

Question in Class

Product(pname, cname) $|\times|$ Company(cname, city)

- 1000000 products
- 1000 companies

How many comparisons do the following physical operators take if the data is in main memory ?

- Nested loop join comparisons =
- Sort and merge $=$ merge-join comparisons $=$
- Hash join comparisons =

Question in Class

Logical operator:
Product(pname, cname) $|\times|$ Company(cname, city)
Propose three physical operators for the join, assuming the tables are in main memory:
1.
2.
3.
3.

Cost Parameters

In database systems the data is on disks, not in main memory
The cost of an operation = total number of I/Os Cost parameters:

- $B(R)=$ number of blocks for relation R
- $T(R)=$ number of tuples in relation R
- $\mathrm{V}(\mathrm{R}, \mathrm{a})=$ number of distinct values of attribute a

Cost Parameters

- Clustered table R:
- Blocks consists only of records from this table
$-B(R) \approx T(R) /$ blockSize

Cost

Cost of an operation $=$
number of disk I/Os needed to:

- read the operands
- compute the result
- Unclustered table R:
- Its records are placed on blocks with other tables
- When R is unclustered: $B(R) \approx T(R)$
- When a is a key, $\mathrm{V}(\mathrm{R}, \mathrm{a})=\mathrm{T}(\mathrm{R})$
- When a is not a key, $\mathrm{V}(\mathrm{R}, \mathrm{a})$

Cost of writing the result to disk is not included on the following slides

Question: the cost of sorting a table with B blocks ? Answer:

Nested Loop Joins

- Tuple-based nested loop R|x|S
for each tuple r in R do for each tuple s in S do if r and s join then output (r, s)
- Cost: $T(R) B(S)$ when S is clustered
- Cost: $T(R) T(S)$ when S is unclustered

Nested Loop Joins

- We can be much more clever
- Question: how would you compute the join in the following cases? What is the cost?
$-\mathrm{B}(\mathrm{R})=1000, \mathrm{~B}(\mathrm{~S})=2, \mathrm{M}=4$
$-\mathrm{B}(\mathrm{R})=1000, \mathrm{~B}(\mathrm{~S})=3, \mathrm{M}=4$
- $B(R)=1000, B(S)=6, M=4$

Nested Loop Joins

- Block-based Nested Loop Join
- Cost:
- Read S once: cost B(S)
- Outer loop runs B(S)/(M-2) times, and each time need to read R : costs $\mathrm{B}(\mathrm{S}) \mathrm{B}(\mathrm{R}) /(\mathrm{M}-2)$
- Total cost: $\mathrm{B}(\mathrm{S})+\mathrm{B}(\mathrm{S}) \mathrm{B}(\mathrm{R}) /(\mathrm{M}-2)$
- Notice: it is better to iterate over the smaller relation first
- $\mathrm{R}|x| \mathrm{S}: \mathrm{R}=$ outer relation, $\mathrm{S}=$ inner relation

Nested Loop Joins

Merge-join

Join R $|x| S$

- Start by sorting both R and S on the join attribute: - Cost: $4 B(R)+4 B(S)$ (because need to write to disk)
- Read both relations in sorted order, match tuples - Cost: $\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$
- Difficulty: many tuples in R may match many in S
- If at least one set of tuples fits in M , we are OK
- Otherwise need nested loop, higher cost
- Total cost: $5 \mathrm{~B}(\mathrm{R})+5 \mathrm{~B}(\mathrm{~S})$
- Assumption: $\mathrm{B}(\mathrm{R})<=\mathrm{M}^{2}, \mathrm{~B}(\mathrm{~S})<=\mathrm{M}^{2}$

Merge-join

Join R $|x| S$

- If the number of tuples in R matching those in S is small (or vice versa) we can compute the join during the merge phase
- Total cost: 3B(R)+3B(S)
- Assumption: $\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})<=\mathrm{M}^{2}$

Partitioned Hash-based Algorithms

- Idea: partition a relation R into buckets, on disk
- Each bucket has size approx. $\mathrm{B}(\mathrm{R}) / \mathrm{M}$

- Does each bucket fit in main memory ? - Yes if $B(R) / M<=M$, i.e. $B(R)<=M^{2}$

Hash Based Algorithms for δ

- Recall: $\delta(\mathrm{R})=$ duplicate elimination
- Step 1. Partition R into buckets
- Step 2. Apply δ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: $B(R)<=M^{2}$
-

Hash Based Algorithms for γ

- Recall: $\gamma(\mathrm{R})=$ grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: $\mathrm{B}(\mathrm{R})<=\mathrm{M}^{2}$

Partitioned Hash Join
R $\|\times\|$ S
- Step 1:
- Hash S into M buckets
- send all buckets to disk
- Step 2
- Hash R into M buckets
- Send all buckets to disk
- Step 3
- Join every pair of buckets

Partitioned Hash Join

- Cost: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$
- Assumption: $\min (\mathrm{B}(\mathrm{R}), \mathrm{B}(\mathrm{S}))<=\mathrm{M}^{2}$

