Paper Number: 323

Processing XML Streams with Deterministic Automata and
Stream Indexes

Authors: Todd J. Green, Gerome Miklau, Makoto Onizuka, Dan Suciu (VLDB PC member)

Contact author:
Dan Suciu
suciu@cs.washington.edu
Department of Computer Science and Engineering
Box 352350
University of Washington
Seattle, WA 98195-2350
206-685-1934

Track: Infrastructure for Information Systems — Research
Primary Topic: Database and database services in new context — Internet and WWW

Secondary Topic: Novel/Advanced Applications

Processing XML Streams with Deterministic
Automata and Stream Indexes

Todd J. Green* Gerome Miklaut

Abstract

We consider the problem of evaluating a large
number of XPath expressions on an XML
stream. We make two key contributions: we
convert the entire set of XPath expressions into
a single Deterministic Finite Automata (DFA),
and we use a Stream IndeX (SIX). The size
of the DFA grows exponentially in the num-
ber of expressions, so it was previously believed
that they cannot be used for such large sets.
Our first contribution consists of a collection
of techniques, theoretical results, and experi-
mental validations that show DFAs can be used
successfully with large sets of XPath expres-
sions. Experiments show a constant throughput
of about 5.4MB/s for up to 1,000,000 XPath ex-
pressions. The second contribution consists of
a novel technique to index streaming data, that
can be used in network-bound XML streams.
Our results show that it can lead to dramatic
performance improvements: with a SIX of only
6% the size of the data, we report four-fold per-
formance improvements.

1 Introduction

Several applications of XML stream processing have
emerged recently: content-based XML routing [19],
selective dissemination of information (SDI) [2, 5],
continuous queries [6], and processing of scientific
data stored in large XML files [10, 20, 16]. They
commonly need to process large numbers of XPath

* Xyleme (work done at U. Washington)

t University of Washington

I NTT Cyber Space Laboratories, NT'T Corporation
(work done while visiting University of Washington)

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and no-
tice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

Makoto Onizukat Dan Suciuf

expressions (say 10,000 to 1,000,000), on continuous
XML streams, at network speed.

As a motivating example, consider XML Rout-
ing [19]. Here a network of XML routers forwards
a continuous stream of XML packets from data pro-
ducers to consumers. A router forwards each XML
packet it receives to a subset of its output links
(other routers or clients). Forwarding decisions are
made by evaluating a large number of XPath fil-
ters (corresponding to clients’ subscription queries)
on the stream of XML packets. Data processing is
minimal: there is no need for the router to have an
internal representation of the packet, or to buffer
the packet after it has forwarded it. Performance,
however, is critical, and [19] reports very poor per-
formance with publicly-available tools.

Our goal is to develop techniques for evaluat-
ing large numbers of XPath expressions on XML
streams. We guarantee a sustained throughput that
is independent of the number of XPath expressions:
for up to 1,000,000 XPath expressions we measured a
constant throughput of about 5.4MB/s. (Note that
our reference parser measures peak throughput of
9.6MB/s) In contrast, previous techniques have the
disadvantage that the throughput decreases as the
number of XPath expressions increases. [2, 5].

We make two core contributions to XML stream
processing: lazy Deterministic Finite Automata
(DFA) and the Stream IndeX (SIX). To process at
guaranteed throughput we convert all XPath expres-
sions into a single DFA. This was thought impossible
before because the number of XPath expressions is
very large and the size of the DFA grows exponen-
tially in this number. In fact, previous work in this
area [2, 5] explicitly avoided using DFAs, and de-
veloped alternative processing techniques that are
slower, but have guaranteed space bounds. Our first
contribution consists of a collection of techniques,
theoretical results, and experiments that validate
DFAs for use in stream XML processing. The tech-
niques use lazy DFAs, i.e. constructing the DFA
states on an as-needed basis. We provide a com-
plete theoretical analysis of the size of the eager and
lazy DFA. In particular we prove that the number

of states in the lazy DFA has a small upper bound
that is independent of the number of XPath expres-
sions. This is a surprising result because the num-
ber of states in the eager DFA is exponential in that
of XPath expressions. We validate this result ex-
perimentally, showing that the space used by the
lazy DFA is manageable in practice. We also con-
duct thorough performance experiments, confirming
that an XML stream can be processed at constant
throughput independent of the number of XPath ex-
pressions.

Our second contribution consists of a novel tech-
nique to index streaming data, called a Stream In-
deX (SIX). A stream index is computed only once,
by the data producer, and is sent along with the
data stream. Every application that processes the
data stream may use the index to improve its per-
formance. A stream index differs significantly from
traditional index structures: it needs to be much
smaller than the data stream in order not to use
extra network bandwidth, and it must arrive just
in time to be of any use to the application. In
our experiments the SIX is only 6% the size of the
XML stream (and can be further reduced), and in-
creased the throughput by up to a factor of four (to
27MB/s). To our knowledge the SIX is the first at-
tempt to index streaming data, and our results prove
that such an index can lead to dramatic performance
improvements.

The techniques described in this paper have been
incorporated into a public software package!.

Paper Organization We begin with an overview
of the system in Sec. 2. We describe in detail pro-
cessing with a DFA in Sec. 3, then discuss its con-
struction in Sec. 4 and analyze their size both theo-
retically and experimentally. We describe the stream
index in Sec. 5. Experiments are discussed in Sec. 6.
We discuss other issues in Sec. 7, and related work
in Sec 8. Finally, we conclude in Sec. 9.

2 Overview
2.1 The Event-Based Processing Model

We define a simple event-based XML processing
model in which a query is modeled as a tree, called
the query tree, consisting of several XPath expres-
sions. An input XML stream is first parsed by a
SAX parser that generates a stream of SAX events
(Fig. 1); this is input to the query processor that
evaluates the XPath expressions and generates a
stream of application events. The application is no-
tified of these events, and usually takes some action
such as forwarding the packet, notifying a client,
computing some values, etc. Optionally, a binary
SIX stream may accompany the XML stream to
speed up the stream processing.

! Available at www.cs.washington.edu/homes/suciu/XMLTK.

skip(k)

Tree Pattern,

T

Application

skip(k)
SAX Parser '9

SAX Events

Query Processor
(Lazy DFA)

Application Events

Figure 1: System’s Architecture

An application starts by defining a query tree.
This is a tree in which the nodes are labeled with
variables and the edges with linear XPath expres-
sions, P, given by the following grammar:

P =
N =

/N|//N|PP
E | A| text(S) | * (1)

Here E, A, S are an element constant, an attribute
constant, and a string constant respectively, and *
is wild card. The function text(S) matches a text
node whose value is the string S. While filters and
order predicates are not explicitly allowed, we show
below that they can be expressed. In addition to the
query tree, the application specifies the variables for
which it requests SAX events. There is a distin-
guished variable, $R, that is always bound to the
root.

Example 2.1 The following is a query tree?:

$D 1IN $R/datasets/dataset
$T 1IN $D/title

$N IN $D//tableHead//*
$V IN $N/text("Galaxy")
$H IN $D/history

$TH IN $D/tableHead

$F 1IN $TH/field

Fig. 2 shows this query tree graphically, where
the SAX events are requested for $T and $TH. Fig. 3
shows the result of evaluating this query tree on an
XML input stream: the first column shows the XML
stream, the second shows the SAX events generated
by the parser, and the last two columns show the
application events. Only some of the SAX events are
forwarded to the application, namely exactly those
that occur within a $T or $TH variable event.

