

The three components of an optimizer
We need three things in an optimizer:

- Algebraic laws
- An optimization algorithm
- A cost estimator

Algebraic Laws

- Commutative and Associative Laws
$R \cup S=S \cup R, R \cup(S \cup T)=(R \cup S) \cup T$
$R|x| S=S|x| R, R|x|(S|x| T)=(R|x| S)|x| T$
$R|x| S=S|x| R, R|x|(S|x| T)=(R|x| S)|x| T$
- Distributive Laws
$R|x|(S \cup T)=(R|x| S) \cup(R|x| T)$

Algebraic Laws

- Laws involving selection:
$\sigma_{\mathrm{CAND} \mathrm{C}^{\prime}}(\mathrm{R})=\sigma_{\mathrm{C}}\left(\sigma_{\mathrm{C}^{\mathrm{C}}}(\mathrm{R})\right)=\sigma_{\mathrm{C}}(\mathrm{R}) \cap \sigma_{\mathrm{C}^{(}}(\mathrm{R})$
$\sigma_{\mathrm{CORC}}(\mathrm{R})=\sigma_{\mathrm{C}}(\mathrm{R}) \mathrm{U} \sigma_{\mathrm{C}^{\prime}}(\mathrm{R})$
$\sigma_{C}(R|x| S)=\sigma_{C}(R)|x| S$
- When C involves only attributes of R
$\sigma_{\mathrm{C}}(\mathrm{R}-\mathrm{S})=\sigma_{\mathrm{C}}(\mathrm{R})-\mathrm{S}$
$\sigma_{C}(R \cup S)=\sigma_{C}(R) \cup \sigma_{C}(S)$
$\sigma_{C}(R|x| S)=\sigma_{C}(R)|x| S$

Algebraic Laws

- Example: R(A, B, C, D), S(E, F, G)
$\sigma_{\mathrm{F}=3}\left(\mathrm{R}|\times|_{\mathrm{D}=\mathrm{E}} \mathrm{S}\right)=$
$?$
$\sigma_{\mathrm{A}=5 \mathrm{AND} \mathrm{G}=9}\left(\mathrm{R}|\times|_{\mathrm{D}=\mathrm{E}} \mathrm{S}\right)=?$?

Algebraic Laws

- Laws involving projections
$\Pi_{M}(R|\times| S)=\Pi_{M}\left(\Pi_{P}(R)|\times| \Pi_{Q}(S)\right)$
$\Pi_{\mathrm{M}}\left(\Pi_{\mathrm{N}}(\mathrm{R})\right)=\Pi_{\mathrm{M}, \mathrm{N}}(\mathrm{R})$
- Example R(A,B,C,D), S(E, F, G)
$\Pi_{\mathrm{A}, \mathrm{B}, \mathrm{G}}\left(\mathrm{R}|\times|_{\mathrm{D}=\mathrm{E}} \mathrm{S}\right)=\Pi_{?}\left(\Pi_{?}(\mathrm{R})|\times|_{\mathrm{D}=\mathrm{E}} \Pi_{?}(\mathrm{~S})\right)$

Algebraic Laws

- Laws involving grouping and aggregation: $\delta\left(\gamma_{A, \operatorname{agg}(B)}(R)\right)=\gamma_{A, \operatorname{agg}(B)}(R)$
$\gamma_{A, \operatorname{agg}(B)}(\delta(R))=\gamma_{A, \operatorname{agg}(B)}(R)$ if agg is "duplicate insensitive"
- Which of the following are "duplicate insensitive" ? sum, count, avg, min, max

Optimization Algorithms

- Heuristic based
- Cost based
- Dynamic programming: System R
- Rule-based optimizations: DB2, SQL-Server
$\gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{D})}\left(\mathrm{R}(\mathrm{A}, \mathrm{B})|\times|_{\mathrm{B}=\mathrm{C}} \mathrm{S}(\mathrm{C}, \mathrm{D})\right)=$
$\gamma_{A, \operatorname{agg}(D)}\left(R(A, B)|\times|_{B=C}\left(\gamma_{C, \operatorname{agg}(D)} S(C, D)\right)\right)$

Heuristic Based Optimizations

- Query rewriting based on algebraic laws
- Result in better queries most of the time
- Heuristics number 1:
- Push selections down
- Heuristics number 2:
- Sometimes push selections up, then down

Predicate Pushdown

The earlier we process selections, less tuples we need to manipulate higher up in the tree (but may cause us to loose an important ordering of the tuples, if we use indexes).

