
1

1

CSE544
SQL

Monday, April 5, 2004

2

Announcements

• Homework 1
– Everybody should have accounts by now

• Project on the Website
– Please check website, there is work for you !

• Course outline updated on the Website
– Reading assignments (more to come)

• SQL
– Lots of materials last lecture and this one !
– Make sure you understand it

3

Two Tough Examples

Store(sid, sname)
Product(pid, pname, price, sid)

Find all stores that sell only products with price > 100
(Equivalent formulation:
find all stores s.t. all their products have price > 100)

4

SELECT Store.name
FROM Store, Product
WHERE Store.sid = Product.sid
GROUP BY Store.sid, Store.name
HAVING 100 < min(Product.price)

SELECT Store.name
FROM Store
WHERE Store.sid NOT IN

(SELECT Product.sid
FROM Product
WHERE Product.price <= 100)

SELECT Store.name
FROM Store
WHERE

100 < ALL (SELECT Product.price
FROM product
WHERE Store.sid = Product.sid)

Your pick…

5

Two Tough Examples

Store(sid, sname)
Product(pid, pname, price, sid)

For each store, find the Product ID of its most expensive product

6

Two Tough Examples

SELECT Store.name, max(Product.price)
FROM Store, Product
WHERE Store.sid = Product.sid
GROUP BY Store.sid

SELECT Store.name, x.pid
FROM Store, Product x
WHERE Store.sid = x.sid and

x.price >=
ALL (SELECT y.price

FROM Product y
WHERE Store.sid = y.sid)

This is easy but doesn’ t do what we want:

Better:

But may
return
multiple pids

2

7

Two Tough Examples

SELECT Store.name, max(x.pid)
FROM Store, Product x
WHERE Store.sid = x.sid and

x.price >=
ALL (SELECT y.price

FROM Product y
WHERE Store.sid = y.sid)

GROUP BY Store.name

Finally, choose some pid arbitrarily, if there are many
with highest price:

8

NULLS in SQL

• Whenever we don’t have a value, we can put a NULL

• Can mean many things:
– Value does not exists

– Value exists but is unknown

– Value not applicable

– Etc.

• The schema specifies for each attribute if can be null (nullable
attribute) or not

• How does SQL cope with tables that have NULLs ?

9

Nulls

SELECT *
FROM Person
WHERE (age < 25) AND

(height > 6 OR weight > 190)

210

Weight

. . .

NULL20Joe Doe

HeightAgeName

10

Null Values

• If x= NULL then 4*(3-x)/7 is still NULL

• If x= NULL then x=“Joe” is UNKNOWN

• In SQL there are three boolean values:
FALSE = 0

UNKNOWN = 0.5

TRUE = 1

11

Null Values
• C1 AND C2 = min(C1, C2)

• C1 OR C2 = max(C1, C2)

• NOT C1 = 1 – C1

Rule in SQL: include only tuples that yield TRUE

SELECT *
FROM Person
WHERE (age < 25) AND

(height > 6 OR weight > 190)

E.g.
age=20
heigth=NULL
weight=200

12

Null Values

Unexpected behavior:

Some Persons are not included !

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

3

13

Null Values

Can test for NULL explicitly:
– x IS NULL
– x IS NOT NULL

Now it includes all Persons

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL

14

Outerjoins
Explicit joins in SQL:

Product(name, category)
Purchase(prodName, store)

Same as:

But Products that never sold will be lost !

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

15

Outerjoins
Left outer joins in SQL:

Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

16

PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

NULLOneClick

WizCamera

RitzCamera

WizGizmo

StoreName

Product Purchase

17

Outer Joins

• Left outer join:
– Include the left tuple even if there’s no match

• Right outer join:
– Include the right tuple even if there’s no match

• Full outer join:
– Include the both left and right tuples even if there’s no

match

18

Modifying the Database

Three kinds of modifications

• Insertions

• Deletions

• Updates

Sometimes they are all called “updates”

4

19

Insertions
General form:

Missing attribute → NULL.
May drop attribute names if give them in order.