Independent Expressions A common case of a
query tree is a set of XPath expressions, of the form:
$X1 in SR/ey, X2 in $R/ey, ..., 8%, in $R/e, (each e;
may start with // instead of /). These are typical
of many applications (e.g. XML routing), and are
convenient for analyzing performance as a function
of p. We will interchangeably refer to a query tree
as a set of XPath expressions in this paper.

Filters Query trees do not support filters directly
but they can be expressed by linearizing them and

2The tags are from an XML astronomical database [16].

/datasets/dataset

Figure 2: A Query Tree

adding extra logic at the application level. For ex-
ample the XPath expression:

$X IN $R/catalog/product[@category="tools"]
[sales/@price > 200]/quantity

is linearized into the query tree:

$Y IN $R/catalog/product

$Z IN $Y/Qcategory/text("tools")
$U IN $Y/sales/@price

$X IN $Y/quantity

with SAX events requested for $U and $X. The appli-
cation is thus notified about all relevant events, but
needs to implement extra logic to define the filters’
semantics. Specifically it needs two boolean vari-
ables, b1, b2; on a $Z event, it sets bl to true; on
a $U event it tests the subsequent value and, if it is
> 200, then sets b2 to true. The application needs
to buffer all SAX events below quantity and, at
the end of a $Y event check whether b1=b2=true.
Buffering is thus left to the application, if needed.
Other predicates such as document order can be han-
dled similarly.

2.2 Summary of Performance Results

The techniques described here evaluate a large set of
XPath expressions on an XML stream at guaranteed
throughput. A brief overview of their performance
is shown in Table 1. The first two lines are for ref-
erence, and show the throughput obtained by the
xerces SAX parser (available from the Apache foun-
dation [3]) and by another publicly available parser,
xmill [13] (the latter is restricted to ASCII charac-
ters and is optimized for speed). We used the xmill
parser in our system, hence the 9.6MB/s should be
viewed as an upper bound.

The next entry shows that 10,000 XPath expres-
sions can be processed at 5.4MB/s. Our system

XML Parser Application Events
Stream SAX Events Variable SAX
Events Events
<datasets> start (datasets) || start($R)
<dataset> start (dataset) start ($D)
<history> start (history) start ($H)
<date> start(date)
10/10/59 text (10/10/59)
</date> end(date)
<history> end (history) end ($H)
<title> start(title) start ($T)
start(title)
<subtitle> start (subtitle) start (subtitle)
Study text (Study) text (Study)
</subtitle> end (subtitle) end (subtitle)
</tit1e> end(title) end(title)
end ($T)
</dataset> end(dataset) end ($D)
</datasets> || end(datasets) end ($R)

Figure 3: Events generated by a Query Tree

Operation Throughput
Xerces parser 3.9 MB/s
xmill parser 9.6 MB/s
10,000 XPath exprs 5.4 MB/s
100,000 XPath exprs 5.4 MB/s
1,000,000 XPath exprs 5.4 MB/s
10,000 XPath exprs with SIX | 27.0 MB/s

Table 1: Illustration of the main results in the paper.

converts all expressions into a single Deterministic
Finite Automaton (DFA), then evaluates the DFA
on the XML stream. Notice that the throughput
approaches the throughput of the parser. Signifi-
cantly, the throughput is independent of the num-
ber of XPath expressions, as shown in the next
two rows. This property distinguishes our tech-
nique from others proposed in the literature [2, 5],
where the throughput decreases as the number of
XPath expression increases (in absolute numbers our
performance is also significantly better). To our
knowledge, this is the first attempt to guarantee the
throughput. The main challenge of utilizing a DFA,
and the obstacle to its prior use, is that its size may
grow exponentially in the number of XPath expres-
sions. One of this paper’s important contributions
is to show how DFAs can be made to work..

The last row in the table shows the perfor-
mance obtained with a Stream IndeX (SIX): now
the throughput is 27MB/s, which is almost a factor
of four improvement. Notice that the throughput is
greater than the parser’s: the SIX contains offsets
in the XML stream that enable the system to skip
portions, and avoid parsing them. The SIX needs to
be computed only once, at the data producer, and
can then be used by all consumers downstream. It
only increases the stream by 6%, or less. As we said,
the SIX is, to our knowledge, the first approach to
“index” streaming data, and we find it to be highly

effective.

3 Processing with DFAs
3.1 Background on DFA

Our approach is to convert a query tree into a Deter-
ministic Finite Automaton (DFA). Recall that the
query tree may be a very large collection of XPath
expressions: we convert all of them into a single
DFA. This is done in two steps: first convert the
query tree into a Nondeterministic Finite Automa-
ton (NFA), then convert it into a DFA. We review
here briefly the basic techniques for both steps and
refer the reader to [11] for more details. Qur run-
ning example will be the query tree P shown in
Fig. 4(a). The NFA, denoted A,, is illustrated in
Fig. 4(b). Transitions labeled * correspond to * or
// in P; there is one initial state; terminal states are
labeled with variables ($X, $Y, ...); and there are
e-transitions 3. It is straightforward to generalize
this to any query tree. Importantly, the number of
states in A,, is proportional to the size of P.

Let ¥ denote the set of all tags, attributes, and
text constants occurring in the query tree P, plus a
special symbol w representing any other symbol that
could be matched by * or //. For w € £* let A, (w)
denote the set of states in A, reachable on input
w. In our example we have ¥ = {a,b,d,w}, and
Au(e) = {1}, An(ab) = {3,4,7}, Au(aw) = (3,4},
An(b) = 0.

The DFA for P, A4, has the following set of states:

states(Ag) = {Ap(w)|weX*} (2)
For our running example A is illustrated* in Fig. 5.
FEach state has unique transitions, and one optional
[other] transition, denoting any symbol in ¥ ezcept
the explicit transitions at that state: this is differ-
ent from % in A, which denotes any symbol. For
example [other] at state {3,4,8,9} denotes either
a or w. Terminal states may be labeled now with
more than one variable, e.g. {3,4,5,8,9} is labeled
$Y and $Z.

3.2 The DFA at Run time

Processing an XML stream with a DFA is very ef-
ficient. We maintain a configuration consisting of
a pointer to the current DFA state, and a stack
of DFA states. SAX events are processed as fol-
lows. On a start(element) event we push the

3These are needed to separate the loops from the previous
state. For example the ¢ transition from state 2 to state 3 is
needed: otherwise, if we merge states 2 and 3 into a single
state then the x loop (corresponding to //) would incorrectly
apply to the right branch.

4Technically, the state (0 is also part of the DFA, and be-
haves like a “sink” state, collecting all missing transitions.
We do not illustrate the sink state in our examples.

$X IN $R/a
$Y IN $X//*/v
$Z IN $X/b/*
$U IN $Z/d

/ N E
© e
I*/b [bl* ﬁ* *
/d

(a) (b)
Figure 4: (a) A query tree; (b) its NFA, A,,.

d
$u

lother]

Figure 5: The DFA, A4, for Fig. 4.

current state on the stack, and replace it with the
state reached by following the element transition®;
on a end(element) we pop a state from the stack
and set it as the current state. Attributes and
text (string) are handled similarly. No memory
management is needed at run time®. Thus, each
SAX event is processed in O(1) time, and we can
guarantee the throughput, independent of the num-
ber of XPath expressions. The trade-off is the size
of the DFA, an issue that we address next.

