CSE 544
Optimizations

Wednesday, 5/19/2004

The three components of an
optimizer
We need three things in an optimizer:

 Algebraic laws
e An optimization algorithm
* A cost estimator

Algebraic Laws

» Commutative and Associative Laws
ROS=SOR, RO(SOT)=(ROSOT
RX|S=SKXR, RX[(SXT)=(R[x|S x| T
RX|S=SKXR, RX[(SXT)=(R[x|S x| T

* Distributive Laws
RX(SOT) = RXSDRIXT)

Algebraic Laws

e Lawsinvolving selection:
Ocannc(R=0(0c(R)=0(R) No(R)
Ocorc(R)=0(R) U0 (R)
0cRIX[9=0c(R) XIS

e When C involves only attributes of R
0c(R-)=0c(R)-S
0c(RU§=0RUoc(S
0c(RIXIS =0(R XIS

Algebraic Laws

» Example: R(A, B, C, D), S(E, F, G)
0 r3(RXpeS) = ?

O a=sanp G=9 (R [X| p=¢ S) =

-~

Algebraic Laws

e Lawsinvolving projections
MuR XS =Ny (Mp(R) x| M(S)
Mu(My(R)) =Ny N(R)

« Example R(A,B,C,D), S(E, F, G)
MagaR X p=g S) =M (MAR) [X| p-g MAS))

Algebraic Laws

« Lawsinvolving grouping and aggregation:
(Y, agge)(R)) = Ya, agoe)(R)
Ya, agg(E)(B(R)) =VYa, agg(B)(R) if agg is “duplicate insensitive”

« Which of the following are “duplicate insensitive” ?
sum, count, avg, min, max

Ya, agg@)(R(AB) X[g-c S(C,D)) =
Ya, aga0)(R(AB) %] g=c (Yc, aggyS(C.D)))

Optimization Algorithms

* Heuristic based
 Cost based
— Dynamic programming: System R
— Rule-based optimizations: DB2, SQL-Server

Heuristic Based Optimizations

* Query rewriting based on algebraic laws
 Result in better queries most of the time
* Heuristics number 1:

— Push selections down
* Heuristics number 2:

— Sometimes push selections up, then down

Predicate Pushdown

pname

pname

O price>100 AND city="Seattle” ‘
{ b
maker=name

><

maker=name O price>100 %T“ Seattle”

Product Company Product Company

The earlier we process selections, less tuples we need to manipulate
higher up in the tree (but may cause us to loose an important ordering

of the tuples, if we use indexes). o

Predicate Pushdown

Select y.name, Max(x.price)
From product x, company y
Where x.maker =y.name
GroupBy y.name

Having Max(x.price) > 100

Select y.name, Max(x.price)

From product x, company y

Where x.maker=y.name and
x.price > 100

GroupBy y.name

Having Max(x.price) > 100

« For each company, find the maximal price of its products.

«Advantage: the size of thejoin will be smaller.

 Requires transformation rules specific to the grouping/aggregation
operators.

*Won't work if wereplace Max by Min. 1

Dynamic Programming

Originally proposed in System R
e Only handles single block queries:

SELECT list
FROM list
WHERE cond, AND cond, AND . .. AND cond,

e Heuristics: selections down, projections up
» Dynamic programming: join reordering

12

Join Trees

* RIX|R2x|....[x|Rn
« Join tree:

M/N\N
R3/ \Rl RZ/ \R4

« Aplan=ajointree
« A partial plan = asubtree of ajoin tree

13

Types of Join Trees

o Left deep:
P
/N< \R4
/N\ R2
> R5
/N
R3 R1

14

Types of Join Trees
* Bushy:

_— N\

> D>
/N /N
R3 > R2 R4

/N

R1 R5

15

Types of Join Trees

 Right deep:
<

s
R3 YA
R1 / \N

R5 /\

R2 R4

16

Dynamic Programming

e Given: aquery R1 x| R2x|... [x|Rn

» Assume we have a function cost() that gives
us the cost of every join tree

* Find the best join tree for the query

17

Dynamic Programming

« |dea: for each subset of {R1, ..., Rn}, compute the
best plan for that subset

e Inincreasing order of set cardinality:
— Step 1: for {R1}, {R2}, ..., {Rn}
— Step 2: for {R1,R2}, {R1,R3}, ..., {Rn-1, Rn}

- Step n: for {R1, ..., Rn}
* Itisabottom-up strategy
e A subset of {R1, ..., Rn} isalso called a subquery

18

Dynamic Programming

* For each subquery Q [{R1, ..., Rn}
compute the following:
-Size(Q)
— A best plan for Q: Plan(Q)
— The cost of that plan: Cost(Q)

19

Dynamic Programming

» Stepi: Foreach Q L{R,, ..., R} of
cardinality i do:
— Compute Size(Q) (later...)
— For every pair of subqueriesQ’, Q"'
st.Q=Q 0Q"
compute cost(Plan(Q") || Plan(Q’"))
— Cost(Q) = the smallest such cost

— Plan(Q) = the corresponding plan

21

Dynamic Programming

 Step 1: For each { R} do:
- Size({R}) =B(R)
- Plan({R}) =R
— Cost({ R}) = (cost of scanning R;)

20

Dynamic Programming

+ Return Plan({R,, ..., R.})

22

Dynamic Programming

Toillustrate, we will make the following
simplifications:
e Cost(P, [x| P,) = Cost(P,) + Cost(P,) +
size(intermediate result(s))
* Intermediate results:

