Query Evaluation on Probabilistic Databases

CSE 544: Wednesday, May 24, 2006

Problem Setting

Queries:

Tables:

Review

Movie	Monkey Love		good	.
title	year	p	fair	2
Twelve Monkey	1995	8	fair	6
Monkey Love	1997	4	poor	9
Monkey Love	1935	9		
Monkey Love PI	2005	. 7		

Problem: complexity of query evaluation

Answers:

title	rating	p
Twelve Monkeys	fair	.53
Monkey Love	good	.42
Monkey Love PI	fair	.15

Two Problems

Fixed schema S, conjunctive query $Q(x, y)$
Query evaluation problem
Fix answer tuple (a, b)
Given database I, compute $\operatorname{Pr}(Q(a, b))$
Top-k answering problem
Fix $k>0$
Given database I, find k answer tuples with highest probabilities

Related Work: DB

- Cavallo\&Pitarelli:1987
- Barbara,Garcia-Molina, Porter:1992
- Lakshmanan,Leone,Ross\&Subrahmanian:1997
- Fuhr\&Roellke:1997
- Dalvi\&S:2004
- Widom:2005

Related Work: Logic

- Query reliability [Gradel,Gurevitch,Hirsch'98]
- Degrees of belief [Bacchus,Grove,Halpern,Koller'96]
- Probabilistic Logic [Nielson]
- Probabilistic model checking [Kwiatkowska'02]
- Probabilistic Relational Model [Taskar,Abbeel,Koller'02]

Probabilistic Database

Schema S, Domain D, Set of instances Inst

Definition

Probabilistic database is a probability distribution

$$
\operatorname{Pr}: \text { Inst } \rightarrow[0,1], \quad \Sigma_{\mathrm{I}} \operatorname{Pr}[\mathrm{I}]=1
$$

If $\operatorname{Pr}[I]>0$ then I is called "possible world"

Probabilistic Database

Representation:

- Independent tuples:

I-database DB over some schema S^{i}

- Independent and disjoint tuples: ID-database DB over some schema Sid

Semantics:

- DB "means" probability distribution Pr over schema S

Independent Events

- A tuple is in the database with probability p
- Any two tuples are independent events

Representation

I-Databases

Reviewsi(M,S,p)

Reviews(M,S)

Movie	Score	P
m42	good	P_{1}
m99	good	P_{2}
m76	poor	P_{3}

Possible worlds semantics,

Disjoint Events

Needed in

- Many-to-1 matchings
- Possible values for attributes [Barbara'92]

Name	Age	
John	34	(0.3)
	43	(0.7)
Mary	25	

Name	Age	P
John	34	0.3
John	43	0.7
Mary	25	1.0

ID-Databases

Activities id

Activities

Time $^{\text {d }}$	Activity	P
t	walk	P_{1}
t	run	P_{2}
$t+1$	walk	P_{3}

$$
\left(1-p_{1}-P_{2}\right)^{*}\left(1-P_{3}\right) \quad \operatorname{Pr}\left[I_{3}\right]=P_{2}^{*}\left(1-P_{3}\right)
$$

$$
\operatorname{Pr}\left[I_{5}\right]=\quad P_{1}{ }^{*} P_{3}
$$

$$
\operatorname{Pr}\left[\mathrm{I}_{1}\right]+\operatorname{Pr}\left[\mathrm{I}_{2}\right]+\ldots+\operatorname{Pr}\left[\mathrm{I}_{6}\right]=1
$$

ID subsumes I

Reviews ${ }^{\text {id }}$

Movie $^{\text {d }}$	Score $^{\text {d }}$	P
m42	good	P_{1}
m99	good	P_{2}
m76	poor	P_{3}

Reviews

Movie	Score	P
m42	good	P_{1}
m99	good	P_{2}
m76	poor	P_{3}

Note:
Reviews ${ }^{\text {id }}$

Movie	Score	P	
m42	good	P_{1}	means all m99 good
tuples are			
m76	poor	P_{3}	
tisjoint			

Queries

Syntax: conjunctive queries over schema S
$Q(y):-\operatorname{Movie}(x, y), \operatorname{Review}(x, z), z>=3$

Movie

id	year	P
m 42	1995	0.95
m 99	2002	0.65
m 76	2002	0.1
m 05	2005	0.7

Reviewi

mid	rating	p
m 42	4	0.7
m 42	5	0.45
m 99	5	0.82
m 99	4	0.68
m 05	5	0.79

Two Query Semantics

Possible answer sets

- Given set A:

$$
\operatorname{Pr}[\{\dagger \mid I=Q(t)\}=A]
$$

- Used for views

Possible tuples

- Given tuple t:

$$
\operatorname{Pr}[I=Q(t)]
$$

- Used for query evaluation and top-k

Query Semantics

$Q(y)$:- Movie(x, y), Review (x, z)

Tuple probabilities

year	p
1935	$p_{2}+p_{3}=0.6$
2004	$p_{1}+p_{3}=0.5$
1995	$p_{3}=\quad 0.2$
. .	. .

top K

Summary on Data Model

- Data Model:

Semantics = possible worlds
Syntax = I-databases or ID-databases

- Queries:

Syntax = unchanged (conjunctive queries) Semantics = tuple probabilities

Problem Definition

Fix schema S, query Q, answer tuple \dagger
Problem: given I/ID-database $D B$, compute $\operatorname{Pr}[I=Q(t)]$ notation: $\quad \operatorname{Pr}[Q(t)]$

Conventions:
For upper bounds (P or \#P): probabilities are rationals For lower bounds (\#P): probabilities are 1/2