INSERT INTO R(A1,…., An) VALUES (v1,…., vn)

INSERT INTO Purchase(buyer, seller, product, store)
VALUES (‘Joe’ , ‘Fred’ , ‘wakeup-clock-espresso-machine’ ,

‘The Sharper Image’)

Example: Insert a new purchase to the database:

20

Insertions

INSERT INTO PRODUCT(name)

SELECT DISTINCT Purchase.product
FROM Purchase
WHERE Purchase.date > “10/26/01”

The query replaces the VALUES keyword.
Here we insert many tuples into PRODUCT

21

Insertion: an Example

prodName is foreign key in Product.name

Suppose database got corrupted and we need to fix it:

gadgets100gizmo

categorylistPricename

225Smithcamera

80Smithgizmo

200Johncamera

pricebuyerNameprodName

Task: insert in Product all prodNames from Purchase

Product

Product(name, listPrice, category)
Purchase(prodName, buyerName, price)

Purchase

22

Insertion: an Example

INSERT INTO Product(name)

SELECT DISTINCT prodName
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

--camera

Gadgets100gizmo

categorylistPricename

23

Insertion: an Example

INSERT INTO Product(name, listPrice)

SELECT DISTINCT prodName, price
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

-225 ??camera ??

-200camera

Gadgets100gizmo

categorylistPricename

Depends on the implementation
24

Deletions

DELETE FROM PURCHASE

WHERE seller = ‘ Joe’ AND
product = ‘Brooklyn Bridge’

Factoid about SQL: there is no way to delete only a single

occurrence of a tuple that appears twice

in a relation.

Example:

5

25

Updates

UPDATE PRODUCT
SET price = price/2
WHERE Product.name IN

(SELECT product
FROM Purchase
WHERE Date =‘Oct, 25, 1999’);

Example:

26

Data Definition in SQL
So far we have see the Data Manipulation Language, DML
Next: Data Definition Language (DDL)

Data types:
Defines the types.

Data definition: defining the schema.

• Create tables
• Delete tables
• Modify table schema

Indexes: to improve performance

27

Data Types in SQL

• Characters:
– CHAR(20) -- fixed length
– VARCHAR(40) -- variable length

• Numbers:
– INT, REAL plus variations

• Times and dates:
– DATE, DATETIME (SQL Server only)

• To reuse domains:
CREATE DOMAIN address AS VARCHAR(55)

28

Creating Tables

CREATE TABLE Person(

name VARCHAR(30),
social-security-number INT,
age SHORTINT,
city VARCHAR(30),
gender BIT(1),
Birthdate DATE

);

Example:

29

Deleting or Modifying a Table
Deleting:

ALTER TABLE Person
ADD phone CHAR(16);

ALTER TABLE Person
DROP age;

Altering: (adding or removing an attribute).

What happens when you make changes to the schema?

Example:

DROP Person; Example: Exercise with care !!

30

Default Values

Specifying default values:

CREATE TABLE Person(
name VARCHAR(30),
social-security-number INT,
age SHORTINT DEFAULT 100,
city VARCHAR(30) DEFAULT ‘Seattle’ ,
gender CHAR(1) DEFAULT ‘?’ ,
Birthdate DATE

The default of defaults: NULL

6

31

Indexes
REALLY important to speed up query processing time.

Suppose we have a relation

Person (name, age, city)

Sequential scan of the file Person may take long

SELECT *
FROM Person
WHERE name = “Smith”

32

• Create an index on name:

• B+ trees have fan-out of 100s: max 4 levels !

Indexes

Smith ….….CharlesBettyAdam

33

Creating Indexes

CREATE INDEX nameIndex ON Person(name)

Syntax:

34

Creating Indexes

Indexes can be useful in range queries too:

B+ trees help in:

Why not create indexes on everything?