4 Analyzing the Size of the DFA

For a general regular expression the size of the DFA
may be exponential [11]. In our setting, however,
the expressions are restricted to XPath expressions
as in Sec. 2.1. We analyze and discuss here their
eager and lazy DFAs.

4.1 The Eager DFA
We start with the eager DFA.

5The state’s transitions are stored in a hash table.
8The stack is a static array; we assume a bound on the
maximum depth of the XML stream.

: EP:h?] @D

a LV N b | a

“.:[mhg]
4 [ot}%\er] '@D 4

b a b
* (s) X Cos 5 (5)

(a (b) (0

‘a

a

2 Da :

b

$X $X $X $X

Figure 6: The NFA (a) and the DFA (b) for //a/b/a/a/b. The NFA (c) and the DFA (with back edges
removed) (d) for //a/*/*/*/b: here the eager DFA has 25 = 32 states, while the lazy DFA, assuming the

DTD <!ELEMENT a (a*|b)>, has at most 9 states.

Single XPath Expression A linear XPath ex-
pression has the form P = po//p1// .../ /pr where
each p;is N1 /Ny/ ... /[Ny,,i=0,...,k, and each N;
is given by (1). We consider the following parame-
ters:

Parameter Meaning
k number of //’s
s alphabet size: | X |
n length of P: Y n;
m max # of %’s in each p;

For example if P = //a/+//a/*/b/a/*/a/b, then
k=2 (p =¢€ p = a/x, pp = af+/bfa/*/a/b),
s = 3 (2 = {a,byw}), n = 9 (node tests:
a,*,a,%,b,a,*,a,b), and m = 2 (we have 2 x’s in
p2). We prove:

Theorem 4.1 The DFA for a linear XPath expres-
sion has at most k + kns™ states, when k > 0, and
n + 1 states, when k = 0.

The details of the proof are deferred to the ap-
pendix. We first illustrate the theorem in the case
when there are no wild-cards (m = 0); then there
are at most k + kn states in the DFA. For exam-
ple, if p = //a/b/aja/b, then k = 1,n = 5: the
NFA and DFA shown in Fig. 6 (a) and (b), and
indeed the latter has 6 states. This generalizes to
//Ni/Ny/...[Ny,: the DFA has only n + 1 states,
and is an isomorphic copy of the NFA plus some back
transitions that correspond to the prefiz function in
Knuth-Morris-Pratt’s string matching algorithm [7].

When there are wild cards (m > 0), the theorem
gives an exponential upper bound. This is unavoid-
able: Fig. 6 (¢), (d) illustrate the NFA and DFA for

p = //a/x/%/x/b, and the DFA has 25 states. It
is easy to generalize this example and see that the
DFA for //a/*/.../*/bhas 2™*? states”, where m
is the number of *’s.

Thus, the theorem shows that the wild cards
(more precisely, the maximum number of wild cards
between two consecutive occurrences of //) are
the only source of exponential size for the eager
DFA in the case of one linear XPath expression.
One expects this number to be small in most
practical applications; arguably users write expres-
sions like /catalog//product//color rather than
/catalog//product/*/*/*/*/*/*/*/*/*/color.
Indeed, some implementations of XQuery already
translate a single linear XPath expressions into
DFAs [12].

Multiple XPath Expressions For multiple lin-
ear XPath expressions, the DFA grows exponentially
in their number.

Example 4.2 Consider four XPath expressions:

$X1 IN $R//book//figure
$X2 IN $R//table//figure
$X3 IN $R//chapter//figure
$X4 IN $R//note//figure

The eager DFA needs to remember what subset
of tags of {book,table, chapter,note} it has seen,
resulting in at least 2¢ states. Generalizing, we get:

Proposition 4.3 Consider p XPath expressions:
$x;, IN S$R//ay//b ... $X, IN $R//a;//b
where ai,...,ap,b are distinct tags. Then the DFA
has at least 2P states.®
"The theorem gives the upper bound: 1+ (m + 2)3™.

8 Although this requires p distinct tags, the result can be
shown with only 2 distinct tags, using standard techniques.

Examples like 4.2 are common in the applications
we consider, and rule out the eager DFA. The solu-
tion to this problem is to construct the DFA lazily,
discussed below.

Size of NFA tables In addition to the number of
DFA states, we also analyze the size of their internal
structure: the tables of NFA states. Given a set of p
XPath expressions, let k, n, s, m be the largest values
of the parameters in Th. 4.1 for each expression.
Then, we can prove using Th. 4.1:

Theorem 4.4 The mazximum size of an NFA table
in each DFA state is at most p(k + kns™).

4.2 The Lazy DFA

The lazy DFA is constructed at run-time, on de-
mand. Initially it has a single state (the initial
state), and whenever we attempt to make a transi-
tion into a missing state we compute it, and update
the transition. The hope is that only a small set of
the DFA states need to be computed.

This idea has been used before in text processing,
but it has never been applied to such large numbers
of expressions as required in our applications (e.g.
100,000): a careful analysis of the size of the lazy
DFA is needed to justify its feasibility. We prove two
results, giving upper bounds on the number of states
in the lazy DFA, that are specific to XML data, and
that exploit either the schema, or the data guide.
We stress, however, that neither the schema nor the
data guide need to be known in order to use the lazy
DFA, and only serve for the theoretical results.

Formally, let A; be the lazy DFA. Its states are
described by the following equation which should be
compared to Eq.(2):

states(A;) = {A(w)|w € Laata} (3)
Here Lg414 is the set of all root-to-leaf sequences
of tags in the input XML streams. Assuming that
the XML stream conforms to a schema (or DTD),
denote Lgchema all root-to-leaf sequences allowed by
the schema: we have Lg4tqa C Lschema C L.

We use graph schema [1, 4] to formalize our notion
of schema, where nodes are labeled with tags and
edges denote inclusion relationships. We call a graph
schema k-cyclic if the length of the longest simple
cycle is k. For example, the DTD:

<!ELEMENT book (chapter*)>

<!ELEMENT chapter (section*)>

<!ELEMENT section ((paral|table|note|figure)*)>
<!ELEMENT table ((table|text|note|figure)*)>
<!ELEMENT note ((note|text)*)>

is 1l-cyclic, because the only cycles in its graph
schema (shown in Fig. 7 (a)) are self-loops. Non-
recursive DTDs are 0O-cyclic. For 1-cyclic graph
schema we denote d the maximum number of loops

on any path, and D the number of nodes in its un-
folding®. In our example d = 2 and D = 13: the
unfolded graph schema is shown in Fig. 7 (b). For
a query tree, denote n its depth, i.e. the maximum
number of symbols on any path from root to a leaf
(this generalizes the parameter n in Sec. 4.1). We
prove the following result in the Appendix:

Theorem 4.5 Consider a 1-cyclic graph schema
with d,D, defined as above, and let P be a query
tree of maximum depth n. Then the lazy DFA has
at most D x n? states.

The result is surprising, because the number of
states does not depend on the number of XPath ex-
pressions. In Example 4.2 the depth is n = 2: for
the DTD above, the theorem guarantees at most
13 x 22 = 52 states in the lazy DFA, even if the
number of Xpath expressions increases to 100,000.
In practice, the depth is larger: for n = 10, the the-
orem guarantees < 1300 states. By contrast, the
eager DFA has > 2100000 gtates. Fig. 6 (d) shows
another example: of the 2° states in the eager DFA
only 9 are expanded in the lazy DFA.

