

Outline

- Overview of a RDBMS
- Storing data: disks and files - Chapter 9
- Types of Indexes - Chapter 8.3
- B-trees - Chapter 10
- Hash-tables - Chapter 11

What Should a DBMS Do?

- Store large amounts of data
- Process queries efficiently
- Allow multiple users to access the database concurrently and safely.
- Provide durability of the data.
- How will we do all this??

Disk

- The unit of disk I/O = $\underline{\text { block }}$
- Typically 1 block $=4 \mathrm{k}$
- Used with a main memory buffer

The Mechanics of Disk

Important Disk Access

Characteristics
Disk latency =
$=$ seek time + rotational latency + transfer time

- Seek time:
- e.g. $\min =2.2 \mathrm{~ms}, \max =15.5 \mathrm{~ms}, \operatorname{avg}=9.1 \mathrm{~ms}$
- Rotational latency:
- e.g. $\mathrm{avg}=4.17 \mathrm{~ms}$
- Transfer rate
- E.g. 13MB/s

How Much Storage for $\$ 200$

RAIDs

- = "Redundant Array of Independent Disks" - Was "inexpensive" disks
- Idea: use more disks, increase reliability
- Recall:
- Database recovery helps after a systems crash, not after a disk crash
- 6 ways to use RAIDs. More important:
- Level 4: use N-1 data disks, plus one parity disk
- Level 5: same, but alternate which disk is the parity
- Level 6: use Hamming codes instead of parity

Buffer Management in a DBMS

- Need a table of <frame\#, pageid> pairs

Buffer Manager

- Page request --> read it in a free frame
- pin_count = how many processes requested it pinned
- dirty flag = if the page in the frame has been changed
- Replacement policies:
- LRU, Clock, MRU, etc.
- Only consider frames with pin_count=0

Buffer Manager	
Why not use the Operating System for the task??	
- DBMS may be able to anticipate access patterns	
- Hence, may also be able to perform prefetching	
- DBMS needs the ability to force pages to disk.	

Managing Free Blocks

- By the OS
- By the RDBMS (typical: why ?)
- Linked list of free blocks
- Bit map

Files of Records

Types of files:

- Heap file - unordered
- Sorted file
- Clustered file - sorted, plus a B-tree

Will discuss heap files only; the others are similar, only sorted by the key

Heap Files

Page Formats

Issues to consider

- 1 page $=$ fixed size (e.g. 8 KB$)$
- Records:
- Fixed length
- Variable length
- Record id = RID
- Typically RID = (PageID, SlotNumber)

Why do we need RID's in a relational DBMS ?
18

Page Formats

Fixed-length records: packed representation
Slot 1 Slot 2

					Free space
N					

Problems?
19

Record Formats

Fixed-length records --> all fields have fixed length

Field 1	Field 2	\ldots	\ldots	Field K

- When records are very large
- Or even medium size: saves space in blocks
- Commercial RDBMS avoid this

Modifications: Insertion

- File is unsorted (= heap file)
- add it to the end (easy J)
- File is sorted:
- Is there space in the right block ?
- Yes: we are lucky, store it there
- Is there space in a neighboring block ?
- Look 1-2 blocks to the left/right, shift records
- If anything else fails, create overflow block

Overflow Blocks

- After a while the file starts being dominated by overflow blocks: time to reorganize

Modifications: Deletions

- Free space in block, shift records
- Maybe be able to eliminate an overflow block
- Can never really eliminate the record, because others may point to it
- Place a tombstone instead (a NULL record)

Modifications: Updates

- If new record is shorter than previous, easy J
- If it is longer, need to shift records, create overflow blocks

Record Formats: Fixed Length

- Information about field types same for all records in a file; stored in system catalogs.
- Finding i 'th field requires scan of record.
- Note the importance of schema information!

Indexes

- Search key = can be any set of fields
- not the same as the primary key, nor a key
- Index = collection of data entries
- Data entry for key k can be:
- The actual record with key k
- (k, RID)
- (k, list-of-RIDs)

Index Classification

- Primary/secondary
- Primary = may reorder data according to index
- Secondary = cannot reorder data
- Clustered/unclustered
- Clustered = records close in the index are close in the data
- Unclustered = records close in the index may be far in the data
- Dense/sparse
- Dense = every key in the data appears in the index
- Sparse $=$ the index contains only some keys
- B+ tree / Hash table / ...

Primary Index

- Sparse index

Primary Index with Duplicate
Keys
- Sparse index: pointer to lowest search key in each block:

- Search for 20

Primary Index

- File is sorted on the index attribute
- Dense index: sequence of (key,pointer) pairs

Primary Index with Duplicate

Keys

- Dense index:

34

Secondary Indexes

- To index other attributes than primary key
- Always dense (why ?)

Clustered/Unclustered

- Primary indexes = usually clustered
- Secondary indexes = usually unclustered

Secondary Indexes

- Applications:
- index other attributes than primary key
- index unsorted files (heap files)
- index clustered data

Applications of Secondary Indexes

- Secondary indexes needed for heap files
- Also for Clustered data:

Company(name, city), Product(pid, maker)

Composite Search Keys

Composite Search Keys: Search
on a combination of fields.