Predicate Pushdown

Select y.name, Max(x.price)
From product x, company y
Where x.maker $=$ y.name
GroupBy y.name
Having Max $(x$. price $)>100$

GroupBy y.name

Select y.name, Max(x.price) From product x , company y Where x.maker=y.name and x.price > 100 Having Max(x.price) > 100

- For each company, find the maximal price of its products. -Advantage: the size of the join will be smaller.
- Requires transformation rules specific to the grouping/aggregation operators.
- Won't work if we replace Max by Min.

Dynamic Programming

Originally proposed in System R

- Only handles single block queries:

SELECT list
FROM list
WHERE cond ${ }_{1}$ AND cond 2 AND . . . AND cond
k

- Heuristics: selections down, projections up
- Dynamic programming: join reordering

Join Trees

- R1 $|x| \mathrm{R} 2|x| \ldots|x| \mathrm{Rn}$
- Join tree:

- A plan $=$ a join tree
- A partial plan = a subtree of a join tree

Types of Join Trees

- Left deep:

Types of Join Trees

- Bushy:

- Right deep:

Dynamic Programming

- Given: a query R1 $|x|$ R2 $|x| \ldots|x|$ Rn
- Assume we have a function cost() that gives us the cost of every join tree
- Find the best join tree for the query

Dynamic Programming

- Idea: for each subset of $\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$, compute the best plan for that subset
- In increasing order of set cardinality:
- Step 1: for $\{R 1\},\{R 2\}, \ldots,\{R n\}$
- Step 2: for $\{\mathrm{R} 1, \mathrm{R} 2\},\{\mathrm{R} 1, \mathrm{R} 3\}, \ldots,\{\mathrm{Rn}-1, \mathrm{Rn}\}$
\qquad
- Step n: for $\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$
- It is a bottom-up strategy
- A subset of $\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$ is also called a subquery

Dynamic Programming

- For each subquery $\mathrm{Q} \subseteq\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$
compute the following:
- Size(Q)
- A best plan for $\mathrm{Q}: \operatorname{Plan}(\mathrm{Q})$
- The cost of that plan: $\operatorname{Cost}(\mathrm{Q})$

Dynamic Programming

- Step 1: For each $\left\{\mathrm{R}_{\mathrm{i}}\right\}$ do:
$-\operatorname{Size}\left(\left\{R_{i}\right\}\right)=B\left(R_{i}\right)$
$-\operatorname{Plan}\left(\left\{R_{i}\right\}\right)=R_{i}$
$-\operatorname{Cost}\left(\left\{R_{i}\right\}\right)=\left(\right.$ cost of scanning $\left.R_{i}\right)$

Dynamic Programming

- Step i: For each $\mathrm{Q} \subseteq\left\{\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}\right\}$ of

Dynamic Programming

- Return $\operatorname{Plan}\left(\left\{\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}\right\}\right)$ cardinality i do:
- Compute Size(Q) (later...)
- For every pair of subqueries Q', Q" s.t. $\mathrm{Q}=\mathrm{Q}, \cup \mathrm{Q}^{\prime \prime}$ compute cost(Plan(Q') $\left.|\times| \operatorname{Plan}\left(Q^{\prime \prime}\right)\right)$
$-\operatorname{Cost}(\mathrm{Q})=$ the smallest such cost
- $\operatorname{Plan}(\mathrm{Q})=$ the corresponding plan

Dynamic Programming

To illustrate, we will make the following simplifications:

- $\operatorname{Cost}\left(\mathrm{P}_{1}|x| \mathrm{P}_{2}\right)=\operatorname{Cost}\left(\mathrm{P}_{1}\right)+\operatorname{Cost}\left(\mathrm{P}_{2}\right)+$ size(intermediate result(s))
- Intermediate results:
- If $P_{1}=a$ join, then the size of the intermediate result is $\operatorname{size}\left(\mathrm{P}_{1}\right)$, otherwise the size is 0
- Similarly for P_{2}
- Cost of a scan $=0$

Dynamic Programming

- Example:
- $\operatorname{Cost}(\mathrm{R} 5|\times| \mathrm{R} 7)=0 \quad$ (no intermediate results)
- $\operatorname{Cost}((\mathrm{R} 2|\times| \mathrm{R} 1)|\times| \mathrm{R} 7)$
$=\operatorname{Cost}(\mathrm{R} 2|\times| \mathrm{R} 1)+\operatorname{Cost}(\mathrm{R} 7)+\operatorname{size}(\mathrm{R} 2|\times| \mathrm{R} 1)$
$=\operatorname{size}(\mathrm{R} 2|\times| \mathrm{R} 1)$

