
1

CSE 544:
Relational Operators, Sorting

Wednesday, 5/12/2004

Relational Algebra
• Operates on relations, i.e. sets

– Later: we discuss how to extend this to bags

• Five operators:
– Union: ∪
– Difference: -
– Selection: σ
– Projection: Π
– Cartesian Product: ×

• Derived or auxiliary operators:
– Intersection, complement
– Joins (natural,equi-join, theta join, semi-join)
– Renaming: ρ

1. Union and 2. Difference

• R1 ∪ R2

• Example:
ActiveEmployees ∪∪∪∪ RetiredEmployees

• R1 – R2

• Example:
AllEmployees – RetiredEmployees

What about Intersection ?

• It is a derived operator

• R1 ∩ R2 = R1 – (R1 – R2)

• Also expressed as a join (will see later)

• Example
UnionizedEmployees ∩∩∩∩ RetiredEmployees

3. Selection

• Returns all tuples which satisfy a condition

• Notation: σc(R)

• Examples
σσσσSalary > 40000 (Employee)

σσσσname = “ Smithh” (Employee)

• The condition c can be =, <, ≤, >, ≥, <>

4. Projection
• Eliminates columns, then removes duplicates

• Notation: Π A1,…,An(R)

• Example: project social-security number and
names:
ΠΠΠΠ SSN, Name (Employee)
Output schema: Answer(SSN, Name)

2

5. Cartesian Product

• Each tuple in R1 with each tuple in R2

• Notation: R1 × R2

• Example:
Employee ×××× Dependents

• Very rare in practice; mainly used to
express joins

Cartesian Product Example

Employee
Name SSN
John 999999999
Tony 777777777

Dependents
EmployeeSSN Dname
999999999 Emily
777777777 Joe

Employee x Dependents
Name SSN EmployeeSSN Dname
John 999999999 999999999 Emily
John 999999999 777777777 Joe
Tony 777777777 999999999 Emily
Tony 777777777 777777777 Joe

Renaming

• Changes the schema, not the instance

• Notation: ρ B1,…,Bn (R)

• Example:
ρρρρLastName, SocSocNo (Employee)
Output schema: Answer(LastName, SocSocNo)

Renaming Example

Employee
Name SSN
John 999999999
Tony 777777777

LastName SocSocNo
John 999999999
Tony 777777777

ρLastName, SocSocNo (Employee)

Natural Join
• Notation: R1 |×| R2

• Meaning: R1 |×| R2 = ΠA(σC(R1 × R2))

• Where:
– The selection σC checks equality of all common

attributes
– The projection eliminates the duplicate common

attributes

Employee Dependents =
ΠΠΠΠName, SSN, Dname(σσσσ SSN=SSN2(Employee x ρρρρSSN2, Dname(Dependents))

Natural Join Example

Employee
Name SSN
John 999999999
Tony 777777777

Dependents
SSN Dname
999999999 Emily
777777777 Joe

Name SSN Dname
John 999999999 Emily
Tony 777777777 Joe

3

Natural Join

• R= S=

• R |×| S=

VZ

ZY

ZX

YX

BA

VZ

WV

UZ

CB

WVZ

VZY

UZY

VZX

UZX

CBA

Natural Join

• Given the schemas R(A, B, C, D), S(A, C, E),
what is the schema of R |×| S ?

• Given R(A, B, C), S(D, E), what is R |×| S ?

• Given R(A, B), S(A, B), what is R |×| S ?

Theta Join

• A join that involves a predicate

• R1 |×| θ R2 = σ θ (R1 × R2)

• Here θ can be any condition: =, <, ≠, ≤, > ≥

Eq-join

• A theta join where θ is an equality

• R1 |×| A=B R2 = σ A=B (R1 × R2)

• Example:
Employee |×| SSN=SSN Dependents

• Most useful join in practice

Semijoin

• R |× S = Π A1,…,An (R |×| S)

• Where A1, …, An are the attributes in R

• Example:
Employee |× Dependents

Semijoins in Distributed
Databases

• Semijoins are used in distributed databases

.

NameSSN

Dname

.

AgeSSN
Employee

Dependents

network

Employee |×| ssn=ssn (σ age>71 (Dependents))Employee |×| ssn=ssn (σ age>71 (Dependents))

T = Π SSN σ age>71 (Dependents)
R = Employee |× T

Answer = R |×| Dependents

4

Complex RA Expressions

Person Purchase Person Product

σname=fred σname=gizmo

Π pidΠ ssn

seller-ssn=ssn

pid=pid

buyer-ssn=ssn

Π name
Operations on Bags

A bag = a set with repeated elements

Relational Engines work on bags, not sets !

