
1

1

CSE 544:
Optimizations

Wednesday, 5/19/2004

2

The three components of an
optimizer

We need three things in an optimizer:

• Algebraic laws

• An optimization algorithm

• A cost estimator

3

Algebraic Laws

• Commutative and Associative Laws
R ∪ S = S ∪ R, R ∪ (S ∪ T) = (R ∪ S) ∪ T

R |×| S = S |×| R, R |×| (S |×| T) = (R |×| S) |×| T

R |×| S = S |×| R, R |×| (S |×| T) = (R |×| S) |×| T

• Distributive Laws
R |×| (S ∪ T) = (R |×| S) ∪ (R |×| T)

4

Algebraic Laws

• Laws involving selection:
σ C AND C’(R) = σ C(σ C’(R)) = σ C(R)

�
σ C’(R)

σ C OR C’(R) = σ C(R) U σ C’(R)
σ C (R |×| S) = σ C (R) |×| S

• When C involves only attributes of R
σ C (R – S) = σ C (R) – S
σ C (R ∪ S) = σ C (R) ∪ σ C (S)
σ C (R |×| S) = σ C (R) |×| S

5

Algebraic Laws

• Example: R(A, B, C, D), S(E, F, G)
σ F=3 (R |×| D=E S) = ?

σ A=5 AND G=9 (R |×| D=E S) = ?

6

Algebraic Laws

• Laws involving projections
ΠM(R |×| S) = ΠM(ΠP(R) |×| ΠQ(S))

ΠM(ΠN(R)) = ΠM,N(R)

• Example R(A,B,C,D), S(E, F, G)
ΠA,B,G(R |×| D=E S) = Π ? (Π?(R) |×| D=E Π?(S))

2

7

Algebraic Laws

• Laws involving grouping and aggregation:
δ(γA, agg(B)(R)) = γA, agg(B)(R)
γA, agg(B)(δ(R)) = γA, agg(B)(R) if agg is “duplicate insensitive”

• Which of the following are “duplicate insensitive” ?
sum, count, avg, min, max

γA, agg(D)(R(A,B) |×| B=C S(C,D)) =
γA, agg(D)(R(A,B) |×| B=C (γC, agg(D)S(C,D)))

8

Optimization Algorithms

• Heuristic based

• Cost based
– Dynamic programming: System R

– Rule-based optimizations: DB2, SQL-Server

9

Heuristic Based Optimizations

• Query rewriting based on algebraic laws

• Result in better queries most of the time

• Heuristics number 1:
– Push selections down

• Heuristics number 2:
– Sometimes push selections up, then down

10

Predicate Pushdown

Product Company

maker=name

σσσσ price>100 AND city=“ Seattle”

pname

Product Company

maker=name

price>100

pname

city=“ Seattle”

The earlier we process selections, less tuples we need to manipulate
higher up in the tree (but may cause us to loose an important ordering
of the tuples, if we use indexes).

11

Predicate Pushdown

Select y.name, Max(x.price)
From product x, company y
Where x.maker = y.name
GroupBy y.name
Having Max(x.price) > 100

Select y.name, Max(x.price)
From product x, company y
Where x.maker = y.name
GroupBy y.name
Having Max(x.price) > 100

Select y.name, Max(x.price)
From product x, company y
Where x.maker=y.name and

x.price > 100
GroupBy y.name
Having Max(x.price) > 100

Select y.name, Max(x.price)
From product x, company y
Where x.maker=y.name and

x.price > 100
GroupBy y.name
Having Max(x.price) > 100

• For each company, find the maximal price of its products.
•Advantage: the size of the join will be smaller.
• Requires transformation rules specific to the grouping/aggregation

operators.
• Won’ t work if we replace Max by Min. 12

Dynamic Programming

Originally proposed in System R

• Only handles single block queries:

• Heuristics: selections down, projections up

• Dynamic programming: join reordering

SELECT list
FROM list
WHERE cond1 AND cond2 AND . . . AND condk

SELECT list
FROM list
WHERE cond1 AND cond2 AND . . . AND condk

3

13

Join Trees

• R1 |×| R2 |×| …. |×| Rn
• Join tree:

• A plan = a join tree
• A partial plan = a subtree of a join tree

R3 R1 R2 R4

14

Types of Join Trees

• Left deep:

R3 R1

R5

R2

R4

15

Types of Join Trees

• Bushy:

R3

R1

R2 R4

R5

16

Types of Join Trees

• Right deep:

R3

R1
R5

R2 R4

17

Dynamic Programming

• Given: a query R1 |×| R2 |×| … |×| Rn

• Assume we have a function cost() that gives
us the cost of every join tree

• Find the best join tree for the query

18

Dynamic Programming

• Idea: for each subset of { R1, …, Rn} , compute the
best plan for that subset

• In increasing order of set cardinality:
– Step 1: for { R1} , { R2} , …, { Rn}
– Step 2: for { R1,R2} , { R1,R3} , …, { Rn-1, Rn}
– …
– Step n: for { R1, …, Rn}

• It is a bottom-up strategy
• A subset of { R1, …, Rn} is also called a subquery

4

19

Dynamic Programming

• For each subquery Q ⊆{ R1, …, Rn}
compute the following:
– Size(Q)

– A best plan for Q: Plan(Q)

– The cost of that plan: Cost(Q)

20

Dynamic Programming

• Step 1: For each { Ri} do:
– Size({ Ri}) = B(Ri)

– Plan({ Ri}) = Ri

– Cost({ Ri}) = (cost of scanning Ri)

21

Dynamic Programming

• Step i: For each Q ⊆{ R1, …, Rn} of
cardinality i do:
– Compute Size(Q) (later…)

