
1

CSE 544:
Physical Operators

Monday, 5/17/2004

Question in Class

Logical operator:

Product(pname, cname) |×| Company(cname, city)

Propose three physical operators for the join, assuming the tables
are in main memory:

1.

2.

3.

Question in Class

Product(pname, cname) |×| Company(cname, city)

• 1000000 products
• 1000 companies

How many comparisons do the following physical operators take if the data is in
main memory ?

• Nested loop join comparisons =
• Sort and merge = merge-join comparisons =
• Hash join comparisons =

Cost Parameters

In database systems the data is on disks, not in main memory

The cost of an operation = total number of I/Os
Cost parameters:

• B(R) = number of blocks for relation R
• T(R) = number of tuples in relation R
• V(R, a) = number of distinct values of attribute a

Cost Parameters

• Clustered table R:
– Blocks consists only of records from this table
– B(R) ≈ T(R) / blockSize

• Unclustered table R:
– Its records are placed on blocks with other tables
– When R is unclustered: B(R) ≈ T(R)

• When a is a key, V(R,a) = T(R)
• When a is not a key, V(R,a)

Cost

Cost of an operation =
number of disk I/Os needed to:
– read the operands
– compute the result

Cost of writing the result to disk is not included on the following
slides

Question: the cost of sorting a table with B blocks ?
Answer:

2

Nested Loop Joins

• Tuple-based nested loop R |×| S

• Cost: T(R) B(S) when S is clustered

• Cost: T(R) T(S) when S is unclustered

for each tuple r in R do

for each tuple s in S do

if r and s join then output (r,s)

for each tuple r in R do

for each tuple s in S do

if r and s join then output (r,s)

Nested Loop Joins

• We can be much more clever

• Question: how would you compute the join in the
following cases ? What is the cost ?

– B(R) = 1000, B(S) = 2, M = 4

– B(R) = 1000, B(S) = 3, M = 4

– B(R) = 1000, B(S) = 6, M = 4

Nested Loop Joins

• Block-based Nested Loop Join

for each (M-2) blocks bs of S do

for each block br of R do

for each tuple s in bs

for each tuple r in br do

if r and s join then output(r,s)

for each (M-2) blocks bs of S do

for each block br of R do

for each tuple s in bs

for each tuple r in br do

if r and s join then output(r,s)

Nested Loop Joins

. . .

. . .

R & S
Hash table for block of S

(M-2 pages)

Input buffer for R Output buffer

. . .

Join Result

Nested Loop Joins

• Block-based Nested Loop Join
• Cost:

– Read S once: cost B(S)
– Outer loop runs B(S)/(M-2) times, and each

time need to read R: costs B(S)B(R)/(M-2)
– Total cost: B(S) + B(S)B(R)/(M-2)

• Notice: it is better to iterate over the smaller
relation first

• R |×| S: R=outer relation, S=inner relation

Merge-join

Join R |×| S
• Start by sorting both R and S on the join attribute:

– Cost: 4B(R)+4B(S) (because need to write to disk)

• Read both relations in sorted order, match tuples
– Cost: B(R)+B(S)

• Difficulty: many tuples in R may match many in S
– If at least one set of tuples fits in M, we are OK
– Otherwise need nested loop, higher cost

• Total cost: 5B(R)+5B(S)
• Assumption: B(R) <= M2, B(S) <= M2

3

Merge-join

Join R |×| S

• If the number of tuples in R matching those
in S is small (or vice versa) we can compute
the join during the merge phase

• Total cost: 3B(R)+3B(S)

• Assumption: B(R) + B(S) <= M2

Partitioned Hash-based
Algorithms

• Idea: partition a relation R into buckets, on disk

• Each bucket has size approx. B(R)/M

• Does each bucket fit in main memory ?
– Yes if B(R)/M <= M, i.e. B(R) <= M2

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hash
function

h M-1

Partitions

1

2

M-1

. . .

1

2

B(R)

Hash Based Algorithms for δ

• Recall: δ(R) = duplicate elimination

• Step 1. Partition R into buckets

• Step 2. Apply δ to each bucket (may read in
main memory)

• Cost: 3B(R)

• Assumption:B(R) <= M2

Hash Based Algorithms for γ

• Recall: γ(R) = grouping and aggregation

• Step 1. Partition R into buckets

• Step 2. Apply γ to each bucket (may read in
main memory)

• Cost: 3B(R)

• Assumption:B(R) <= M2

Partitioned Hash Join

R |×| S
• Step 1:

– Hash S into M buckets
– send all buckets to disk

• Step 2
– Hash R into M buckets
– Send all buckets to disk

• Step 3
– Join every pair of buckets

Hash-Join
• Partition both relations using

hash fn h: R tuples in
partition i will only match S
tuples in partition i.

v Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.

Partitions
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h M-1

Partitions

1

2

M-1

. . .