Dynamic Programming

- Relations: R, S, T, U
- Number of tuples: 2000, 5000, 3000, 1000
- Size estimation: $\mathrm{T}(\mathrm{A}|\times| \mathrm{B})=0.01 * \mathrm{~T}(\mathrm{~A}) * \mathrm{~T}(\mathrm{~B})$

Subquery	Size	Cost	Plan
RS	100 k	0	RS
RT	60 k	0	RT
RU	20 k	0	RU
ST	150 k	0	ST
SU	50 k	0	SU
TU	30 k	0	TU
RST	3 M	60 k	(RT)S
RSU	1 M	20 k	(RUS
RTU	0.6 M	20 k	(RU)T
STU	1.5 M	30 k	(TU)S
RSTU	30 M	$60 \mathrm{k}+50 \mathrm{k}=110 \mathrm{k}$	(RT)(SU)

Reducing the Search Space

- Left-linear trees v.s. Bushy trees
- Trees without cartesian product

Example: $\mathrm{R}(\mathrm{A}, \mathrm{B})|\times|\mathrm{S}(\mathrm{B}, \mathrm{C})| \times| \mathrm{T}(\mathrm{C}, \mathrm{D})$

Plan: $(\mathrm{R}(\mathrm{A}, \mathrm{B})|\times| \mathrm{T}(\mathrm{C}, \mathrm{D}))|\times| \mathrm{S}(\mathrm{B}, \mathrm{C})$ has a cartesian product most query optimizers will not consider it

Dynamic Programming:

Summary

- Handles only join queries:
- Selections are pushed down (i.e. early)
- Projections are pulled up (i.e. late)
- Takes exponential time in general, BUT:
- Left linear joins may reduce time
- Non-cartesian products may reduce time further

Rule-Based Optimizers

- Extensible collection of rules Rule $=$ Algebraic law with a direction
- Algorithm for firing these rules Generate many alternative plans, in some order Prune by cost
- Volcano (later SQL Sever)
- Starburst (later DB2)

Completing the Physical Query Plan

- Choose algorithm to implement each operator
- Need to account for more than cost:
- How much memory do we have ?
- Are the input operand(s) sorted ?
- Decide for each intermediate result:
- To materialize
- To pipeline

Materialize Intermediate Results

 Between OperatorsQuestion in class

Given $\mathrm{B}(\mathrm{R}), \mathrm{B}(\mathrm{S}), \mathrm{B}(\mathrm{T}), \mathrm{B}(\mathrm{U})$

- What is the total cost of the plan ? - Cost =
- How much main memory do we need ?
- $\mathrm{M}=$

Pipeline Between Operators

Pipeline Between Operators

Question in class

Given $\mathrm{B}(\mathrm{R}), \mathrm{B}(\mathrm{S}), \mathrm{B}(\mathrm{T}), \mathrm{B}(\mathrm{U})$

- What is the total cost of the plan ? - Cost $=$
- How much main memory do we need ?
- $\mathrm{M}=$
\qquad

Pipeline in Bushy Trees

Example

- Logical plan is:

- Main memory M = 101 buffers

Example

Smarter:

- Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
- Step 2: hash S on x into 100 buckets; to disk
- Step 3: read each R_{i} in memory (50 buffer) join with $S_{i}(1$ buffer); hash result on y into 50 buckets (50 buffers) -- here we pipeline
- Cost so far: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$

Example

$$
M=101
$$

Naïve evaluatiof ${ }^{5}$. blocks 10,000 blocks

- 2 partitioned hash-joins
- $\operatorname{Cost} 3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})+4 \mathrm{k}+3 \mathrm{~B}(\mathrm{U})=75000+4 \mathrm{k}$

Example

- If $k>5000$ then materialize instead of pipeline
- 2 partitioned hash-joins
- $\operatorname{Cost} 3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})+4 \mathrm{k}+3 \mathrm{~B}(\mathrm{U})=75000+4 \mathrm{k}$

Example

Summary:

- If $\mathrm{k}<=50, \quad \operatorname{cost}=55,000$
- If $50<\mathrm{k}<=5000$, cost $=75,000+2 \mathrm{k}$
- If $\mathrm{k}>5000, \operatorname{cost}=75,000+4 \mathrm{k}$

