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In this lecture we discuss list decoding for Reed Solomon codes. RS-Decoding a given message
m = (m1, . . . , mn) means, finding a degree k polynomial p(x), which satisfies the message at more
than error correction bound ((D - 1)/2; D = min distance) number of places. For the scribes define
Q(x,y) =

∑

qijx
iyj.

1 RS List Decoding Problem

For RS codes list decoding a message m with parameters t is to find all the codewords(polynomials)
which satisfy the message at atleast t places. This problem can be stated as:

List Decoding Problem
¯Given n distinct pairs (αi, yi) ∈ F×F, a degree parameter k and an agreement parameter t, find all

degree k polynomial p(x) such that p(αi) = yi for atleast t values of i∈ 1, 2, . . . , n.
Goal: Solve for t>

√
kn, decoding a 1 -

√
R fraction of errors.

[1] has the following lemma.

Lemma 1.1. Given any n points (αi, yi) ∈ F × F, ∃ nonzero Q(X,Y) withdegX(Q) ≤ n
l

and
degY (Q) ≤ l, s.t. Q(αi, yi) = 0, ∀ i.

Proof. Note that Q(x,y) =
∑

0≤i≤dx,0≤j≤dy
qijx

iyj, and we get there are (n
l

+ 1)(l + 1)≥ n variables
(variables beingqij). So we have a system of homogeneous equation with n constraints and more
than n variable. Hence a non-zero solution exists.

2 Algorithm Schema

1. Find non-zero Q(X,Y) (with some degree restrictions), s.t. Q explains all the points.

2. Factor Q(X,Y) and for each factor of form y - p(x) with deg(p) ≤ k; check if p(αi) = yi for
atleast t values of i. If so output p(X).

Why the above algorithm runs in polynomial time?
Step 1

¯
is solving a system of homogeneous linear equation. Which can be done in polynomial

time.
Step 2

¯
: Step can also be done in the polynomial time. For details see([2] )
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Lemma 2.1.For a polynomial p(x), s.t. deg(p(x))≤ k, p(αi) = yi for atleast t values and t> n
l
+ lk

then y - p(x) is a factor of Q(x,y).

Proof. We show this by showing that R(x) = Q(x,p(x)) is a 0 polynomial. For this, we will show
that number of roots are greater than the degree of R(x). Notethat, deg(R)≤ n/l + lk; because y is
replaced by a (atmost) k degree polynomial anddegy < l. If p(αi) = yi, then R(αi) = Q(αi,P(αi))
= Q(αi, yi) = 0. Number of roots is atleast t. Now t> n

l
+ lk, R is a 0 polynomial.

We can try to optimize for t by choosing l appropiately. Now n/l + lk ≥ 2
√

nk, (AM-GM).
For l =

√

n/k, n/l + lk = 2
√

nk. Hence this choice of l optimizes for t, which now has to follow t
> 2

√
kn.

2.1 Improvement using (1,k)-weighted deg)

Definition 2.2. For a polynomial Q(x,y) =
∑

i≥0,j≥0 qijx
iyj, define (1,k)-weighted degree of Q(x,y)

as maximum (i + kj).

Lemma 2.3. Given any n points (αi, yi) ∈ F× F, ∃ nonzero Q(X,Y) with (1,k)-weighted degree D,
s.t. Q(αi, yi) = 0, ∀ i, for D = ⌊

√
2kn⌋.

Proof. Let us count the number of coefficientqij for i ≥ 0, j ≥ 0 and i+kjle D let there be N.

N =

⌊ d
k
⌋

∑

j=0

D−kj
∑

i=0

1 =

⌊ d
k
⌋

∑

j=0

(D − kj + 1)

= (D + 1)(⌊d

k
⌋ + 1) − k⌊d

k
⌋(⌊d

k
⌋ + 1)

2

=
(⌊d

k
⌋ + 1)

2
(2D + 2 − k⌊d

k
⌋)

≥ (⌊d
k
⌋ + 1)

2
(D + 2) ≥ D(D + 2)

2k

For D =⌊
√

2kn⌋, N ≥ 2kn
2k

= n. And hence the system of equation has non-zero solution.

Now Q(x,y) be the polynomial with (1,k)-weighted degree D =⌊
√

2kn⌋.

Theorem 2.4. For a polynomial p(x), s.t. deg(p(x))≤ k, if p(αi) = yi for atleast t values and t
>

√
2kn then y - p(x) is a factor of Q(x,y).

Proof. Again consider R(x) = Q(x,p(x)). We will show that number of roots of R(x) are greater
than the degree of R(x). Note that, deg(R)≤. If p(αi) = yi, then R(αi) = Q(αi,P(αi)) = Q(αi, yi)
= 0. Number of roots is atleast t. Now t>

√
2kn, R is a 0 polynomial or y - p(x) is a factor of

Q(x,y).