4

Partitioned Hash Join

• Cost: 3B(R) + 3B(S)

• Assumption: min(B(R), B(S)) <= M2

Hybrid Hash Join Algorithm

• Partition S into k buckets
t buckets S1 , …, St stay in memory
k-t buckets St+1, …, Sk to disk

• Partition R into k buckets
– First t buckets join immediately with S
– Rest k-t buckets go to disk

• Finally, join k-t pairs of buckets:
(Rt+1,St+1), (Rt+2,St+2), …, (Rk,Sk)

Hybrid Join Algorithm

• How to choose k and t ?
– Choose k large but s.t. k <= M

– Choose t/k large but s.t. t/k * B(S) <= M

– Moreover: t/k * B(S) + k-t <= M

• Assuming t/k * B(S) >> k-t: t/k = M/B(S)

Hybrid Join Algorithm

• How many I/Os ?

• Cost of partitioned hash join: 3B(R) + 3B(S)

• Hybrid join saves 2 I/Os for a t/k fraction of buckets

• Hybrid join saves 2t/k(B(R) + B(S)) I/Os

• Cost: (3-2t/k)(B(R) + B(S)) = (3-2M/B(S))(B(R) + B(S))

Indexed Based Algorithms

• Recall that in a clustered index all tuples
with the same value of the key are clustered
on as few blocks as possible

a a a a a a a a a a

Index Based Selection

• Selection on equality: σa=v(R)

• Clustered index on a: cost= B(R)/V(R,a)

• Unclustered index on a: cost= T(R)/V(R,a)

5

Index Based Selection

• Example: B(R) = 2000, T(R) = 100,000, V(R, a) = 20,
compute the cost of σa=v(R)

• Cost of table scan:
– If R is clustered: B(R) = 2000 I/Os
– If R is unclustered: T(R) = 100,000 I/Os

• Cost of index based selection:
– If index is clustered: B(R)/V(R,a) = 100
– If index is unclustered: T(R)/V(R,a) = 5000

• Notice: when V(R,a) is small, then unclustered index is
useless

Index Based Join

• R |×| S
• Assume S has an index on the join attribute
• Iterate over R, for each tuple fetch

corresponding tuple(s) from S
• Assume R is clustered. Cost:

– If index is clustered: B(R) + T(R)B(S)/V(S,a)
– If index is unclustered: B(R) + T(R)T(S)/V(S,a)

Index Based Join

• Assume both R and S have a sorted index
(B+ tree) on the join attribute

• Then perform a merge join (called zig-zag
join)

• Cost: B(R) + B(S)

Example

Product(pname, maker), Company(cname, city)

• How do we execute this query ?

Select Product.pname
From Product, Company
Where Product.maker=Company.cname

and Company.city = “Seattle”

Select Product.pname
From Product, Company
Where Product.maker=Company.cname

and Company.city = “Seattle”

Example

Product(pname, maker), Company(cname, city)

Assume:

Clustered index: Product.pname, Company.cname

Unclustered index: Product.maker, Company.city

��

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

maker=cname

Logical Plan:

6

��

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

cname=maker

Physical plan 1:

Index-based
selection

Index-based
join

��

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

maker=cname

Physical plans 2a and 2b:

Index-
scan

Merge-join

Scan and sort (2a)
index scan (2b)

Which one is better ??Which one is better ??

��

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

cname=maker

Physical plan 1:

Index-based
selection

Index-based
join

T(Company) / V(Company, city)

× T(Product) / V(Product, maker)

Total cost:

T(Company) / V(Company, city)

× T(Product) / V(Product, maker)

Total cost:

T(Company) / V(Company, city)

× T(Product) / V(Product, maker)

��

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

maker=cname

Physical plans 2a and 2b:

Table-
scan

Merge-join

Scan and sort (2a)
index scan (2b)

B(Company)

3B(Product)

T(Product)

No extra cost
(why ?)

Total cost:
(2a): 3B(Product) + B(Company)
(2b): T(Product) + B(Company)

Total cost:
(2a): 3B(Product) + B(Company)
(2b): T(Product) + B(Company)

Plan 1: T(Company)/V(Company,city) ×
T(Product)/V(Product,maker)

Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Plan 1: T(Company)/V(Company,city) ×
T(Product)/V(Product,maker)

Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Which one is better ??Which one is better ??

It depends on the data !!It depends on the data !!

Example

• Case 1: V(Company, city) ≈ T(Company)

• Case 2: V(Company, city) << T(Company)

T(Company) = 5,000 B(Company) = 500 M = 100
T(Product) = 100,000 B(Product) = 1,000

We may assume V(Product, maker) ≈ T(Company) (why ?)

T(Company) = 5,000 B(Company) = 500 M = 100
T(Product) = 100,000 B(Product) = 1,000

We may assume V(Product, maker) ≈ T(Company) (why ?)

V(Company,city) = 2,000V(Company,city) = 2,000

V(Company,city) = 20V(Company,city) = 20

7

Which Plan is Best ?

Plan 1: T(Company)/V(Company,city) × T(Product)/V(Product,maker)
Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Plan 1: T(Company)/V(Company,city) × T(Product)/V(Product,maker)
Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Case 1: Plan 1 = 2.5 * 20 = 50
Plan 2 = 500 + 3000 = 3500
Plan 3 = 500 + 100000 = 100500

Case 2: Plan 1 = 250 * 20 = 5000

Lessons

• Need to consider several physical plan
– even for one, simple logical plan

• No magic “best” plan: depends on the data

• In order to make the right choice
– need to have statistics over the data

– the B’s, the T’s, the V’s