CREATE INDEX ageIndex ON Person (age)

SELECT *
FROM Person
WHERE age > 25 AND age < 28

35

Creating Indexes
Indexes can be created on more than one attribute:

SELECT *
FROM Person
WHERE age = 55 AND city = “Seattle”

Helps in:

SELECT *
FROM Person
WHERE city = “Seattle”

But not in:

CREATE INDEX doubleindex ON
Person (age, city)

Example:

SELECT *
FROM Person
WHERE age = 55

and even in:

36

The Index Selection Problem

• We are given a workload = a set of SQL queries
plus how often they run

• What indexes should we build to speed up the
workload ?

• FROM/WHERE clauses Ł favor an index
• INSERT/UPDATE clauses Ł discourage an

index
• Index selection = normally done by people,

recently done automatically (SQL Server)

7

37

Defining Views
Views are relations, except that they are not physically stored.

For presenting different information to different users

Employee(ssn, name, department, project, salary)

Payroll has access to Employee, others only to Developers

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = “Development”

38

A Different View
Person(name, city)
Purchase(buyer, seller, product, store)
Product(name, maker, category)

We have a new virtual table:
Seattle-view(buyer, seller, product, store)

CREATE VIEW Seattle-view AS

SELECT buyer, seller, product, store
FROM Person, Purchase
WHERE Person.city = “Seattle” AND

Person.name = Purchase.buyer

39

A Different View

SELECT name, store
FROM Seattle-view, Product
WHERE Seattle-view.product = Product.name AND

Product.category = “ shoes”

We can later use the view:

40

What Happens When We Query
a View ?

SELECT name, Seattle-view.store
FROM Seattle-view, Product
WHERE Seattle-view.product = Product.name AND

Product.category = “ shoes”

SELECT name, Purchase.store
FROM Person, Purchase, Product
WHERE Person.city = “Seattle” AND

Person.name = Purchase.buyer AND
Purchase.poduct = Product.name AND
Product.category = “shoes”

41

Types of Views

• Virtual views:
– Used in databases
– Computed only on-demand – slow at runtime
– Always up to date

• Materialized views
– Used in data warehouses
– Pre-computed offline – fast at runtime
– May have stale data

42

Updating Views
How can I insert a tuple into a table that doesn’t exist?

Employee(ssn, name, department, project, salary)

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = “Development”

INSERT INTO Developers
VALUES(“Joe” , “Optimizer”)

INSERT INTO Employee(ssn, name, department, project, salary)
VALUES(NULL, “Joe” , NULL, “Optimizer” , NULL)

If we make the
following insertion:

It becomes:

8

43

Non-Updatable Views

CREATE VIEW City-Store AS

SELECT Person.city, Purchase.store
FROM Person, Purchase
WHERE Person.name = Purchase.buyer

How can we add the following tuple to the view?

(“Seattle” , “Nine West”)

We don’t know the name of the person who made the purchase;
cannot set to NULL (why ?)

Person(name, city)
Purchase(buyer, seller, product, store)

44

Constraints in SQL

• A constraint = a property that we’d like our
database to hold

• The system will enforce the constraint by
taking some actions:
– forbid an update

– or perform compensating updates

45

Constraints in SQL

Constraints in SQL:

• Keys, foreign keys

• Attribute-level constraints

• Tuple-level constraints

• Global constraints: assertions

The more complex the constraint, the harder it is to check and
to enforce

simplest

Most
complex

46

Keys

OR:

CREATE TABLE Product (
name CHAR(30) PRIMARY KEY,
category VARCHAR(20))

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20)

PRIMARY KEY (name))

47

Keys with Multiple Attributes

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),
price INT,

PRIMARY KEY (name, category))

40GadgetGizmo

30

20

10

Price

PhotoGizmo

PhotoCamera

GadgetGizmo

CategoryName

48

Other Keys

CREATE TABLE Product (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (productID),
UNIQUE (name, category))

There is at most one PRIMARY KEY;
there can be many UNIQUE

9

49

Foreign Key Constraints

CREATE TABLE Purchase (
prodName CHAR(30)

REFERENCESProduct(name),
date DATETIME)

prodName is a foreign key to Product(name)
name must be a key in Product

Referential
integrity

constraints

50

PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

Product Purchase

51

Foreign Key Constraints

• OR

• (name, category) must be a PRIMARY
KEY

CREATE TABLE Purchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)

REFERENCES Product(name, category)

52
PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

Product Purchase

What happens during updates ?