— If P, = ajoin, then the size of the intermediate result is
size%Pl), otherwisethe sizeis0

— Similarly for P,
¢ Costof ascan=0

23

Dynamic Programming

e Example:
e Cost(R5|x|R7) =0 (nointermediate results)
» Cost((R2 x| R1) |x| R7)

= Cost(R2 || R1) + Cost(R7) + size(R2 x| R1)
= size(R2 || R1)

2

Dynamic Programming
e Relations:R, S, T, U

« Number of tuples: 2000, 5000, 3000, 1000
« Size estimation: T(A x| B) = 0.01*T(A)*T(B)

25

Subquery Size Cost Plan

RS

RT

TU

RST

RsU

RTU

STU

Subquery Size Cost Plan
RS 100k 0 RS
RT 60k 0 RT
RU 20k 0 RU
ST 150k 0
su 50k 0
TU 30k 0 TU
RST 3m 60k (RT)S
RSU ™ 20k (RU)S
RTU 0.6M 20k (RU)T
sTU 15M 30k (TU)S

RSTU 30M 60k+50k=110k (RT)(SU) 27

Reducing the Search Space

¢ Left-linear treesv.s. Bushy trees
« Treeswithout cartesian product
Example: R(A,B) [x| S(B,C) x| T(C,D)

Plan: (R(A,B) |x| T(C,D)) x| S(B,C) has a cartesian product —
most query optimizers will not consider it

28

Dynamic Programming:
Summary

e Handlesonly join queries:
— Selections are pushed down (i.e. early)
— Projections are pulled up (i.e. late)

» Takes exponential timein general, BUT:

— Left linear joins may reduce time
— Non-cartesian products may reduce time further

29

Rule-Based Optimizers

 Extensible collection of rules
Rule = Algebraic law with a direction

« Algorithm for firing these rules
Generate many alternative plans, in some order
Prune by cost

* Volcano (later SQL Sever)
o Starburst (later DB2)

30

Completing the
Physical Query Plan

 Choose agorithm to implement each
operator
— Need to account for more than cost:
« How much memory do we have ?
 Aretheinput operand(s) sorted ?
 Decide for each intermediate result:
— To materialize
— To pipeline

31

Materialize | ntermediate Results
Between Operators

HashTable S
repeat read(R, x)

y join(HashTable, x)
/ \\ write(V1,y)
HashTable T

repeat read(V1,y)

z join(HashTable, y)
V 1 / \ write(V2, z)

HashTable U
repeat read(V2, 2)

u join(HashTable, z)
/ X \ write{Answer, u) ‘

32

Materialize Intermediate Results
Between Operators

Question in class
Given B(R), B(S), B(T), B(U)

« What isthetotal cost of the plan ?
— Cost =

¢ How much main memory do we need ?
- M=

Pipeline Between Operators

X

o HashTablel S
L HashTable2 T
& HashTable3 U

Q. X U repeat read(R, x)

y join(HashTablel, x)
z join(HashTable2, y)
u join(HashTable3, z)

write{Answer, u)

Pipeline Between Operators

Question in class
Given B(R), B(S), B(T), B(U)

* What isthetotal cost of the plan ?
— Cost =

* How much main memory do we need ?
- M=

Pipelinein Bushy Trees

a \

RST|XY %

Example

e Logica planis:
>
kblocks 1 \U(y 2
10,000 blocks
R(w,x) S(x.y)

5,000 blocks 10,000 blocks

e Main memory M = 101 buffers

37

Example

M =101
D>

N

U(y.2)
10,000 blocks

kblocks [

R(w.x) S(x.y)
Naive B/duaﬁeﬁc.) blocks 10,000 blocks
* 2 partitioned hash-joins
» Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

38

Example

M =101
N\
u(y.2)
\ 10,000 blocks

R(W.X) S(x.y)
5,000 blocks 10,000 blocks

kblocks <

Smarter:
« Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
* Step 2: hash Son x into 100 buckets; to disk

Step 3: read each R; in memory (50 buffer) join with S (1 buffer); hash result on
y into 50 buckets (50 buffers) -- here we pipeline

« Cost so far: 3B(R) + 3B(S) 2

Example

M =101
M\
U(y.2)
\ 10,000 blocks

R(W.X) S(x.y)
5,000 blocks 10,000 blocks

kblocks [

Continuing:

« How large are the 50 bucketson 'y ? Answer: k/50.

¢ If k <= 50 then keep all 50 buckets in Step 3 in memory, then:
« Step 4: read U from disk, hash ony and join with memory

* Total cost: 3B(R) + 3B(S) + B(U) = 55,000

40

Example

M =101
>

N

u(y.2)
10,000 blocks

kblocks 1<

R(w.X) S(x.y)
5,000 blocks 10,000 blocks

Continuing:
« 1f 50 < k <= 5000 then send the 50 bucketsin Step 3 to disk

— Each bucket has size k/50 <= 100
* Step 4: partition U into 50 buckets
« Step 5: read each partition and join in memory
« Totd cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k n

Example

M =101
>

N

U(y.2)
10,000 blocks

.. RWwx) S(x.y)
Continuing: 5000 biocks 10,000 blocks
* If k > 5000 then materialize instead of pipeline

2 partitioned hash-joins
» Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

kblocks <]

42

Example

Summary:

e If k <=50, cost = 55,000

e |f 50 < k <=5000, cost = 75,000 + 2k
* |f k > 5000, cost = 75,000 + 4k

