
1

1

CSE 544: Lectures 13 and 14
Storing Data, Indexes

Monday, 5/10/2004

Wednesday, 5/12/2004

2

Outline

• Overview of a RDBMS

• Storing data: disks and files - Chapter 9

• Types of Indexes - Chapter 8.3

• B-trees - Chapter 10

• Hash-tables - Chapter 11

3

What Should a DBMS Do?

• Store large amounts of data

• Process queries efficiently

• Allow multiple users to access the database
concurrently and safely.

• Provide durability of the data.

• How will we do all this??
4

Generic Architecture

Query compiler/optimizer

Execution engine

Index/record mgr.

Buffer manager

Storage manager

storage

User/
Application

Query
update

Query execution
planRecord,

index
requests

Page
commands

Read/write
pages

Transaction manager:
•Concurrency control
•Logging/recovery

Transaction
commands

5

The Memory Hierarchy

Main Memory = Disk Cache

Processor Cache

Disk

Tape

Volatile

Persistent

6

Disk

• The unit of disk I/O = block
– Typically 1 block = 4k

• Used with a main memory buffer

2

7

The Mechanics of Disk
Mechanical characteristics:
• Rotation speed (e.g. 7200RPM)
• Number of platers (e.g. 5)
• Number of tracks (<=10000)
• Number of bytes/track(e.g.105)

Important:
• Logical R/W unit: block

typical 2KB - 32KB

Platters

Spindle

Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

8

Important Disk Access
Characteristics

• Seek time:
– e.g. min=2.2ms, max=15.5ms, avg=9.1ms

• Rotational latency:
– e.g. avg = 4.17ms

• Transfer rate
– E.g. 13MB/s

Disk latency =
= seek time + rotational latency + transfer time

Disk latency =
= seek time + rotational latency + transfer time

9

How Much Storage for $200

10

RAIDs

• = “Redundant Array of Independent Disks”
– Was “ inexpensive” disks

• Idea: use more disks, increase reliability
• Recall:

– Database recovery helps after a systems crash, not after
a disk crash

• 6 ways to use RAIDs. More important:
– Level 4: use N-1 data disks, plus one parity disk
– Level 5: same, but alternate which disk is the parity
– Level 6: use Hamming codes instead of parity

Buffer Management in a DBMS

• Need a table of <frame#, pageid> pairs

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

12

Buffer Manager

• Page request --> read it in a free frame
• pin_count = how many processes requested

it pinned
• dirty flag = if the page in the frame has

been changed

• Replacement policies:
– LRU, Clock, MRU, etc.
– Only consider frames with pin_count=0

3

13

Buffer Manager

Why not use the Operating System for the task??

- DBMS may be able to anticipate access patterns
- Hence, may also be able to perform prefetching
- DBMS needs the ability to force pages to disk.

14

Managing Free Blocks

• By the OS

• By the RDBMS (typical: why ?)
– Linked list of free blocks

– Bit map

15

Files of Records

Types of files:

• Heap file - unordered

• Sorted file

• Clustered file - sorted, plus a B-tree

Will discuss heap files only; the others are
similar, only sorted by the key

16

Heap Files

Header
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Linked list of pages:
Data
page

Data
page

Full pages

Pages with some free space

17

Heap Files

Data
page

Data
page

Data
page

Better: directory of pages

Directory

Header

18

Page Formats

Issues to consider

• 1 page = fixed size (e.g. 8KB)

• Records:
– Fixed length

– Variable length

• Record id = RID
– Typically RID = (PageID, SlotNumber)

Why do we need RID’s in a relational DBMS ?

4

19

Page Formats

Fixed-length records: packed representation

Free space N

Slot NSlot 2Slot 1

Problems ?

20

Page Formats

Free space

Slot directory

Variable-length records

21

Record Formats

Fixed-length records --> all fields have fixed length

Field K.Field 2Field 1

22

Record Formats

Field K.Field 2Field 1

Variable length records

Record header

Remark: NULLS require no space at all (why ?)

23

Spanning Records Across Blocks

• When records are very large

• Or even medium size: saves space in blocks

• Commercial RDBMS avoid this

block
header

block
header

R1 R2 R2 R3

24

LOB

• Large objects
– Binary large object: BLOB

– Character large object: CLOB

• Supported by modern database systems

• E.g. images, sounds, texts, etc.

• Storage: attempt to cluster blocks together

5

25

Modifications: Insertion

• File is unsorted (= heap file)
– add it to the end (easy J)

• File is sorted:
– Is there space in the right block ?

• Yes: we are lucky, store it there

– Is there space in a neighboring block ?
• Look 1-2 blocks to the left/right, shift records

– If anything else fails, create overflow block

26

Overflow Blocks

• After a while the file starts being dominated
by overflow blocks: time to reorganize

Blockn-1 Blockn Blockn+1

Overflow

27

Modifications: Deletions

• Free space in block, shift records

• Maybe be able to eliminate an overflow
block

• Can never really eliminate the record,
because others may point to it
– Place a tombstone instead (a NULL record)

28

Modifications: Updates

• If new record is shorter than previous, easy J

• If it is longer, need to shift records, create
overflow blocks

Record Formats: Fixed Length

• Information about field types same for all
records in a file; stored in systemcatalogs.