So this will give us a decoding fraction of p = 1 -
√

2R. Note that as R−→ 0, p−→ 1.
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3 Improvements to match Johnson Bound

Now, we will consider improvements to match Johnson bound, t>
√

kn. The main idea here is
weighted polynomial reconstruction. For each pair (αi, yi) we are also given an integer weightwi

as input.
Let Q(x,y) be polynomial such that Q(αi, yi) = 0,∀ i. We impose a stronger condition for the points
(αi, yi) with higherwi; i.e. Q(x,y) has a root of multiplicitywi at (αi, yi).

Definition 3.1. Given a polynomial Q(x,y), defineQi(x,y) as the polynomial, s.t. Q(αi, yi) =
Qi(0,0). In generalQi(x,y) = Q(x+αi,y+yi).

Given Q(x,y) and a pair (αi, yi), Qi(x,y) =
∑

qi
rsx

rys. To see howqi
rs is related to coefficients

of Q(x,y), note that

Qi(x, y) =
∑

r,s

qrs(x + αi)
r(y + yi)

s This gives

qi
rs =

∑

r′≥r,s′≥s

qr′s′(

(

r′

r

)

αr′−r
i

(

s′

s

)

ys′−s
i )

Thewi multiplicity of root implies that partial derivaties upto total of wi order are all zero at
that point. More precisely

[
∂

∂xr

∂

∂ys
Q(x, y)](αi, yi) = 0 ∀r, s, s.t. r + s < wi

or

[
∂

∂xr

∂

∂ys
Qi(x, y)](0, 0) = 0 ∀r, s, s.t. r + s < wi

i.e. qi
rs = 0 whenever r + s< 0.

Let Ni = Number of constraints introduced to impose thewi multiplicity of root (αi, yi) for
Q(x,y).

Ni =

wi−1
∑

r=0

wi−r−1
∑

s=0

1 =

wi−1
∑

r=0

wi − r = wi ∗ wi −
wi ∗ (wi − 1)

2

= wi ∗
wi + 1

2
=

(

wi + 1
2

)

Lemma 3.2. Given any n points (αi, yi) ∈ F×F and corresponding integer weightswi, ∃ nonzero
Q(X,Y) with (1,k)-weighted degree D, s.t. Q(x,y) has (αi, yi) as a root withwi multiplicity,∀ i, for

D = ⌊
√

2k
∑

(

wi + 1
2

)

⌋.
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Proof. Let us count, the number of constraints. Total constraints =
∑

Ni =
∑

(

wi + 1
2

)

. Now

let us count,the number of variables. As in the proof of 2.3 weknow that number of variables>

D2)
2k

For D =⌊
√

2k
∑

(

wi + 1
2

)

⌋, number of variables>
∑

(

wi + 1
2

)

. Number of variables

are greater than the number of constraints, hence the systemof equation has non-zero solution.

Lemma 3.3. If p(αi) = yi and Q(x,y) haswi roots at (αi, wi) then R(x), defined as Q(x,p(x)) is
divisible by(x − αi)

wi.

Given n distinct pairs (αi, yi) ∈ F × F, with associated integer weightswi ≥ 1, find all degree k
polynomial p(x) such that

∑

i:p(αi)=yi
wi > W , for some weighted arguement parameter W.

We will solve this for W =

√

2k
∑

(

wi + 1
2

)

.

Lemma 3.4.For a polynomial p(x), s.t deg(p(x))≤ k, if
∑

i:p(αi)=yi
wi > W and W =

√

2k
∑

(

wi + 1
2

)

,

then y - p(x) is a factor of Q(x,y).

Proof. Consider R(x) = Q(x,p(x)). Degree of R(x) = D, as Q(x,y) is of (1,k)-weighted degree D.
Now Lemma 3.3 says that ifp(αi) = wi thenαi is a root of multiplicatiywi of R(x). Number of
roots of R(x) =

∑

i:p(αi)=yi
wi. Now number of roots ¿ W = D. Hence R(x) is a 0 polynomial or y -

p(x) divides Q(x,y).

Now for
wi = 1, t >

√
2kn

wi = 2, 2t >
√

6kn
√

3kn/2 is an improvement from
√

2kn. We can use this approach to get better results. If we pick

wi = w = 2kn, t >

√

2kn
w + 1

2w
=

√

kn + kn/w =
√

kn + 1/2

Assuming Lemma 3.3, we can obtain our goal of solving list decoding problem defined earlier for
t >

√
kn, i.e. decoding a 1 -

√
R fraction of errors.
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