Lecture 7: Explicit Linear Code Constructions

October 20, 2006
Lecturer: Venkatesan Guruswami
Scribe: Patrick Tague

1 Introduction

To this point, we have focused on the derivation of asymptotic bounds for the existence/nonexistence of $(n, k, d)_{q}$ codes with rate $R=\frac{k}{n}$ and relative distance $\delta=\frac{d}{n}$. We are now interested in explicit constructions of linear codes in an attempt to achieve or approach the previously derived bounds.

2 Reed-Solomon Codes

A Reed-Solomon (RS) code is an $[n, k, d]_{q}$ linear code with $\Sigma=\mathbb{F}_{q}$ for a prime power $q \geq n$ described in terms of the following encoding function. The encoding function

$$
\text { Enc : } \Sigma^{k} \rightarrow \Sigma^{n}
$$

maps a k-symbol message $\left(m_{0}, \ldots, m_{k-1}\right)$ to an n-symbol codeword $\left(M\left(\alpha_{0}\right), \ldots, M\left(\alpha_{n-1}\right)\right)$ where $M(x)$ is the polynomial

$$
\begin{equation*}
M(x)=\sum_{i=0}^{k-1} m_{i} x^{i} \tag{1}
\end{equation*}
$$

and $\alpha_{0}, \ldots, \alpha_{n-1}$ are distinct elements in \mathbb{F}_{q}. Typically, $q=n$ and the α_{i} 'a are all thje elements of \mathbb{F}_{q}, or $n=q-1$ and the α_{i} 's are all the nonzero elements of of \mathbb{F}_{q}.

The linearity of an RS code \mathcal{C} can be easily verified by checking the conditions for closure under addition and scalar multiplication. Let $c, c^{\prime} \in \mathcal{C}$ be codewords corresponding to the messages $m=\left(m_{0}, \ldots, m_{k-1}\right)$ and $m^{\prime}=\left(m_{0}^{\prime}, \ldots, m_{k-1}^{\prime}\right)$, respectively. Then $c+c^{\prime}$ is the encoding of the message $\left(m_{0}+m_{0}^{\prime}, \ldots, m_{k-1}+m_{k-1}^{\prime}\right)$ since

$$
\begin{align*}
M\left(\alpha_{i}\right)+M^{\prime}\left(\alpha_{i}\right) & =\sum_{j=0}^{k-1} m_{j} \alpha_{i}^{j}+\sum_{j=0}^{k-1} m_{j}^{\prime} \alpha_{i}^{j} \\
& =\sum_{j=0}^{k-1}\left(m_{j}+m_{j}^{\prime}\right) \alpha_{i}^{j} . \tag{2}
\end{align*}
$$

Also for $\gamma \in \mathbb{F}_{q}, \gamma c$ is the encoding of the polynomial with coefficients $\left(\gamma m_{0}, \ldots, \gamma m_{k-1}\right)$.

An RS code \mathcal{C} can thus be described using the $n \times k$ generator matrix G. From the encoding function Enc defined using (1), it is clear that G is the Vandermonde matrix

$$
G=\left(\begin{array}{cccc}
1 & \alpha_{0} & \ldots & \alpha_{0}^{k-1} \tag{3}\\
1 & \alpha_{1} & \ldots & \alpha_{1}^{k-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \alpha_{n-1} & \ldots & \alpha_{n-1}^{k-1}
\end{array}\right)
$$

The minimum distance d of an RS code \mathcal{C} can be computed algebraicly using Lemma 2.1 .
Lemma 2.1. A polynomial of degree D over a field \mathbb{F} has at most D roots (counting multiplicity).
Proof. The theorem is proved by induction on the degree D. The case $D=0$ is obvious. Let $f(X)$ be a nonzero polynomial of degree D over \mathbb{F}. let $\alpha \in \mathbb{F}$ be a root of $f(X)$. By the division theorem for polynomials over a field, we can write $f(X)=Q(X)(X-\alpha)+R(X)$, where $R(X)$ is the remainder polynomial with degree less than 1 , and therefore a constant polynomial. Since $f(\alpha)=R(\alpha)=0$, we must have $R(X)=0$. Therefore $f(X)=\left(X_{\alpha}\right) Q(X)$. By induction hypothesis, $Q(X)$, which has degree $D-1$, has at most $D-1$ roots. These roots together with α can make up at most D roots for $f(X)$.