Theorem 4.5 has many applications. First for
non-recursive DTDs (d = 0) the lazy DFA has at
most D states'®. Second, in data-oriented XML in-
stances, recursion is often restricted to hierarchies,
e.g. departments within departments, parts within
parts. Hence, their DTD is 1-cyclic, and d is usually
small. Finally, the theorem also covers applications
that handle documents from multiple DTDs (e.g. in
XML routing): here D is the sum over all DTDs,
while d is the maximum over all DTDs.

The theorem does not apply, however, to
document-oriented XML data. These have k-cyclic
DTDs for k£ > 1 : for example a table may oc-
cur within a footnote, and a footnote may occur
within a table. For such cases we give an upper
bound on the size of the lazy DFA in terms of Data
Guides [9]. The data guide is a special case of a
graph schema, with d = 0, hence Theorem 4.5 gives:

Corollary 4.6 Let G be the number of nodes in the
data guide of an XML stream. Then, for any query
tree P, the lazy DFA for P on that XML stream has
at most G states.

An empirical observation is that real XML data
tends to have small data guides, regardless of
its DTD. For example users occasionally place a
footnote within a table, or vice versa, but don’t

9The constant D may, in theory, be exponential in the
size of the schema because of the unfolding, but in practice
the shared tags typically occur at the bottom of the DTD
structure (see [18]), hence D is only modestly larger than the
number of tags in the DTD.

10This also follows directly from (3) since in this case
Lchema 18 finite and has D elements.

Figure 7: A graph schema for a DTD (a) and its

unfolding (b).

DTD Source | DTD Names (Element count in DTD,
1-cyclic, Data Size)
[lcyclic | MB
[synthetic] simple.dtd 12 Yes -
wuw_wapforun. org prov.dtd 3 Yes -
wuw.ebxml.org ebBPSS.dtd 29 Yes -
pir.georgetown.edu | protein.dtd 66 Yes 684
xnl.gsfc.nasa.gov nasa.dtd 108 No 24
UPenn Treebank treebank.dtd 249 No 56

Figure 8: Sources of data used in experiments.

nest such elements to arbitrary depth. All XML
data instances described in [13] have very small data
guides, except for Treebank [14], where the data
guide has G = 340,000 nodes.

Using the Schema or DTD If a Schema
or DTD is available, it is possible to special-
ize the XPath expressions and remove all #’s
and //’s: this is called query pruning in [8].
For example for the schema in Fig. 7 (a),
the expression //table//figure is pruned to
/book/chapter/section/(table)+/figure. This
is no substitute for computing the DFA lazily, and
should be treated orthogonally. We can prove that
the eager DFA of the pruned XPath expressions has
at least D times more states than the lazy DFA: for
example, the lazy (and eager) DFA for //* has only
one state, but if we first prune it with respect to a
graph schema with D nodes, the DFA has D states.

4.3 Validation of the Size of the Lazy DFA

We validated experimentally the size of the lazy
DFA for XML instances corresponding to about 20
publicly available DTDs, and one synthetic DTD.
We generated synthetic data for these DTDs!!. In
three cases we also had access to large, real XML in-
stances of a DTD. We generated three sets of queries
of depth » = 20, with 1,000, 10,000, and 100,000
XPath expressions'?, with 5% probabilities for both
the * and the //. We omit here the small and the

11 Using http://www.alphaworks. ibm.com/tech/xmlgenerator.

12We used the generator described in [2].

non-recursive DTDs, for which the lazy DFA was
very small. The remaining DTDs are described in
Fig. 8: three are 1-cyclic, two had a higher cyclicity
parameter, k; protein.dtd is non-recursive, but we
still report it because we had real data for it. We
also had real data for nasa.dtd and treebank.dtd.

Fig. 4.3(a) shows the number of states in the lazy
DFA for the synthetic data. The first four DTDs
are l-cyclic, or non-recursive, hence Theorem 4.5
applies. They had significantly less states than the
bound in the theorem; e.g. ebBPSS.dtd has 1058
states, while the bound is 116,000 (D = 29, d = 2,
n = 20). The last two DTDs were not 1-cyclic, and
neither Theorem 4.5 nor Corollary 4.6 applies (since
synthetic data has large data guides). In one case
(Treebank, 100,000 expressions) we ran out of mem-
ory.

Fig. 4.3(b) shows the same two DTDs (plus
protein.dtd), but with real data: it differs sig-
nificantly from the synthetic data. Real data has
small dataguides, and Corollary 4.6 applies: indeed
all lazy DFAs had a small, or at least manageable
number of states. Even here the theoretical upper
bound was never reached: Treebank has a data guide
with 340,000 nodes but the lazy DFA had at most
44,000. The reason why Fig. 4.3(b) differs so much
from (a) is that real data has small data guides, while
for synthetic data the size of the data guide is pro-
portional to the size of the data.

We also measured experimentally the average size
of the NFA tables in each DFA state and found it
to be around p/10, where p is the number of XPath
expressions (graph shown in the appendix). This is
much lower than the theoretical upper bound, Theo-
rem 4.4. These tables use most of the memory space
and we address them in Sec. 7. Finally, we mea-
sured the average size of the transition tables per
DFA state, and found it to be small (less than 40).

4.4 Memory Guarantees

Lazy DFAs offer guaranteed throughput, while The-
orem 4.5 and Corollary 4.6 offer space guarantees un-
der generous assumptions. When these assumptions
don’t hold (like for our synthetic data), we can use as
fall back an alternative evaluation method that guar-
antees space but not throughput. Two such methods
are xfilter [2] and xtrie [5], and both process the
XML stream by interpreting SAX events. Either
can be used in conjunction with a lazy DFA so as to
satisfy the following properties. (1) The combined
memory used by the lazy DFA-+fall-back is that of
the fall-back module plus a constant amount, M, de-
termined by the user. (2) Most of the SAX events
are processed only by the lazy DFA; at the limit, if
the lazy DFA takes less than M space, then it pro-
cesses all SAX events alone. (3) Each SAX event is
processed at most once by the lazy DFA and at most

Number of DFA States - SYNTHETIC Data

100000

@1k XPEs

10000/— m 10k XPEs

0100k XPEs

1000

100 —

10 — —

simple prov ebBPSS protein nasa treebank

(a)
Figure 9: Size of the lazy DFA for

once by the fall-back module (it may be processed by
both); this translates into a worst case throughput
that is slightly less than that of the fall-back module
alone.

We describe such a combined evaluation method
that is independent of any particular fall-back
method. To synchronize the lazy DFA and the fall-
back module, we use two stacks of SAX events,
S1 and S2, and a pointer p to their longest com-
mon prefix. S; contains all the currently open
tags: every start (element) is pushed into Sy, every
end (element) is popped from S; (and the pointer
p may be decreased too). Ss is a certain snapshot
of S7 in the past, and is updated as explained be-
low. Start processing the XML stream with the lazy
DFA, until it consumes the entire amount of mem-
ory allowed, M. At this point continue to run the
lazy DFA, but prohibit new states from being con-
structed. Whenever a transition is attempted into
a non-existing state, switch to the fall-back mod-
ule, as follows. Submit end(element) events to
the fall-back module, for all tags from the top of
S> to the common-prefix pointer, p, then submit
start (elements) from p to the top of S;. Continue
normal operation with the fall-back module until the
computation returns to the lazy DFA. At this point
we copy S1 into S (we only need to copy from p
to the top of S1), and continue operation in the lazy
DFA. The effect is that the lazy DFA processes some
top part of the XML tree, while the fall-back mod-
ule processes some subtrees: the two stacks are used
to help the fall-back move from one subtree to the
next.