– For every pair of subqueries Q’ , Q’ ’
s.t. Q = Q’ ∪ Q’ ’
compute cost(Plan(Q’) |×| Plan(Q’ ’))

– Cost(Q) = the smallest such cost

– Plan(Q) = the corresponding plan

22

Dynamic Programming

• Return Plan({ R1, …, Rn})

23

Dynamic Programming

To illustrate, we will make the following
simplifications:

• Cost(P1 |×| P2) = Cost(P1) + Cost(P2) +
size(intermediate result(s))

• Intermediate results:
– If P1 = a join, then the size of the intermediate result is

size(P1), otherwise the size is 0

– Similarly for P2

• Cost of a scan = 0

24

Dynamic Programming

• Example:

• Cost(R5 |×| R7) = 0 (no intermediate results)

• Cost((R2 |×| R1) |×| R7)
= Cost(R2 |×| R1) + Cost(R7) + size(R2 |×| R1)
= size(R2 |×| R1)

5

25

Dynamic Programming

• Relations: R, S, T, U

• Number of tuples: 2000, 5000, 3000, 1000

• Size estimation: T(A |×| B) = 0.01*T(A)*T(B)

26RSTU

STU

RTU

RSU

RST

TU

SU

ST

RU

RT

RS

PlanCostSizeSubquery

27(RT)(SU)60k+50k=110k30MRSTU

(TU)S30k1.5MSTU

(RU)T20k0.6MRTU

(RU)S20k1MRSU

(RT)S60k3MRST

TU030kTU

SU050kSU

ST0150kST

RU020kRU

RT060kRT

RS0100kRS

PlanCostSizeSubquery

28

Reducing the Search Space

• Left-linear trees v.s. Bushy trees

• Trees without cartesian product

Example: R(A,B) |×| S(B,C) |×| T(C,D)

Plan: (R(A,B) |×| T(C,D)) |×| S(B,C) has a cartesian product –
most query optimizers will not consider it

29

Dynamic Programming:
Summary

• Handles only join queries:
– Selections are pushed down (i.e. early)
– Projections are pulled up (i.e. late)

• Takes exponential time in general, BUT:
– Left linear joins may reduce time
– Non-cartesian products may reduce time further

30

Rule-Based Optimizers

• Extensible collection of rules
Rule = Algebraic law with a direction

• Algorithm for firing these rules
Generate many alternative plans, in some order
Prune by cost

• Volcano (later SQL Sever)
• Starburst (later DB2)

6

31

Completing the
Physical Query Plan

• Choose algorithm to implement each
operator
– Need to account for more than cost:

• How much memory do we have ?

• Are the input operand(s) sorted ?

• Decide for each intermediate result:
– To materialize

– To pipeline

32

Materialize Intermediate Results
Between Operators

T

R S

U

HashTable ß S
repeat read(R, x)

y ß join(HashTable, x)
write(V1, y)

HashTable ß T
repeat read(V1, y)

z ß join(HashTable, y)
write(V2, z)

HashTable ß U
repeat read(V2, z)

u ß join(HashTable, z)
write(Answer, u)

HashTable ß S
repeat read(R, x)

y ß join(HashTable, x)
write(V1, y)

HashTable ß T
repeat read(V1, y)

z ß join(HashTable, y)
write(V2, z)

HashTable ß U
repeat read(V2, z)

u ß join(HashTable, z)
write(Answer, u)

V1

V2

33

Materialize Intermediate Results
Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

• What is the total cost of the plan ?
– Cost =

• How much main memory do we need ?
– M =

34

Pipeline Between Operators

T

R S

U

HashTable1 ß S
HashTable2 ß T
HashTable3 ß U
repeat read(R, x)

y ß join(HashTable1, x)
z ß join(HashTable2, y)
u ß join(HashTable3, z)
write(Answer, u)

HashTable1 ß S
HashTable2 ß T
HashTable3 ß U
repeat read(R, x)

y ß join(HashTable1, x)
z ß join(HashTable2, y)
u ß join(HashTable3, z)
write(Answer, u)

pi
pe

lin
e

35

Pipeline Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

• What is the total cost of the plan ?
– Cost =

• How much main memory do we need ?
– M =

36

Pipeline in Bushy Trees

XR S

Z

Y

V

T I

7

37

Example

• Logical plan is:

• Main memory M = 101 buffers

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

38

Example

Naïve evaluation:

• 2 partitioned hash-joins

• Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

39

Example

Smarter:
• Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
• Step 2: hash S on x into 100 buckets; to disk
• Step 3: read each Ri in memory (50 buffer) join with Si (1 buffer); hash result on

y into 50 buckets (50 buffers) -- here we pipeline
• Cost so far: 3B(R) + 3B(S)

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

40

Example

Continuing:
• How large are the 50 buckets on y ? Answer: k/50.
• If k <= 50 then keep all 50 buckets in Step 3 in memory, then:
• Step 4: read U from disk, hash on y and join with memory
• Total cost: 3B(R) + 3B(S) + B(U) = 55,000

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

41

Example

Continuing:
• If 50 < k <= 5000 then send the 50 buckets in Step 3 to disk

– Each bucket has size k/50 <= 100

• Step 4: partition U into 50 buckets
• Step 5: read each partition and join in memory
• Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

42

Example

Continuing:
• If k > 5000 then materialize instead of pipeline
• 2 partitioned hash-joins
• Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

8

43

Example

Summary:

• If k <= 50, cost = 55,000

• If 50 < k <=5000, cost = 75,000 + 2k

• If k > 5000, cost = 75,000 + 4k