Since the degree of the encoded polynomial in (1) is $k-1$, a codeword c can have at most $k-1$ elements $M\left(\alpha_{i}\right)$ equal to zero. The minimum distance d, equal to the minimum weight of any codeword in \mathcal{C}, is therefore at least as $d \geq n-k+1$. The Singleton bound (proven in Lecture 5) provides a bound of $d \leq n-k+1$ for any code. Hence, the minimum distance of the RS code \mathcal{C} is $d=n-k+1$. The upper bound can also be demonstrated by constructing a codeword with exactly $d=n-k+1$ non-zero entries. Let $M(x)=\left(x-\alpha_{0}\right)\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{k-2}\right)$ be the encoding polynomial as in (1). Since the degree of $M(x)$ is $k-1$, there exists a message $m=\left[m_{0}, \ldots, m_{k-1}\right]$ which corresponds to the polynomial $M(x)$, simply by mathing coefficients in (11). Hence, evaluating $M(x)$ for all $\alpha_{i}, i=0, \ldots, q-1$ yields a codeword with $k-1$ zeros followed by $n-k+1$ non-zero entries. We record the distance property of RS codes as:

Lemma 2.2. Reed-Solomon codes meet the Singleton bound, i.e., a code of block length n and dimension k has distance $n-k+1$.

RS codes can thus be used to achieve a relative distance of $\delta=\frac{d}{n}=\frac{n-k+1}{n}=1-R+o(1)$ for any rate $R=\frac{k}{n}$. However, the alphabet size q scales as $q=\Omega(n)$. By the Plotkin bound, for codes over an alphabet of size q, we have $R \leq 1-\frac{q}{q-1} \delta$, so to meet the Singleton bound q has to grow with the block legnth n. We now use similar algebraic ideas to construct codes over smaller alphabet size, at the expense of worse rate vs distance trade-offs.

3 Reed-Muller Codes

In what follows, a generalization is provided for the RS codes described in Section 2 by expanding the polynomial encoding in (1) to multivariate polynomials. The resulting codes are hereafter
referred to as Reed-Muller (RM) codes \square^{1}

3.1 Bivariate RM Codes

We begin with the simplest extension, from univariate to bivariate polynomials. Let m be the matrix $\left[m_{i j}\right.$] for $0 \leq i \leq \ell-1$ and $0 \leq j \leq \ell-1$ denoting a message of $k=\ell^{2}$ symbols in \mathbb{F}_{q}. The encoding function

$$
\text { Enc: } \mathbb{F}_{q}^{\ell \times \ell} \rightarrow \mathbb{F}_{q}^{q \times q}
$$

is given by mapping a message m to a codeword c given by the matrix $\left[M\left(\alpha_{x}, \alpha_{y}\right)\right]$ for $\alpha_{x} \in \mathbb{F}_{q}$ and $\alpha_{y} \in \mathbb{F}_{q}$, where $M(x, y)$ is given by

$$
\begin{equation*}
M(x, y)=\sum_{i=0}^{\ell-1} \sum_{j=0}^{\ell-1} m_{i j} x^{i} y^{j} \tag{4}
\end{equation*}
$$

The resulting RM code is a $\left[q^{2}, \ell^{2}, d\right]_{q}$ linear code. Linearity can be verified as in Section 2. The minimum distance d of the RM code can be computed using the following result.
Lemma 3.1. The tensor product of two $[q, \ell, d]_{q} R S \operatorname{codes} \mathcal{C}_{1}$ and \mathcal{C}_{2} is the $\left[q^{2}, \ell^{2}, d^{2}\right]_{q}$ (bivariate) RM code \mathcal{C}.