Types of updates:

• In Purchase: insert/update

• In Product: delete/update

53

What happens during updates ?

• SQL has three policies for maintaining
referential integrity:

• Reject violating modifications (default)
• Cascade: after a delete/update do a

delete/update
• Set-null set foreign-key field to NULL

READING ASSIGNEMNT: 7.1.5, 7.1.6
54

Constraints on Attributes and
Tuples

• Constraints on attributes:
NOT NULL -- obvious meaning...
CHECK condition -- any condition !

• Constraints on tuples
CHECK condition

10

55

CREATE TABLE Purchase (
prodName CHAR(30)

CHECK (prodName IN
SELECT Product.name
FROM Product),

date DATETIME NOT NULL)

What
is the difference from

Foreign-Key ?

56

General Assertions

CREATE ASSERTION myAssert CHECK
NOT EXISTS(

SELECT Product.name
FROM Product, Purchase
WHERE Product.name = Purchase.prodName
GROUP BY Product.name
HAVING count(*) > 200)

57

Final Comments on Constraints

• Can give them names, and alter later
– Read in the book !!!

• We need to understand exactly when they
are checked

• We need to understand exactly what actions
are taken if they fail

58

Embedded SQL

• direct SQL (= ad-hoc SQL) is rarely used

• in practice: SQL is embedded in some
application code

• SQL code is identified by special syntax

59

Impedance Mismatch

• Example: SQL in C:
– C uses int, char[..], pointers, etc

– SQL uses tables

• Impedance mismatch = incompatible types

60

The Impedance Mismatch
Problem

Why not use only one language?

• Forgetting SQL: “we can quickly dispense with
this idea” [textbook, pg. 351].

• SQL cannot do everything that the host language
can do.

Solution: use cursors

11

61

Transactions

Address two issues:

• Access by multiple users
– Remember the “client-server” architecture: one

server with many clients

• Protection against crashes

62

Multiple users: single statements

Client 1:
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

Client 2:
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

Two managers attempt to do a discount.
Will it work ?

63

Multiple users: multiple
statements

Client 1: INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

Client 2: SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct

What’s wrong ? 64

Protection against crashes

Client 1:
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

What’s wrong ?

Crash !

65

Transactions

• Transaction = group of statements that must be executed
atomically

• Transaction properties: ACID
– ATOMICITY = all or nothing

– CONSISTENCY = leave database in consistent state

– ISOLATION = as if it were the only transaction in the system

– DURABILITY = store on disk !

66

Transactions in SQL

• In “ad-hoc” SQL:
– Default: each statement = one transaction

• In “embedded” SQL:
BEGIN TRANSACTION

[SQL statements]

COMMIT or ROLLBACK (=ABORT)

12

67

Transactions: Serializability

Serializability = the technical term for
isolation

• An execution is serial if it is completely
before or completely after any other
function’s execution

• An execution is serializable if it equivalent
to one that is serial

• DBMS can offer serializability guarantees

68

Serializability

• Enforced with locks, like in Operating Systems !

• But this is not enough:

LOCK A
[write A=1]
UNLOCK A
. . .
. . .
. . .
. . .
LOCK B
[write B=2]
UNLOCK B

LOCK A
[write A=3]
UNLOCK A
LOCK B
[write B=4]
UNLOCK B

User 1 User 2

What is wrong ?

time

69

Serializability

• Solution: two-phase locking
– Lock everything at the beginning
– Unlock everything at the end

• Read locks: many simultaneous read locks
allowed

• Write locks: only one write lock allowed
• Insert locks: one per table

70

Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions (default):
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

Reading assignment: chapter 8.6

