CSE 544: Optimizations

Wednesday, 5/19/2004

The three components of an optimizer

We need three things in an optimizer:

- Algebraic laws
- An optimization algorithm
- A cost estimator

Algebraic Laws

- Commutative and Associative Laws $R \cup S = S \cup R, R \cup (S \cup T) = (R \cup S) \cup T$ $R |\times| S = S |\times| R, R |\times| (S |\times| T) = (R |\times| S) |\times| T$ $R |\times| S = S |\times| R, R |\times| (S |\times| T) = (R |\times| S) |\times| T$

Algebraic Laws

- Laws involving selection: $\sigma_{C \text{ AND C'}}(R) = \sigma_C(\sigma_{C'}(R)) = \sigma_C(R) \cap \sigma_{C'}(R)$ $\sigma_{C \text{ OR C'}}(R) = \sigma_C(R) \cup \sigma_{C'}(R)$ $\sigma_C(R |x| S) = \sigma_C(R) |x| S$
- When C involves only attributes of R $\sigma_{C}(R-S) = \sigma_{C}(R) - S$ $\sigma_{C}(R \cup S) = \sigma_{C}(R) \cup \sigma_{C}(S)$ $\sigma_{C}(R |x| S) = \sigma_{C}(R) |x| S$

Algebraic Laws • Example: R(A, B, C, D), S(E, F, G) $\sigma_{F=3} (R |x|_{D=E} S) = ?$ $\sigma_{A=5 \text{ AND } G=9} (R |x|_{D=E} S) = ?$

Algebraic Laws

- Laws involving grouping and aggregation: $\begin{array}{l} \delta(\gamma_{A,agg(B)}(R)) = \gamma_{A,agg(B)}(R) \\ \gamma_{A,agg(B)}(\delta(R)) = \gamma_{A,agg(B)}(R) \text{ if agg is "duplicate insensitive"} \end{array}$
- Which of the following are "duplicate insensitive" ? sum, count, avg, min, max
- $\begin{array}{l} \gamma_{A, \ agg(D)}(R(A,B) \mid \! \times \! \mid_{B=C} S(C,D)) = \\ \gamma_{A, \ agg(D)}(R(A,B) \mid \! \times \! \mid_{B=C} (\gamma_{C, \ agg(D)}S(C,D))) \end{array}$

Optimization Algorithms

- · Heuristic based
- Cost based
 - Dynamic programming: System R
 - Rule-based optimizations: DB2, SQL-Server

Heuristic Based Optimizations

- Query rewriting based on algebraic laws
- Result in better queries most of the time
- Heuristics number 1: – Push selections down
- Heuristics number 2: – Sometimes push selections up, then down

Dynamic Programming

- Step 1: For each $\{R_i\}$ do:
 - $-\operatorname{Size}(\{R_i\}) = B(R_i)$
 - $-\operatorname{Plan}(\{R_i\}) = R_i$
 - $-\operatorname{Cost}(\{R_i\}) = (\operatorname{cost} \ of \ scanning \ R_i)$

- **Step i**: For each Q ⊆{R₁, ..., R_n} of cardinality i do:
 - Compute Size(Q) (later...)
 - For every pair of subqueries Q', Q'' s.t. $Q = Q' \cup Q''$ compute cost(Plan(Q') |×| Plan(Q''))
 - Cost(Q) = the smallest such cost
 - Plan(Q) = the corresponding plan

20

22

• Return Plan($\{R_1, ..., R_n\}$)

Dynamic Programming

To illustrate, we will make the following simplifications:

- $Cost(P_1 | \times | P_2) = Cost(P_1) + Cost(P_2) + size(intermediate result(s))$
- Intermediate results:
 If P₁ = a join, then the size of the intermediate result is size(P₁), otherwise the size is 0
 - Similarly for P₂
- Cost of a scan = 0

23

Dynamic Programming Example Cost(R2 ⋈ R7) = 0 (no intermediate results) Cost((R2 ⋈ R1) ⋈ R7) = Cost(R2 ⋈ R1) + Cost(R7) + size(R2 ⋈ R1) = size(R2 ⋈ R1)

Dynamic Programming

25

29

- Relations: R, S, T, U
- Number of tuples: 2000, 5000, 3000, 1000
- Size estimation: T(A |x| B) = 0.01*T(A)*T(B)

Subquery	Size	Cost	Plan
RS			
RT			
RU			
ST			
SU			
TU			
RST			
RSU			
RTU			
STU			
RSTU			

Subquery	Size	Cost	Plan	
RS	100k	0	RS	
RT	60k	0	RT	
RU	20k	0	RU	
ST	150k	0	ST	
SU	50k	0	SU	
TU	30k	0	TU	
RST	3M	60k	(RT)S	
RSU	1M	20k	(RU)S	
RTU	0.6M	20k	(RU)T	
STU	1.5M	30k	(TU)S	
RSTU	30M	60k+50k=110k	(RT)(SU)	27

Dynamic Programming: Summary

- Handles only join queries:
 - Selections are pushed down (i.e. early)
 - Projections are pulled up (i.e. late)
- Takes exponential time in general, BUT: - Left linear joins may reduce time
 - Non-cartesian products may reduce time further

Example Summary: • If k <= 50, cost = 55,000

- If $k \le 50$, $\cos t = 55,000$ • If $50 < k \le 5000$, $\cos t = 75,000 + 2k$
- If k > 5000, cost = 75,000 + 2k

43