We experimented with various datasets (the
graph for treebank is in the appendix) and found a
10%/90% rule: with only 10% of the states in the
lazy DFA one can process 90% of all SAX events:
only 10% need to be handled by the fall-back mod-
ule.

Number of DFA States - REAL Data

100000

D1k XPEs
10000—| m 10k XPES]
0100k XPEs
1000 —
100 1
10 —
protein nasa treebank

(b)

(a) synthetic data, and (b) real data.

5 The Stream IndeX (SIX)

An index for streaming data differs dramatically
from one for stored data: it needs to be only a small
fraction of the data (otherwise it consumes network
bandwidth), and needs to arrive just in time for the
application to use it. The Stream IndeX (SIX) de-
fined here is, to our knowledge, the first attempt to
index streaming data. A SIX consist of pairs of byte
offsets:
(beginOffset,end0ffset)

where beginOffset is the byte offset of some be-
gin tag, and endOffset of the corresponding end
tag (relative to the begin tag). Both numbers are
represented in binary, to keep the SIX small. The
SIX is computed only once, by the producer of the
XML stream, then send along with the XML stream
and used by every consumer of that stream (e.g. by
every router, in XML routing).

The SIX is sorted by beginOffset, allowing it
to arrive synchronously with the XML stream. The
system matches SIX entries with XML tags and, if
it decides to skip the current element then it uses
end0ffset to skip characters in the XML stream
without even parsing the content. This is a sig-
nificant saving because parsing alone has limited
throughput. The SIX module offers a single inter-
face: skip(k), where k > 0 denotes the number of
open XML elements that need to be skipped. Thus
skip(0) means “skip to the end of the most recently
opened XML element”. The example below illus-
trates the effect of a skip(1) call, issued after read-
ing <c>:

XML stream:

<a> <c> <d> </d> </c> <e> </e> <f>
I
skip(1)
parser:
<a> <c> <f>

Tt is easy to couple a SIX with a DFA. From the
transition table of a DFA state we can see what

transitions it expects. If a begin tag does not cor-
respond to any transitions then we issue a skip(0).
As we show in Sec. 6 this results in dramatic speed-
ups. Applications may have extra knowledge that
allows them to make more aggressive skips, and is-
sue skip(k) with k > 0.

The SIX is very robust: arbitrary entries may be
removed without compromising consistency. Entries
for very short elements are candidates for removal
because they provide little benefit. Very large ele-
ments may also be removed, as we explain below.
The SIX works with arbitrarily long (even infinite)
XML streams. After exceeding 232 bytes in the input
stream, beginOffset wraps around; the only con-
straint is that each window of 232-bytes in the data
has at least one entry in the SIX. endOffset does
not wrap around: elements longer than 232 bytes
cannot be represented in the SIX and are removed.

The SIX can be easily constructed either by the
application generating the XML stream or by some
other application that parses the entire stream. We
omit details for lack of space.

The effectiveness of the SIX depends on the selec-
tivity. Given a query tree P and an XML stream let
n be the total number of XML nodes, and let ng be
the number of selected nodes, i.e. that match at least
one variable in P. Define the selectivity as 8 = ng/n.
Examples: the selectivity of the XPath expression
//* is 1; the selectivity of /a/b/no-such-tag is 0
(assuming no-such-tag does not occur in the data);
referring to Fig.3, we have n = 8, ng = 4, hence
6 = 0.5. The maximum speed-up from a SIX is 1/6.
At one extreme, the expression /no-such-tag has
6 = 0, and may result in arbitrary large speed-ups,
since every XML packet is skipped entirely. At the
other extreme the SIX is ineffective when 6 =~ 1.

The presence of #’s and, especially, //’s may re-
duce the effectiveness of the SIX considerably, even
when 6 is small. For example the XPath expression
//no-such-tag has § = 0, but the SIX is ineffec-
tive since the system needs to inspect every single
tag while searching for no-such-tag. In order to in-
crease the SIX’ effectiveness, the *’s and //’s should
be eliminated, or at least reduced in number, by
specializing the XPath expressions w.r.t. the DTD
(using query prunming, see Sec. 4.2). With this in
mind, we used low probabilities for the *’s and //’s
in the experiments in Sec. 6.2.

6 Experiments

Our experiments are meant to validate the following:
(1) the throughput achieved by lazy DFA’s in stream
XML processing, and (2) the improvements obtained
from the Stream IndeX.

Our execution environment consists of a dual
750MHz SPARC V9 with 2048MB memory, running
SunOS 5.8. Our compiler is gee version 2.95.2, with-

out any optimization options. We used an XML
data generator from IBM!® and the XPath expres-
sion generator from [2]. We executed the throughput
experiments only once (since they had plenty of time
to stabilize) and executed the SIX experiments three
times, reporting the average. For comparison with
XFilter, we re-implemented it following [2]; we did
not implement list balancing.

6.1 Throughput

We ran our experiments on the NASA XML
dataset [16] and concatenated all the XML docu-
ments into one single file, which is about 25MB. The
query sets had 1000, 10000, 100000, and 1000000
XPath expressions (denoted 1k, 10k, 100k, and
1000k), with the probability of * and // equal to
0.1%, 1%, 10%, and 50% respectively: a total of 64
query sets. We report the throughput as a function
of each parameter, while keeping the other two con-
stant. For calibration and comparison we also report
the throughput for parsing the XML stream, and the
throughput of XFilter, described in [2].

Figure 10 shows the throughput as a function of
the number of XPath expressions. The most im-
portant observation is that in the stable state (after
processing the first 5-10MB of data) the through-
put was the same, about 5.4MB/s. We observed in
several other experiments with other datasets (not
shown here) that the throughput is constant, with
the only measurable exception in the case of query
trees with very low selectivity where the throughput
was slightly higher, because we optimized the tran-
sitions in the “sink state” (Sec. 3.1). We found the
constant throughput to be a very stable and pre-
dictable property. By contrast, the throughput of
XFilter decreased linearly with the number of XPath
expressions. Figure 11 shows the throughput as a
function of the probability of %, and of the probabil-
ity of // respectively. They show the same behavior
for the lazy DFA. XFilter’s performance does not
depend on these parameters.

The first 5MB-10MB of data in Fig. 10 represent
the warm-up phase, when most of the states in the
lazy DFA are constructed. The length of the warm-
up phase depends on the size of the lazy DFA that
is eventually generated. For the data in our experi-
ments, the lazy DFA had the same number of states
for 1k, 10k, 100k, and 1000k (91, 95, 95, and 95
respectively). However, the number of NFA tables
grows linearly with the number of XPath expressions
(Fig. 13), which explains the longer tail: even if few
states remain to be constructed, they slow down pro-
cessing. In our throughput experiments with other
datasets we observed that the lengths of the warm-
up phase is correlated to the number of states in the
lazy DFA.