• Finding i’ th field requires scan of record.
• Note the importance of schema information!

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Indexes
• Search key = can be any set of fields

– not the same as the primary key, nor a key

• Index = collection of data entries

• Data entry for key k can be:
– The actual record with key k
– (k, RID)
– (k, list-of-RIDs)

6

31

Index Classification

• Primary/secondary
– Primary = may reorder data according to index

– Secondary = cannot reorder data

• Clustered/unclustered
– Clustered = records close in the index are close in the data

– Unclustered = records close in the index may be far in the data

• Dense/sparse
– Dense = every key in the data appears in the index

– Sparse = the index contains only some keys

• B+ tree / Hash table / …

32

Primary Index

• File is sorted on the index attribute

• Dense index: sequence of (key,pointer) pairs

40

30

20

10

80

70

60

50

20

10

40

30

60

50

80

70

33

Primary Index

• Sparse index

70

50

30

10

150

130

110

90

20

10

40

30

60

50

80

70

34

Primary Index with Duplicate
Keys

• Dense index:

40

30

20

10

80

70

60

50

10

10

20

10

20

20

40

30

35

Primary Index with Duplicate
Keys

• Sparse index: pointer to lowest search key
in each block:

• Search for 20

30

20

10

10

10

10

20

10

20

20

40

30

20 is
here...

...but
need to
search

here too

36

• Better: pointer to lowest new search key in
each block:

• Search for 20

• Search for 15 ? 35 ?

Primary Index with Duplicate
Keys

40

30

20

10

80

70

60

50

10

10

20

10

30

30

50

40

20 is
here...

...ok to
search

from here

30

30

7

37

Secondary Indexes

• To index other attributes than primary key

• Always dense (why ?)

20

20

10

10

30

30

30

20

30

20

20

30

20

10

30

10

38

Clustered/Unclustered

• Primary indexes = usually clustered

• Secondary indexes = usually unclustered

Clustered vs. Unclustered Index

Data entries
(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

40

Secondary Indexes

• Applications:
– index other attributes than primary key

– index unsorted files (heap files)

– index clustered data

41

Applications of Secondary Indexes

• Secondary indexes needed for heap files

• Also for Clustered data:

Company(name, city), Product(pid, maker)
Select city
From Company, Product
Wherename=maker

and pid=“p045”

Select city
From Company, Product
Wherename=maker

and pid=“p045”

Select pid
From Company, Product
Wherename=maker

and city=“Seattle”

Select pid
From Company, Product
Wherename=maker

and city=“Seattle”

Company 1 Company 2 Company 3

Products of company 1 Products of company 2 Products of company 3

Composite Search Keys

• Composite Search Keys: Search
on a combination of fields.
– Equality query: Every field

value is equal to a constant
value. E.g. wrt <sal,age>
index:

• age=20 and sal =75
– Range query: Some field

value is not a constant. E.g.:
• age =20; or age=20 and

sal > 10

sue 13 75

bob

cal

joe 12

10

20

8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

8

43

B+ Trees

• Search trees

• Idea in B Trees:
– make 1 node = 1 block

• Idea in B+ Trees:
– Make leaves into a linked list (range queries are

easier)

44

• Parameter d = the degree

• Each node has >= d and <= 2d keys (except root)

• Each leaf has >=d and <= 2d keys:

B+ Trees Basics

24012030

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

605040

40 50 60

Next leaf

45

B+ Tree Example

80

6020 120 140100

15 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

30 < 40 ≤ 40

46

Searching a B+ Tree

• Exact key values:
– Start at the root

– Proceed down, to the leaf

• Range queries:
– As above

– Then sequential traversal

Select name
From people
Whereage = 25

Select name
From people
Whereage = 25

Select name
From people
Where20 <= age
and age <= 30

Select name
From people
Where20 <= age
and age <= 30

47

B+ Tree Design

• How large d ?

• Example:
– Key size = 4 bytes

– Pointer size = 8 bytes

– Block size = 4096 byes

• 2d x 4 + (2d+1) x 8 <= 4096

• d = 170

B+ Trees in Practice

• Typical order: 100. Typical fill-factor: 67%.
– average fanout = 133

• Typical capacities:
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 MBytes

9

49

Insertion in a B+ Tree

Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, keep K3 too in right node
• When root splits, new root has 1 key only

p5

K5

P4P3P2P1

K4K2 K3

P0

K1

P2P1

K2

P0

K1

p5P4

K5

P3

K4

parent
K3

parent

50

Insertion in a B+ Tree

80

6020 120 140100

15 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

51

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 9019

After insertion

52

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 9019

Now insert 25

53

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 504025 3020 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

After insertion

50

54

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 504025 3020 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

But now have to split !