- Equality query: Every field value is equal to a constant value. E.g. wrt <sal,age> index:
- age $=20$ and sal $=75$
- Range query: Some field value is not a constant. E.g.: - age $=20$; or age $=20$ and sal > 10

Examples of composite key indexes using lexicographic order.

B+ Trees

- Search trees
- Idea in B Trees:
- make 1 node = 1 block
- Idea in B+ Trees:
- Make leaves into a linked list (range queries are easier)

B+ Tree Example

B+ Tree Design

- How large d ?
- Example:
- Key size $=4$ bytes
- Pointer size $=8$ bytes
- Block size $=4096$ byes
- $2 \mathrm{~d} \times 4+(2 \mathrm{~d}+1) \times 8<=4096$
- $\mathrm{d}=170$

B+ Trees in Practice

- Typical order: 100. Typical fill-factor: 67%. - average fanout $=133$
- Typical capacities:
- Height 4: $133^{4}=312,900,700$ records
- Height 3: $133^{3}=2,352,637$ records
- Can often hold top levels in buffer pool:
- Level $1=1$ page $=8$ Kbytes
- Level $2=133$ pages $=1$ Mbyte
- Level $3=17,689$ pages $=133$ MBytes

Insertion in a B+ Tree

Insert (K, P)

- Find leaf where K belongs, insert
- If no overflow (2 d keys or less), halt
- If overflow ($2 \mathrm{~d}+1$ keys), split node, insert in parent:

- When root splits, new root has 1 key only

Insertion in a B+ Tree

Insertion in a B+ Tree
Now insert 25

Insertion in a B+ Tree
But now have to split !

In Class

- Suppose the B+ tree has depth 4 and degree $d=200$
- How many records does the relation have (maximum)?
- How many index blocks do we need to read and/or write during:
- A key lookup
- An insertion
- A deletion

Hash Tables

- Secondary storage hash tables are much like main memory ones
- Recall basics:
- There are n buckets
- A hash function $\mathrm{f}(\mathrm{k})$ maps a key k to $\{0,1, \ldots, \mathrm{n}-1\}$
- Store in bucket $f(k)$ a pointer to record with key k
- Secondary storage: bucket = block, use overflow blocks when needed

Hash Table Example

- Assume 1 bucket (block) stores 2 keys + pointers
- $\mathrm{h}(\mathrm{e})=0$
- $\mathrm{h}(\mathrm{b})=\mathrm{h}(\mathrm{f})=1$
- $\mathrm{h}(\mathrm{g})=2$
- $\mathrm{h}(\mathrm{a})=\mathrm{h}(\mathrm{c})=3$

Here: $h(x)=x \bmod 4$

Searching in a Hash Table

- Search for a:
- Compute h(a)=3
- Read bucket 3
- 1 disk access

${ }^{66}$

Insertion in Hash Table

- Place in right bucket, if space
- E.g. $h(d)=2$

Hash Table Performance

- Excellent, if no overflow blocks
- Degrades considerably when number of keys exceeds the number of buckets (I.e. many overflow blocks).
- More overflow blocks may be needed

Insertion in Hash Table

- Create overflow block, if no space
- E.g. $h(k)=1$

0
1

2

3

Extensible Hash Table

- Allows has table to grow, to avoid performance degradation
- Assume a hash function h that returns numbers in $\left\{0, \ldots, 2^{\mathrm{k}}-1\right\}$
- Start with $\mathrm{n}=2^{\mathrm{i}} \ll 2^{\mathrm{k}}$, only look at first i most significant bits

Extensible Hash Table

- E.g. $i=1, n=2^{i}=2, k=4$

- Note: we only look at the first bit (0 or 1)

Insertion in Extensible Hash
Table

- Insert 1110

Insertion in Extensible Hash
 Table

- Now insert 1010

- Need to extend table, split blocks
- i becomes 2

Insertion in Extensible Hash Table

Insertion in Extensible Hash Table

- After splitting the block

Extensible Hash Table

- How many buckets (blocks) do we need to touch after an insertion ?
- How many entries in the hash table do we need to touch after an insertion?

Performance Extensible Hash Table

- No overflow blocks: access always one read
- BUT:
- Extensions can be costly and disruptive
- After an extension table may no longer fit in memory

Linear Hash Table

- Idea: extend only one entry at a time
- Problem: $\mathrm{n}=$ no longer a power of 2
- Let i be such that $2^{\mathrm{i}}<=\mathrm{n}<2^{\mathrm{i}+1}$
- After computing $\mathrm{h}(\mathrm{k})$, use last i bits:
- If last i bits represent a number > n, change msb from 1 to 0 (get a number <= n)

Linear Hash Table Example

- Insert 1000: overflow blocks...

Linear Hash Table Extension

Linear Hash Table Example

- $\mathrm{n}=3$

Linear Hash Tables

- Extension: independent on overflow blocks
- Extend $\mathrm{n}:=\mathrm{n}+1$ when average number of records per block exceeds (say) 80%

Linear Hash Table Extension

- From $\mathrm{n}=3$ to $\mathrm{n}=4$ finished
- Extension from n=4 to $\mathrm{n}=5$ (new bit)
- Need to touch every single block (why ?)