13http://www.alphaworks.ibm.com/tech/xmlgenerator

Throughput for prob(*) = 0.1%, 1.0%, 10.0%, 50.0%
[100k XPEs, prob(//) = 10%]

100

10 ——parser

—=lazyDFA(0.1%)
/
0.1+

lazyDFA(1.0%)

—xfilter(0.1%)
-e-xfilter(1.0%)
—+ xfilter(10.0%)

lazyDFA(10.0%)
— lazyDFA(50.0%)

Throughput for prob(//) = 0.1%, 1.0%, 10.0%, 50.0%
[100k XPEs, prob(*) = 10%]

100

10 +

. a

4

——parser
~#-lazyDFA(0.1%)
lazyDFA(1.0%)
lazyDFA(10.0%)
— lazyDFA(50.0%)
—— xfilter(0.1%)

01+ e xfilter(1.0%)
—+=xfilter(10.0%)
0.01 xfilter(50.0%)
0.001
5MB 10MB 15MB 20MB 25MB

Total input size

Figure 11: Experiments illustrating the throughput.

0017 o filter(50.0%)
0.001
5MB 10MB 15MB 20MB 25MB
Total input size
Throughput for 1k, 10k, 100k, 1000k XPEs
[prob(*)=10%, prob(//)=10%]
100 ‘
=+ parser
10 -#-|azyDFA(1k)
? _— —+lazyDFA(10k)
1 ‘ ‘ ‘ ‘ lazyDFA(100K)
—lazyDFA(1000k)
014+ =¥ xfilter(1k)
’ . -e- xfilter(10k)
= xfilter(100k)
0.01 xfilter(1000k)
0.001 +
0.0001
5MB 10MB 15MB 20MB 25MB

Total input size

Figure 10: Experiments illustrating the throughput.
10k means 10,000, 100k means 100000 etc.

6.2 Stream IndeX

We evaluated the SIX on synthetic NITF data'*,
with 10000 XPath expressions using 0.2} probabil-
ities for both the // and the *’s (see Sec. 5 for a
justification). In order to vary the selectivity param-
eter 6 (Sec. 5), we made multiple copies of the NITF
DTD, and randomly assigned each XPath expression
to one such DTD: 6 decreases when the number of
copies increases. We generated about 50MB of XML
data, then copied it to obtain a 100MB data set. The
reason for the second copy is that we wanted to mea-
sure the SIX in the stable phase, while the lazy DFA
warms up too slowly when using a SIX, because it
sees only a small fragment of the data. The size of
complete SIX for the entire dataset was 6.7MB, or
about 6% of the XML data.

Fig. 6.2 (a) shows the throughput with a SIX,
and without a SIX, for all three selectivities. With-
out a SIX the throughput was constant at around
7.3MB/s (slightly higher than for the previous ex-
periments because of our optimization of the “sink
state” transitions), while with a SIX the through-
put increased significantly for low selectivities. For

Mhttp://www.nitf.org/site/nitf-documentation/

6 = 0.03 the throughput was about 27MB/s, hence
the speed-up is 3.7. Even slower selectivities in-
creased the throughput even further, and are not
shown here.

Next, we measured how much we can decrease
the SIX by removing entries corresponding to small
XML elements. Reducing the size is important for
a stream index, since it competes for network band-
width with the data stream. Fig. 6.2 (b) shows the
throughput as a function of the cut-off size for the
XML elements. The more elements are deleted from
the SIX, the smaller the throughput. However, the
SIX size also decreases, and does so much more dra-
matically. For example at the 2k data point, when
we deleted from the SIX all elements whose size is
< 2k bytes, the throughput decreases to 18.6MB/s
from a high of 27MB, but the size of the SIX de-
creases to a minuscule 522bytes, from a high of
6.7KB. Thus we can reduce the SIX more than ten
times, but only pay a 28% penalty in the through-
put.

7 Discussion

Recall from Sec. 4.3 that the NFA tables in the DFA
states grow linearly with the number of XPath ex-
pressions. During the warm-up phase this affects
both speed and space. We address these issues here,
and also discuss updates of XPath expressions.
Optimizing speed during warm-up We con-
sidered many alternative implementations for the
NFA tables. There are three operations done on
these sets: create, insert, and compare. For example
a complex data set might have 10,000 DFA states,
each containing a set of 30,000 NFA states and 50
transitions. Then, during warm-up phase we need
to create 50 x 10,000 = 500,000 new sets; insert
30,000 NFA states in each set; and compare, on av-
erage, 500,000 x 10,000/2 pairs of sets, of which
only 490,000 comparisons return true, the others
return false. We found that sorted arrays of point-
ers offered the best overall performance. An inser-
tion takes O(1) time, because we only sort the array

Throughput improvements from SIX (stable)

——Theta=3% (SIX)
~#-Theta=3%
—&—Theta=8% (SIX)
20 Theta=8%
¥=Theta=14% (SIX)
—o-Theta=14%

MB/s

55 60 65 70 75 80 85 90 95
XML stream (MB)

100 105

(a)

Effect of Decreasing the SIX Size

8000 30

—#-SIXsize —

7000 |
25
—&—throughput
6000

5000 -

4000 - 15

elements
MB/s

3000

2000 +

1000 +

Ok 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
size of XML elements deleted from SIX

(b)

Figure 12: Throughput improvement from the SIX (a), and the effect of decreasing the SIX size by deleting

“small” XML elements (b).

when we finish all insertions. We maintain a check-
sum for each array, and use it as a pre-filter for the
comparison: virtually all negative answers take O(1)
time. In addition, we build a hash table of all sets
with the checksums as key.

Optimizing space during warm-up We con-
sider releasing some of the sets of NFA tables, and
recompute them if needed: this may slow down the
warm-up phase, but will not affect the stable state.
We maintain in each DFA state a pointer to its pre-
decessor state (from which it was generated). When
the NFA table is needed, but has been released (a
miss), we re-compute it from the predecessor’s set;
if that is not available, then we go to its predecessor,
eventually reaching the initial DFA state for which
we always keep the NFA table. We are currently
implementing this method.

Updates We consider both online and offline to
the set of XPath expressions, and start with online.
When a new XPath expression is inserted we con-
struct its NFA, then create a new lazy DFA for the
union of this NFA and the old lazy DFA. The new
lazy DFA is very efficient to build (i.e. its warm-up
is fast) because it only combines two automata, one
of which is deterministic and the other very small.
When another XPath expression is inserted, then we
create a new lazy DFA. This results in a hierarchy
of lazy DFAs, each constructed from another lazy
DFA and one NFA. A state expansion at the top
of the hierarchy may cascade a sequence of expan-
sions throughout the hierarchy. Online deletions are
implemented by invalidation: reclaiming the mem-
ory used by the deleted XPath expressions requires
garbage-collection. Offline updates can be done one
a separate (offline) system, different from the pro-
duction system. We copy the current lazy DFA, A;,
on the offline system, and also copy there the new
query tree, P, with all updates incorporated. Then
we construct the eager DFA, A4, for P, but only ex-

pand states that have a corresponding state in A,
by maintaining a one-to-one correspondence from A,
to A; and only expanding a state when this corre-
spondence can be extended to the new state. When
completed, A; is moved to the online system and
processing resumes normally. A4 will not be larger
than A;; also, if there are only few updates, then Ay
will be approximately the same as A;, meaning there
is no warm-up cost for A4 on the online system.