Proof. The tensor product of two $\operatorname{codes} \mathcal{C}_{1}$ and \mathcal{C}_{2} is defined as the code $\mathcal{C}=\mathcal{C}_{1} \otimes \mathcal{C}_{2}$ given by

$$
\mathcal{C}_{1} \otimes \mathcal{C}_{2}=\left\{G_{1} m G_{2}^{T} \mid m \in\{0,1\}^{\ell \times \ell}\right\},
$$

where G_{1} and G_{2} are the generator matrices for \mathcal{C}_{1} and \mathcal{C}_{2}, respectively. Since both \mathcal{C}_{1} and \mathcal{C}_{2} are RS codes, the matrices G_{1} and G_{2} are both equal to the RS generator matrix G given in (3). Hence, a message m is mapped to the codeword $M=G m G^{T} \in \mathcal{C}$. The entry $M\left(\alpha_{x}, \alpha_{y}\right)$ in row x and column y of the codeword M is given by the product $g_{x} m g_{y}^{T}$, where g_{x} denotes the row [$1, \alpha_{x}, \ldots, \alpha_{x}^{\ell-1}$] of G, for $0 \leq x \leq q-1$. Hence, the product code is such that

$$
M\left(\alpha_{x}, \alpha_{y}\right)=\sum_{i=0}^{\ell-1} \sum_{j=0}^{\ell-1} m_{i j} \alpha_{x}^{i} \alpha_{y}^{j}
$$

which is consistent with the definition of the bivariate Reed-Muller code \mathcal{C} in (4) with x and y replaced with α_{x} and α_{y}.

The use of tensor product codes and the result of Lemma 3.1 implies that the $\left[q^{2}, \ell^{2}, d\right]_{q}$ ReedMuller code has distance $d=(q-\ell+1)^{2}=q^{2}-2 q(\ell-1)+(\ell-1)^{2}$ and rate $R=\frac{\ell^{2}}{q^{2}}$. Note that the distance $d=(q-\ell+1)^{2}$ no longer achieves equality in the Singleton bound $d \leq q^{2}-\ell^{2}+1$. However, the alphabet size q in this case scales as $q=\mathcal{O}(\sqrt{n})$. This demonstrates the trade-off between optimal distance and smaller alphabet size that is characteristic of RM codes over RS codes.

[^0]
3.2 Multivariate RM Codes

The bivariate extension of Section 3.1 generalizes in the natural way to multivariate polynomials. A multivariate RM code \mathcal{C} with v variables x_{1}, \ldots, x_{v} can be interpreted as the tensor product code of v RS codes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{v}$. The encoding function

$$
\text { Enc }: \mathbb{F}_{q}^{\ell_{1} \times \cdots \times \ell_{v}} \rightarrow \mathbb{F}_{q}^{q \times \cdots \times q}
$$

maps a message $m=\left[m_{i_{1} \ldots i_{v}}\right]$ to a codeword $M\left(x_{1}, \ldots, x_{v}\right)$ as

$$
\begin{equation*}
M\left(x_{1}, \ldots, x_{v}\right)=\sum_{i_{1}=0}^{\ell_{1}-1} \cdots \sum_{i_{v}=0}^{\ell_{v}-1} m_{i_{1} \ldots i_{v}} \prod_{j=1}^{v} x_{j}^{i_{j}} . \tag{5}
\end{equation*}
$$

The resulting RM code is a $\left[q^{v}, \prod_{j=1}^{v} \ell_{j}, \prod_{j=1}^{v} d_{j}\right]_{q}$ linear code. Linearity can be verified using an identical method to that of Section2, The minimum distance d of the multivariate RM code can be proven using the multivariate extension to Lemma 3.1 or using the following result.

Lemma 3.2. A non-zero polynomial $P\left(x_{1}, \ldots, x_{v}\right)$ over a field \mathbb{F} with maximum degree d_{i} for the variable x_{i} is non-zero in at least $\prod_{i=1}^{v}\left(q-d_{i}\right)$ points in \mathbb{F}^{v}.