All operations need to be defined carefully on bags

• { a,b,b,c} ∪{ a,b,b,b,e,f,f} ={ a,a,b,b,b,b,b,c,e,f,f}

• { a,b,b,b,c,c} – { b,c,c,c,d} = { a,b,b,d}

• σC(R): preserve the number of occurrences

• ΠA(R): no duplicate elimination

• Cartesian product, join: no duplicate elimination

Logical Operators in the Bag
Algebra

• Union, intersection, difference

• Selection σ
• Projection Π
• Join

• Duplicate elimination δ
• Grouping γ
• Sorting τ

Relational
Algebra
(on bags)

Example

SELECT city, count(*)
FROM sales
GROUP BY city
HAVING sum(price) > 100

SELECT city, count(*)
FROM sales
GROUP BY city
HAVING sum(price) > 100

sales

γ city, sum(price) � p, count(*) � c

σ p > 100

Π city, c

T(city,p,c)

Physical Operators

SELECT S.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

Q.city=‘seattle’ AND
Q.phone > ‘5430000’

SELECT S.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

Q.city=‘seattle’ AND
Q.phone > ‘5430000’

Query Plan:
• logical tree
• implementation
choice at every
node
• scheduling of
operations.

Purchase Person

Buyer=name

City=‘seattle’ phone>’5430000’

buyer

(Simple Nested Loops)

σ

(Table scan) (Index scan)

Some operators are from relational
algebra, and others (e.g., scan)
are not.

Architecture of a Database Engine

Parse Query

Select Logical Plan

Select Physical Plan

Query Execution

SQL query

Query
optimization

Logical
plan

Physical
plan

5

Cost Parameters

In database systems the data is on disks, not in main memory

The cost of an operation = total number of I/Os
Cost parameters:

• B(R) = number of blocks for relation R
• T(R) = number of tuples in relation R
• V(R, a) = number of distinct values of attribute a

Cost Parameters

• Clustered table R:
– Blocks consists only of records from this table
– B(R) ≈ T(R) / blockSize

• Unclustered table R:
– Its records are placed on blocks with other tables
– When R is unclustered: B(R) ≈ T(R)

• When a is a key, V(R,a) = T(R)
• When a is not a key, V(R,a)

Cost

Cost of an operation =
number of disk I/Os needed to:
– read the operands
– compute the result

Cost of writing the result to disk is not included on the following
slides

Question: the cost of sorting a table with B blocks ?
Answer:

Scanning Tables

• The table is clustered:
– Table-scan: if we know where the blocks are

– Index scan: if we have a sparse index to find the
blocks

• The table is unclustered
– May need one read for each record

Sorting While Scanning

• Sometimes it is useful to have the output
sorted

• Three ways to scan it sorted:
– If there is a primary or secondary index on it,

use it during scan

– If it fits in memory, sort there

– If not, use multi-way merge sort

Cost of the Scan Operator

• Clustered relation:
– Table scan:

• Unsorted: B(R)
• Sorted: 3B(R)

– Index scan
• Unsorted: B(R)
• Sorted: B(R) or 3B(R)

• Unclustered relation
– Unsorted: T(R)
– Sorted: T(R) + 2B(R)

6

Sorting

• Problem: sort 1 GB of data with 1MB of RAM.

• Where we need this:
– Data requested in sorted order (ORDER BY)

– Needed for grouping operations

– First step in sort-merge join algorithm

– Duplicate removal

– Bulk loading of B+-tree indexes.

2-Way Merge-sort:
Requires 3 Buffers in RAM

• Pass 1: Read 1MB, sort it, write it.

• Pass 2, 3, …, etc.: merge two runs, write them

Main memory
buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

Runs of length L
Runs of length 2L

Two-Way External Merge Sort

• Assume block size is B = 4Kb

• Step 1 Ł runs of length L = 1MB

• Step 2 Ł runs of length L = 2MB

• Step 3 Ł runs of length L = 4MB

•

• Step 10 Ł runs of length L = 1GB (why ?)

Need 10 iterations over the disk data to sort 1GB

Can We Do Better ?

• Hint:

We have 1MB of main memory, but only used
12KB

Cost Model for Our Analysis

• B: Block size (= 4KB)

• M: Size of main memory (= 1MB)

For later use (won’ t need now):

• N: Number of records in the file

• R: Size of one record

External Merge-Sort

• Phase one: load M bytes in memory, sort
– Result: runs of length M bytes (1MB)

M bytes of main memory DiskDisk

.
M/R records

7

Phase Two

• Merge M/B – 1 runs into a new run (250 runs)

• Result: runs of length M (M/B – 1) bytes (250MB)

M bytes of main memory DiskDisk

.
Input M/B

Input 1

Input 2
. . . .

Output

Phase Three

• Merge M/B – 1 runs into a new run

• Result: runs of length M (M/B – 1)2 records
(250*250MB = 62.5GB – larger than the file)

M bytes of main memory DiskDisk

.
Input M/B

Input 1

Input 2
. . . .

Output

Need 3 iterations over the disk data to sort 1GB

Cost of External Merge Sort

• Number of passes:

• How much data can we sort with 10MB RAM?
– 1 pass Ł 10MB data

– 2 passes Ł 25GB data (M/B = 2500)

• Can sort everything in 2 or 3 passes !

� �� �Size/Mlog1 1M/B−+

External Merge Sort

• The xsor t tool in the XML toolkit sorts
using this algorithm

• Can sort 1GB of XML data in about 8
minutes