8 Related Work

Two techniques for processing XPath expressions
have been proposed recently. In XFilter [2] a large
number of XPath expressions are interpreted with
what is essentially a highly optimized NFA. There is
a space guarantee which is proportional to the total
size of all XPath expressions. However, there is no
throughput guarantee, since the number of opera-
tions per input XML tag may, in the worst case, be
as high as the number of XPath expressions.

In the recently proposed XTrie [5], the XPath
expressions are preprocessed to find common sub-
strings, which are organized in a Trie. At run-time
an additional data structure is maintained in order
to keep track of the interaction between the sub-
strings. This technique works best when the XPath
expressions are ordered, i.e. branches are matched in
the XML document in the order listed in the query.
Like XFilter, the XTrie also gives a guaranteed up-
per bound for the total space used, and are more
efficient than XFilter.

In [17] the authors describe a technique for event
detection. Events are sets of atomic events, and they
trigger queries defined by other sets of events. The
technique here is also a variation on the Trie data
structure. This problem is complementary to ours:
we are concerned here about how to generate the
atomic events but leave to the application their in-

terpretation.

Reference [12] describes a general-purpose XML
query processor that, at the lowest level, uses an
event based processing model, and show how such
a model can be integrated with a highly optimized
XML query processor. We were influenced by [12] in
designing our stream processing model. Query pro-
cessors like [12] can benefit from an efficient low-level
stream processor. Specializing regular expressions
w.r.t. schemas is described in [8, 15].

9 Conclusion

We have described two complementary techniques
for evaluating large numbers of XPath expressions
over XML streams. Using lazy DFAs we can pro-
cess up to 1,000,000 XPath expressions with a guar-
anteed throughput approaching that of simple pars-
ing. Adding our Stream IndeX we achieve four times
higher throughput, or more than double of our ref-
erence parser.

The challenge in fast stream processing with
DFAs is that memory requirements have exponen-
tial bounds in the worst case. We proved use-
ful theoretical bounds under generous assumptions
and validated them experimentally. When these as-
sumptions don’t hold, worst case exponential size in-
creases are still possible (although we only witnessed
such size increases for synthetically-generated data).
For these cases, we have provided fall-back tech-
niques that allow lazy DFAs to be used efficiently in
all cases, although at some sacrifice of peak through-
put.

The Stream Index is, to our knowledge, the first
attempt to index streaming data as opposed to
stored data, and we found it to be very effective. We
also found it to be a robust, and flexible structure,
offering a large spectrum of space/speed trade-off.

Acknowledgment We thank Peter Buneman,
AnHai Doan, Zack Ives, and Arnaud Sahuguet for
their comments.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on
the Web : From Relations to Semistructured Data
and XML. Morgan Kaufmann, 1999.

[2] M. Altinel and M. Franklin. Efficient filtering of
XML documents for selective dissemination. In
Proceedings of VLDB, pages 53-64, Cairo, Egipt,
September 2000.

[3] Apache. Xerces
http://xml.apache.org.

C++ parser, 2001.

[4] P. Buneman, S. Davidson, M. Fernandez, and
D. Suciu. Adding structure to unstructured data.
In Proceedings of the International Conference on
Database Theory, pages 336-350, Deplhi, Greece,
1997. Springer Verlag.

[5] C. Chan, P. Felber, M. Garofalakis, and R. Ras-
togi. Efficient filtering of XML documents with
XPath expressiosn. In Proceedings of the Interna-
tional Conference on Data Engineering, 2002.

[6] J. Chen, D. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: a scalable continuous query system
for internet databases. In Proceedings of the
ACM/SIGMOD Conference on Management of
Data, pages 379-390, 2000.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, 1990.

[8] M. Fernandez and D. Suciu. Optimizing regular
path expressions using graph schemas. In Proceed-
ings of the International Conference on Data Engi-
neering, pages 14-23, 1998.

[9] R. Goldman and J. Widom. DataGuides: enabling
query formulation and optimization in semistruc-
tured databases. In Proceedings of Very Large Data
Bases, pages 436—445, September 1997.

[10] D. G. Higgins, R. Fuchs, P. J. Stoehr, and G. N.
Cameron. The EMBL data library. Nucleic Acids
Research, 20:2071-2074, 1992.

[11] J. Hopcroft and J. Ullman.
automata theory, languages,
Addison-Wesley, 1979.

[12] Z. Ives, A. Halevy, and D. Weld. An xml query
engine for network-bound data. Unpublished, 2001.

[13] H. Liefke and D. Suciu. XMill: an efficent com-
pressor for XML data. In Proceedings of SIGMOD,
pages 153-164, Dallas, TX, 2000.

[14] M. Marcus, B. Santorini, and M.A.Marcinkiewicz.
Building a large annotated corpus of English: the
Penn Treenbak. Computational Linguistics, 19,
1993.

[15] J. McHugh and J. Widom. Query optimization for
XML. In Proceedings of VLDB, pages 315-326, Ed-
inburgh, UK, September 1999.

[16] NASA’s astronomical data center. ADC XML re-
source page. http://xml.gsfc.nasa.gov/.

[17] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda.
Monitoring XML data on the web. In Proceedingso
of the ACM SIGMOD Conference on Management
of Data, pages 437-448, Santa Barbara, 2001.

[18] A. Sahuguet. Everything you ever wanted to know
about dtds, but were afraid to ask. In D. Suciu and
G. Vossen, editors, Proceedings of WebDB, pages
171-183. Sringer Verlag, 2000.

[19] A. Snoeren, K. Conley, and D. Gifford. Mesh-based
content routing using XML. In Proceedings of the
18th Symposium on Operating Systems Principles,
2001.

[20] J. Thierry-Mieg and R. Durbin. Syntactic Defini-
tions for the ACEDB Data Base Manager. Techni-
cal Report MRC-LMB xx.92, MRC Laboratory for
Molecular Biology, Cambridge,CB2 2QH, UK, 1992.

Introduction to
and computation.

A Appendix
A.1 Proof of Theorem 4.1

Proof: Let A be the NFA for p. Its set of states, @, has
n elements, in one-to-one correspondence with the sym-
bol occurrences in p, which gives a total order on these
states. Q can be partitioned into QoUQ1 U...UQy, with
the states in Q; = {gio, ¢i1,4s2, . - ., Gin; } corresponding
to the symbols in p;; we have im0,k i =1 The transi-
tions in A are: states ¢;o have self-loops, for i = 1,...,k;
there are € transitions from ¢; 1n,_, to g0, ¢ =1,...,k;
and there are normal transitions (labeled with o € X)
from g;(;_1) to ¢i;. Each state S in the DFA Ao defined
as S = A(w) for some w € ¥* (S C @), and we denote
Si=8NQ, i=0,1,...,k. Before counting the num-
ber of such states S we prove a few lemmas about the
structure of the sets S.