50

10

55

Insertion in a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

After the split

50

40 5030

56

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

Delete 30

50

40 5030

57

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 40 60 65 80 85 9019

After deleting 30

50

5040

May change to
40, or not

58

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 40 60 65 80 85 9019

Now delete 25

50

5040

59

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 20 6560 85 9080

10 15 18 20 40 60 65 80 85 9019

After deleting 25
Need to rebalance
Rotate

50

5040

60

Deletion from a B+ Tree

80

30 6019 120 140100

15 1810 2019 6560 85 9080

10 15 18 20 40 60 65 80 85 9019

Now delete 40

50

5040

11

61

Deletion from a B+ Tree

80

30 6019 120 140100

15 1810 2019 6560 85 9080

10 15 18 20 60 65 80 85 9019

After deleting 40
Rotation not possible
Need to mergenodes

50

50

62

Deletion from a B+ Tree

80

6019 120 140100

15 1810 20 5019 6560 85 9080

10 15 18 20 60 65 80 85 9019

Final tree

50

63

In Class

• Suppose the B+ tree has depth 4 and degree d=200

• How many records does the relation have (maximum) ?

• How many index blocks do we need to read and/or write
during:
– A key lookup
– An insertion
– A deletion

64

Hash Tables

• Secondary storage hash tables are much like
main memory ones

• Recall basics:
– There are n buckets
– A hash function f(k) maps a key k to { 0, 1, …, n-1}
– Store in bucket f(k) a pointer to record with key k

• Secondary storage: bucket = block, use
overflow blocks when needed

65

• Assume 1 bucket (block) stores 2 keys +
pointers

• h(e)=0

• h(b)=h(f)=1

• h(g)=2

• h(a)=h(c)=3

Hash Table Example

c

a

g

f

b

e
0

1

2

3

Here: h(x) = x mod 4Here: h(x) = x mod 4
66

• Search for a:

• Compute h(a)=3

• Read bucket 3

• 1 disk access

Searching in a Hash Table

c

a

g

f

b

e
0

1

2

3

12

67

• Place in right bucket, if space

• E.g. h(d)=2

Insertion in Hash Table

c

a

d

g

f

b

e
0

1

2

3

68

• Create overflow block, if no space
• E.g. h(k)=1

• More over-
flow blocks
may be needed

Insertion in Hash Table

c

a

d

g

f

b

e
0

1

2

3

k

69

Hash Table Performance

• Excellent, if no overflow blocks

• Degrades considerably when number of
keys exceeds the number of buckets (I.e.
many overflow blocks).

70

Extensible Hash Table

• Allows has table to grow, to avoid
performance degradation

• Assume a hash function h that returns
numbers in {0, …, 2k – 1}

• Start with n = 2i << 2k , only look at first i
most significant bits

71

Extensible Hash Table

• E.g. i=1, n=2i=2, k=4

• Note: we only look at the first bit (0 or 1)

0(010)

1(011)

i=1 1

1

0
1

72

Insertion in Extensible Hash
Table

• Insert 1110
0(010)

1(110)

1(011)

i=1 1

1

0
1

13

73

Insertion in Extensible Hash
Table

• Now insert 1010

• Need to extend table, split blocks

• i becomes 2

0(010)

1(110), 1(010)

1(011)

i=1 1

1

0
1

74

Insertion in Extensible Hash
Table

0(010)

10(10)

10(11)

i=2 1

2

00
01
10
11

11(10) 2

75

Insertion in Extensible Hash
Table

• Now insert 0000, then 0101

• Need to split block

0(000), 0(101)

0(010)

10(10)

10(11)

i=2 1

2

00
01
10
11

11(10) 2

76

Insertion in Extensible Hash
Table

• After splitting the block

00(00)

00(10)

10(10)

10(11)

i=2

2

2

00
01
10
11

11(10) 2

01(01) 2

77

Extensible Hash Table

• How many buckets (blocks) do we need to
touch after an insertion ?

• How many entries in the hash table do we
need to touch after an insertion ?

78

Performance Extensible Hash
Table

• No overflow blocks: access always one read

• BUT:
– Extensions can be costly and disruptive

– After an extension table may no longer fit in
memory

14

79

Linear Hash Table

• Idea: extend only one entry at a time
• Problem: n= no longer a power of 2
• Let i be such that 2i <= n < 2i+1

• After computing h(k), use last i bits:
– If last i bits represent a number > n, change msb

from 1 to 0 (get a number <= n)

80

Linear Hash Table Example

• n=3

(11)00

(01)00

(10)10

i=2

00
01
10

(01)11 BIT FLIP

81

Linear Hash Table Example

• Insert 1000: overflow blocks…

(11)00

(01)00

(10)10

i=2

00
01
10

(01)11

(10)00

82

Linear Hash Tables

• Extension: independent on overflow blocks

• Extend n:=n+1 when average number of
records per block exceeds (say) 80%

83

Linear Hash Table Extension

• From n=3 to n=4

• Only need to touch
one block (which one ?)

(11)00

(01)00

(10)10

i=2

00
01
10

(01)11
(01)11

(01)11

i=2

00
01
10

(10)10

(11)00

(01)00

n=11 84

Linear Hash Table Extension

• From n=3 to n=4 finished

• Extension from n=4
to n=5 (new bit)

• Need to touch every
single block (why ?) (01)11

i=2

00
01
10

(10)10

(11)00

(01)00

11

