mathrm{x}, \mathrm{y})$.

Now for

$$
\begin{array}{cc}
w_{i}=1, & t>\sqrt{2 k n} \\
w_{i}=2, & 2 t>\sqrt{6 k n}
\end{array}
$$

$\sqrt{3 k n / 2}$ is an improvement from $\sqrt{2 k n}$. We can use this approach to get better results. If we pick

$$
w_{i}=w=2 k n, \quad t>\sqrt{2 k n \frac{w+1}{2 w}}=\sqrt{k n+k n / w}=\sqrt{k n+1 / 2}
$$

Assuming Lemma 3.3 we can obtain our goal of solving list decoding problem defined earlier for $\mathrm{t}>\sqrt{k n}$, i.e. decoding a $1-\sqrt{R}$ fraction of errors.

References

[1] Madhu Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. Journal of Complexity, 13(1):180-193, 1997.
[2] E Kalfoten. Polynomial Factorization. LATIN, 92.