Lemma A.1 Let S = A(w) for some w € X*. If there
exists some qoj € S, for j = 0,...,m0 — 1, then S =

{g05}-

Proof: There are no loops at, and no ¢ transitions to
the states goo, go1, - - -, qoj, hence we have | w |= j. Since
there are no ¢ transitions from these states, we have S =

A(w) = {qo;} =

This enables us to separate the sets S = A(w) into
two categories: those that contain some qo;, j < no, and
those that don’t. As further clarification on these two
categories, notice that the state gon, does not occur in
any set of the first category, and, occurs in exactly one
set of the second category, namely {qong,qi0}, if £ > 0
(because of the ¢ transition between them), and {qon, },
if k = 0 respectively. There are exactly no sets S in
the first category. It remains to count the sets in the
second category, and we will show that there are at most
k + k(n — no)s™ such sets, when k > 0, and exactly one
when k£ = 0: then, the total is no + k + k(n — no)s™ <
k+nks™,whenk >0, andisno+1=n+1 when k = 0.
‘We will consider only sets S of the second kind from now
on. When k = 0, then the only such set is {qon, }, hence
we will only consider the case k£ > 0 in the sequel.

Lemma A.2 Let S = A(w). If q4e € S for somed > 0,
then for every i =1,...,d we have gio € S.

Proof: This follows from the fact the automaton A is
linear, hence in order to reach the state g4 the compu-
tation for w must go through the state g;0, and from the
fact that gio has a self loop with a wild card. m|

It follows that for every set S there exists some d s.t.
gio € S for every 1 < i < d and g0 € S for i > d. We
call d the depth of S.

Lemma A.3 Let S = A(w). If gae € S for somed > 0,
then for every i = 1,...,d — 1 and every j < mn;, if
we split w into wi.w2 where the length of w2 is j, then
gio € A(w1).

Proof: If the computation for w reaches gge, then it

must go through gio, ¢i1,...,qin;. Hence, if we delete

fewer than n; symbols from the end of w and call the
remaining sequence wy then the computation for w; will
reach, and possible pass g0, hence g;o € A(w1) because
of the selfloop at gio- O

We can finally count the maximum number of states
S = A(w). We fix a w for each such S (choosing one
nondeterministically) and further associate to S the fol-
lowing triple (d,q¢r,v): d is the depth; g € S is the
state with the largest r, i.e. V.g;; € S = j < r (in case
when there are several choices for ¢ we pick the one with
the largest t); and v is the sequence of the last r sym-
bols in w. We claim that the triple (d, g:r,v) uniquely
determines S. First we show that this claim proves the
theorem. Indeed there are k choices for d. For the oth-
ers, we consider separate the choices r = 0 and r > 0.
For r = 0 there is a single choice for g;» and v: namely
v is the empty sequence and t = d; for r > 0 there are
ni1 4+ n2 + ...+ ng <n—mng choices for g, and at most
s™ choices for v since these correspond to choosing sym-
bols for the wild cards on the path from ¢;1 to ¢:r. The
total is < k + k(n — no)s™, which, as we argued, suf-
fices to prove the theorem. It only remains to show that
the triple (d, ¢¢r, v) uniquely determines S. Consider two
states, S, S', resulting in the same triples (d, g», v). We
have S = A(w.v), S’ = A(w'.v) for some sequences u,u'.
It suffices to prove that § C S’ (the inclusion ' C S
is shown similarly). Let ¢;; € S. Clearly i < d (by
Lemma A.1), and j < r. Decompose v into vi.v2, where
vy contains the last j — 1 symbols in »: this is possi-
ble since v’s length is r > j. Since ¢;; € A(w.v) the
last j symbols in w.v correspond to a transition from g;o
to g;j. These last j symbols belong to v, because v’s
length is r > j, hence we can split v into v;.v2, with the
length of v2 equal to j, and there exists a path from g;o
to ¢i; spelling out the word v2. By Lemma A.3 we have
gio € A(w'.v1) and, following the same path from g0 to
gij we conclude that g;; € A(u'.v1.v2) = §'. m|

A.2 Proof of Theorem 4.5

Proof: Given an unfolded graph schema and L4 C X%,
we have:

Acschema = U Eschema (iE)

z€enodes

where Lschema (%) denotes all sequences of tags up to the
node z in the unfolded graph schema. Since the graph
schema is 1-cyclic, and has at most d nested loops, we
have:

Lschema (x) = {wo-a;nl AW .. a;nd.wd |
m121,---,md21} (4)
where a1,...,aq € ¥ and wo,...,wqg € B*. We use a

pumping lemma, to argue that, if we increase some m; be-
yond n (the depth of the query tree), then no new states
are generated by Eq.(3). Let u.a™.v € Lschema(T) s.t.
m > n. We will show that A,(u.a™.v) = Ap(u.a™.v).
Assume q¢ € Ap(u.a™v). Following the transitions in
A, determined by the sequence u.a™.v we notice that at
least one a in ¢™ must follow a selfloop (since n is the
depth). It follows that u.a™.v has the same computation

Average Number of NFA States per DFA state

100000

D1k XPEs
W 10k XPEs
0100k XPEs

10000

1000

100+

10+

Average Number of Transitions per DFA State

100
D1k XPEs
B 10k XPEs
0100k XPEs
10+ T T
1 ! L1l Lol
¥ N N = S i N N o
. \@Q @@) 4\\@ & 'D\bﬁ 2‘0&\ ‘_\ﬂﬁ \‘\é &
° T ¢ & & & & &
S N © o <
< &

Figure 13: Average size of the sets of NFA states,
and average size of the transition table

in A: just follow that loop an additional number of times,
hence ¢ € Anp(u.a™.v). Conversely, let ¢ € An(u.a™.v)
and consider the transitions in A determined by the se-
quence u.a™.v. Let ¢’ and ¢" be the beginning and end
states of the a™ segment. Since all transitions along the
path from ¢’ to ¢’ are either a or wild cards, it follows
that the distance form ¢’ to ¢" is at most n; moreover,
there is at least one self-loop along this path. Hence, a™
also determines a transition from ¢' to q".

As a consequence, there are at most n? sets in
{An(w) | w € Lschema(x)} (namely corresponding to all
possible choices of m; = 1,2,...,n, fori =1,...,d in
Eq.(4)). It follows that there are at most Dn? states in
Ay O

A.3 Additional Experimental Results
A.3.1 Lazy DFA Size

The two graphs in Figure 13 provide further experimen-
tal evidence on the size of the lazy DFA. Recall that each
state in the lazy DFA is identified by a set of states from
the underlying NFA. Storing this list of states for each
state in the lazy DFA is a major contributor to mem-
ory use in the system. The first graph shows that across

Number of SAX Events Requiring Fallback Methods
[Treebank data (100k)]

8000000

7000000 A

6000000

5000000

4000000

SAX Events

3000000

2000000

- \

0

0% 12% 23% 35% 46% 58% 69% 81% 92% 100%
DFA States Allowed (Percent of Total)

Figure 14: Number of SAX events requiring fallback
methods for lazy DFA limited to fixed number of
states.

our collection of datasets, the number of NFA states in a
lazy DFA state averaged about 10% of number of XPath
expressions evaluated.

Another measure of the complexity of the lazy DFA
is the number of transitions per lazy DFA state. The
second graph reports this averaged quantity for each
dataset.

A.3.2 Fallback Methods

Figure 14 shows the number of SAX events processed
by fallback methods when the lazy DFA is limited to a
fixed number of states. The fixed number of DFA states
is expressed as a percentage of the total required states
for processing the input data. For example, when 100%
of the lazy DFA states are allowed, then no SAX events
are processed by fallback methods. The point at 12%,
for example, shows that with only 12% of the lazy DFA
states most of the SAX events are handled by the DFA,
and only a few (less than 10%) by the fall-back method.