Proof. We use induction on v. The case $v=1$ is the content of Lemma 2.1. Fix x_{1}, \ldots, x_{v-1} and express $P\left(x_{1}, \ldots, x_{v}\right)$ as

$$
P\left(x_{1}, \ldots, x_{v}\right)=R_{d_{v}}\left(x_{1}, \ldots, x_{v-1}\right) x_{v}^{d_{v}}+\ldots+R_{0}\left(x_{1}, \ldots, x_{v-1}\right),
$$

which is a polynomial of degree d_{v} in the variable x_{v}. By Lemma 2.1, there are at least $q-d_{v}$ values of x_{v} for which $P\left(x_{1}, \ldots, x_{v}\right)$ is a non-zero olynomial in x_{1}, \ldots, x_{v}. For each of the (at least $q-d_{v}$) values of x_{v} which yield non-zero $P\left(x_{1}, \ldots, x_{v}\right)$, by induction there are at least $\prod_{i=1}^{v-1}\left(q-d_{i}\right)$ values to x_{1}, \ldots, x_{v} that lead to a nonzero evaluation.

The following construction demonstrates how equality is achieved in the bound provided by Lemma 3.2. Since the bound results from fewer than $q-d_{i}$ roots for any given x_{i}, equality is achieved whenever there are exactly $q-d_{i}$ roots for each x_{i}. Hence, let $M_{i}\left(x_{i}\right)$ be the product $\left(x_{i}-\alpha_{i, 1}\right) \ldots\left(x_{i}-\alpha_{i, \ell_{i}-1}\right)$, where the $\alpha_{i, j}$ are distinct, and let $M\left(x_{1}, \ldots, x_{v}\right)=\prod_{i=1}^{v} M_{i}\left(x_{i}\right)$.

3.3 Variant on Multivariate Reed-Muller Codes

We next relax the condition on multivariate RM codes independently bounding the maximum degree of each variable x_{i} and allow for codeword polynomials $M\left(x_{1}, \ldots, x_{v}\right)$ with total degree at most ℓ. The encoding function is similar to that in Section 3.2 with the encoding polynomial M given by

$$
\begin{equation*}
M\left(x_{1}, \ldots, x_{v}\right)=\sum_{\substack{i_{1}, \ldots, i_{v} \geq 0, i_{1}+\ldots+i_{v} \leq \ell}} m_{i_{1} \ldots i_{v}} \prod_{j=1}^{v} x_{j}^{i_{j}} . \tag{6}
\end{equation*}
$$

The resulting code \mathcal{C} is a $\left[q^{v}, k, d\right]_{q}$ linear code, where k is the total number of tuples $\left(i_{1}, \ldots, i_{v}\right)$ of nonnegative integers satisfying $i_{1}+\ldots+i_{v} \leq \ell$. The values of k and d are computed using the following results.

Observation 3.3. The value k for the given code \mathcal{C} is $\binom{v+l}{v}$ (stated without proof).
Lemma 3.4. A non-zero polynomial $P\left(x_{1}, \ldots, x_{v}\right)$ of total degree at most ℓ over \mathbb{F}_{q} is zero on at most a fraction $\frac{\ell}{q}$ of points in \mathbb{F}_{q}^{v}.

Proof. The statement is proved via induction. The case $v=1$ states that a univariate polynomial of degree ℓ has at most ℓ roots and is proved using Lemma 2.1. We next note that such a polynomial can be written as

$$
P\left(x_{1}, \ldots, x_{v}\right)=R_{\ell_{1}}\left(x_{1}, \ldots, x_{v-1}\right) x_{v}^{\ell_{1}}+\ldots+R_{0}\left(x_{1}, \ldots, x_{v-1}\right) .
$$

The probability that $P\left(\alpha_{1}, \ldots, \alpha_{v}\right)=0$ is computed using as