Hybrid Hash Join Algorithm

- Partition S into k buckets
t buckets S_{1}, \ldots, S_{t} stay in memory
k-t buckets $\mathrm{S}_{\mathrm{t}+1}, \ldots, \mathrm{~S}_{\mathrm{k}}$ to disk
- Partition R into k buckets
- First t buckets join immediately with S
- Rest k-t buckets go to disk
- Finally, join k-t pairs of buckets:
$\left(\mathrm{R}_{\mathrm{t}+1}, \mathrm{~S}_{\mathrm{t}+1}\right),\left(\mathrm{R}_{\mathrm{t}+2}, \mathrm{~S}_{\mathrm{t}+2}\right), \ldots,\left(\mathrm{R}_{\mathrm{k}}, \mathrm{S}_{\mathrm{k}}\right)$

Hybrid Join Algorithm

- How to choose k and t ?
- Choose k large but s.t.
$\mathrm{k}<=\mathrm{M}$
- Choose t / k large but s.t. $\mathrm{t} / \mathrm{k} * \mathrm{~B}(\mathrm{~S})<=\mathrm{M}$
- Moreover: $\quad t / k * B(S)+k-t<=M$
- Assuming $\mathrm{t} / \mathrm{k} * \mathrm{~B}(\mathrm{~S}) \gg \mathrm{k}-\mathrm{t}: \mathrm{t} / \mathrm{k}=\mathrm{M} / \mathrm{B}(\mathrm{S})$

Indexed Based Algorithms

- Recall that in a clustered index all tuples with the same value of the key are clustered on as few blocks as possible

$$
\begin{array}{lll}
\text { a a a } & \text { a a a a a } & \text { a a } \\
\hline
\end{array}
$$

Hybrid Join Algorithm

- How many I/Os?
- Cost of partitioned hash join: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$
- Hybrid join saves 2 I/Os for a t / k fraction of buckets
- Hybrid join saves $2 \mathrm{t} / \mathrm{k}(\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})) \quad \mathrm{I} / \mathrm{Os}$
- Cost: $(3-2 \mathrm{t} / \mathrm{k})(\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S}))=(3-2 \mathrm{M} / \mathrm{B}(\mathrm{S}))(\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S}))$

Index Based Selection

- Selection on equality: $\sigma_{a=v}(R)$
- Clustered index on $\mathrm{a}:$ cost $=\mathrm{B}(\mathrm{R}) / \mathrm{V}(\mathrm{R}, \mathrm{a})$
- Unclustered index on $\mathrm{a}: \operatorname{cost}=\mathrm{T}(\mathrm{R}) / \mathrm{V}(\mathrm{R}, \mathrm{a})$

Index Based Selection

- Example: $B(R)=2000, T(R)=100,000, V(R, a)=20$, compute the cost of $\sigma_{a=v}(R)$
- Cost of table scan:
- If R is clustered: $B(R)=2000 I / O$ s
- If R is unclustered: $\mathrm{T}(\mathrm{R})=100,000 \mathrm{I} / \mathrm{Os}$
- Cost of index based selection:
- If index is clustered: $\mathrm{B}(\mathrm{R}) / \mathrm{V}(\mathrm{R}, \mathrm{a})=100$
- If index is unclustered: $\mathrm{T}(\mathrm{R}) / \mathrm{V}(\mathrm{R}, \mathrm{a})=5000$
- Notice: when $\mathrm{V}(\mathrm{R}, \mathrm{a})$ is small, then unclustered index is useless

Index Based Join

- $\mathrm{R}|\times| \mathrm{S}$
- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S
- Assume R is clustered. Cost:
- If index is clustered: $B(R)+T(R) B(S) / V(S, a)$
- If index is unclustered: $B(R)+T(R) T(S) / V(S, a)$

Index Based Join

- Assume both R and S have a sorted index ($\mathrm{B}+$ tree) on the join attribute
- Then perform a merge join (called zig-zag join)
- Cost: $\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$

Example

Product(pname, maker), Company(cname, city)
Assume:
Clustered index: Product.pname, Company.cname
Unclustered index: Product.maker, Company.city

Example

Product(pname, maker), Company(cname, city)
Select Product.pname
From Product, Company
Where Product.maker=Company.cname and Company.city $=$ "Seattle"

- How do we execute this query ?

Example
Product(pname, maker), Company(cname, city)
Assume:
Clustered index: Product.pname, Company.cname
Unclustered index: Product.maker, Company.city

Logical Plan:

Which Plan is Best ?

Plan 1: $\mathrm{T}($ Company $) / \mathrm{V}($ Company,city $) \times \mathrm{T}($ Product $) / \mathrm{V}($ Product,maker $)$ Plan 2a: B(Company) + 3B(Product)
Plan 2b: B (Company) +T (Product)

Case 1: $\quad \begin{aligned} & \text { Plan } 1=2.5 * 20=50 \\ & \\ & \\ & \\ & \\ & \\ & P l a n \\ & \text { Plan } 3=500+3000=3500 \\ & \end{aligned}$
Case 2: \quad Plan $1=250 * 20=5000$

Lessons

- Need to consider several physical plan - even for one, simple logical plan
- No magic "best" plan: depends on the data
- In order to make the right choice
- need to have statistics over the data
- the B's, the T's, the V's