$$
\begin{align*}
\operatorname{Pr}\left[P\left(\alpha_{1}, \ldots, \alpha_{v}\right)=0\right]= & \operatorname{Pr}\left[P\left(\alpha_{1}, \ldots, \alpha_{v}\right)=0 \mid R_{\ell_{1}}\left(\alpha_{1}, \ldots, \alpha_{v-1}\right)=0\right] \\
& \times \operatorname{Pr}\left[R_{\ell_{1}}\left(\alpha_{1}, \ldots, \alpha_{v-1}\right)=0\right] \\
= & \operatorname{Pr}\left[P\left(\alpha_{1}, \ldots, \alpha_{v}\right)=0 \mid R_{\ell_{1}}\left(\alpha_{1}, \ldots, \alpha_{v-1}\right) \neq 0\right] \\
& \times \operatorname{Pr}\left[R_{\ell_{1}}\left(\alpha_{1}, \ldots, \alpha_{v-1}\right) \neq 0\right] \\
\leq & 1 \times \frac{\ell-\ell_{1}}{q}+1 \times \frac{\ell_{1}}{q}=\frac{\ell}{q} \tag{7}
\end{align*}
$$

where we used the induction step for R_{ℓ} which has degree $\ell-\ell_{1}$, and the fact that a univariate polynomial in x_{v} of degree ℓ_{1} has at most ℓ_{1} roots.

The result of Lemma 3.4 can then be used to yield the result that (assuming $\ell \leq q$) the distance of the code \mathcal{C} can be bounded as $d \geq\left(1-\frac{\ell}{q}\right) q^{v}$. This suggests that RM codes do not provide $R, \delta>0$ for constant q, i.e. q increases with n.

4 Binary Reed-Muller Codes

We now shift our attention to the "original" Reed-Muller codes. These were binary codes defined by Muller (1954) and Reed (1954) gave a polynomial time majority logic decoder for these (which we will discuss later). The binary RM code \mathcal{C} results from encoding a multilinear encoding polynomial M given by

$$
M\left(x_{1}, \ldots, x_{v}\right)=\sum_{S:|S| \leq \ell} c_{S} \prod_{i \in S} x_{i}
$$

at all 2^{v} points in \mathbb{F}_{2}^{v} (the coefficients c_{S} are the message bits). The binary RM code \mathcal{C} is a $\left[2^{v}, \sum_{i=0}^{\ell}\binom{v}{i}, d\right]_{2}$ linear code, where the distance d is given by the following lemma.

Lemma 4.1. The minimum distance d of the binary RM code described above is $d=2^{v-\ell}$.

Proof. Consider the encoding polynomial $M\left(x_{1}, \ldots, x_{v}\right)=\prod_{i=1}^{\ell} x_{i}$ resulting from the message leading to the coefficient $c_{S}=1$ if and only if $S=\{1, \ldots, \ell\}$. There are exactly $2^{v-\ell}$ choices for $\left(x_{1}, \ldots, x_{v}\right)$ that make M non-zero, namely those with $x_{1}=\ldots=x_{\ell}=1$. The distance d is thus bounded as $d \leq 2^{v-\ell}$. Next, consider the non-zero polynomial $M\left(x_{1}, \ldots, x_{v}\right)$ and let $\prod_{i=1}^{r} x_{i}$ be the maximal monomial of M, i.e. reorder the indices $\{1, \ldots, v\}$ such that

$$
M\left(x_{1}, \ldots, x_{v}\right)=\prod_{i=1}^{r} x_{i}+R\left(x_{1}, \ldots, x_{v}\right)
$$

where there is no monomial term in $R\left(x_{1}, \ldots, x_{v}\right)$ with more than r variables. There are 2^{v-r} ways to choose the variables x_{r+1}, \ldots, x_{v}, but none of them can cause the maximal monomial to be cancelled. This leads to the bound $d \geq 2^{v-r}$, which implies $d \geq 2^{v-\ell}$ since $r \leq \ell$ by the definition of M.

5 Summary

Two families of linear codes, Reed-Solomon and Reed-Muller, were presented and analyzed using various algebraic properties. Though the Reed-Solomon codes can be used to achieve $R, \delta>0$, and in fact achieve the optimal trade-off matching the Singleton bound, this can only be done if the alphabet size q increases linearly in the block length, i.e., $q \geq n$. Reed-Muller codes use multivariate polynomials to give codes over smaller alphabets, although they are unable to give codes with $R, \delta>0$ over a bounded alphabet size.

[^0]: ${ }^{1}$ An alternate definition of Reed-Muller codes is common, but Prof. Guruswami claims the multivariate polynomial interpretation is more clear.