Query Evaluation on I-Databases

Outline

- Intuition
- Extensional plans: PTIME case
- Hard queries: \#P-complete case
- Dichotomy Theorem
$Q(y)$:- Movie(x, y), $\operatorname{Review}(x, z)$

Intuition
Movie ${ }^{i}$

id	year	p^{\prime}
m 42	1995	p_{1}
m 99	2002	p_{2}
m 76	2002	p_{3}
m 05	2005	p_{4}

Answer
Review i

mid	rate	p
m 42	4	q_{1}
m 42	2	q_{2}
m 42	3	q_{3}
m 99	1	q_{4}
m 99	3	q_{5}
m 76	5	q_{6}

Year	p
1995	$p_{1} \times\left(1-\left(1-q_{1}\right) \times\left(1-q_{2}\right) \times\left(1-q_{3}\right)\right)$
2002	$1-\left(1-p_{2} \times\left(1-\left(1-q_{4}\right) \times\left(1-q_{5}\right)\right)\right) \times$ $\left(1-p_{3} \times q_{6}\right)$

I-Extensional Plans

[Barbara92,Lakshmanan97]

- Add P

Join $\bowtie \quad p=p_{1}^{*} p_{2}$
Projection $\Pi \quad p=1-\left(1-p_{1}\right)\left(1-p_{2}\right) \ldots\left(1-p_{n}\right)$
Selection $\sigma \quad p=p$

- Note: data complexity is PTIME

Extensional Query Plans

I
σ

Extensional Query Plans

- Each tuple t has a probability t.P
- Algebra operators compute t.P
- Data complexity: PTIME

$Q(y)$:- Movie (x, y), Review(x, z)

1995 1-(1-pq1)(1-pq2)(1-pq3)

\#P-Complete Queries R^{i}
 S

A	p
	p_{1}
	p_{2}
	p_{3}
	p_{4}

$$
Q_{\text {bad }}:-R^{\prime}(x), S(x, y), T^{i}(y)
$$

Theorem: Data complexity is \#P-complete

Proof:

Theorem [Provan\&Ball83] Counting the number of satisfying assignments for bipartite DNF is \#P-complete

Reduction:
$x_{2} y_{3} \vee x_{1} y_{2} \vee x_{4} y_{3} \vee x_{3} y_{1}$

$Q_{\text {bad }}:-R^{i}(x), S(x, y), T^{i}(y)$

I-Dichotomy

$Q=$ boolean conjunctive query
Definition 1. For each variable x : goals $(x)=$ set of goals that contain x

Definition 2. Q is hierarchical if forall x, y : (a) goals $(x) \cap$ goals $(y)=\varnothing$, or
(b) goals $(x) \subseteq$ goals (y), or
(c) goals $(y) \subseteq$ goals (x)

$Q:-R(x), S(x, y), T(x, y, z), K(x, v)$

"hierarchical"

$Q:-R(x), S(x, y), T(y)$

"non-hierarchical"
[Dalvi\&S.'04]

I-Dichotomy

Schema $S^{i}=\left\{R_{1}{ }^{i}, R_{2}{ }^{i}, \ldots, R_{m}{ }^{i}\right\}$
Theorem Let $Q=$ conjunctive query w/o self-joins.
Then one of the following holds:
Q is in PTIME
Q has a correct extensional plan
Q is hierarchical
or:
Q is \#P-complete
Q has subgoals $R(x, \ldots), S(x, y, \ldots), T(y, \ldots)$

Proof

Lemma 1.
If Q is non-hierarchical, then \#P-complete
Proof:
$Q:-R^{i}(v, x), S^{i}(x, y), T^{i}(y, z), K^{i}(z)$
rest is like for $Q_{b a d}$

Proof

Lemma 2. If Q is hierarchical, then PTIME

 Proof:Case 1: has no root

$\operatorname{Pr}(Q)=\operatorname{Pr}\left(Q_{1}\right) \operatorname{Pr}\left(Q_{2}\right) \operatorname{Pr}\left(Q_{3}\right)$

This is extensional join \bowtie

Proof

Case 2: has root x

Dom $=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
$\operatorname{Pr}(Q)=$

$$
1-\left(1-\operatorname{Pr}\left(Q\left(a_{1} / x\right)\right)\left(1-\operatorname{Pr}\left(Q\left(a_{2} / x\right)\right) \ldots\left(1-\operatorname{Pr}\left(Q\left(a_{n} / x\right)\right)\right)\right.\right.
$$

This is an extensional projection: π
QED

Query Evaluation on ID-Databases

- ID-extensional plans
. \#P-complete queries
© Dichotomoy Theorem

Extensional Plans for ID-DBs

- Only difference: two kinds of projections: independent $1-\left(1-p_{1}\right) \ldots\left(1-p_{n}\right)$ disjoint

$$
p_{1}+\ldots+p_{n}
$$

\#P-Complete Queries

$$
\begin{aligned}
& Q_{1}:-R^{i}(x), S^{\prime}(x, y), T^{T}(y) \\
& Q_{2}:-R^{d}\left(x^{d}, y\right), S^{d}\left(y^{d}\right) \\
& Q_{3}:-R^{d}\left(x^{d}, y\right), S^{d}\left(z^{d}, y\right)
\end{aligned}
$$

[Dalvi\&S.'04]

I-DB Dichotomy

Schema $S^{\text {id }}$ s.t. each table is either R^{i} or $\mathrm{R}^{\text {id }}$
Theorem Let $Q=$ conjunctive query w/o self-joins.
Then one of the following holds:
Q is in PTIME
Q has a correct extensional plan
or:
Q is \#P-complete
Q has one of Q_{1}, Q_{2}, Q_{3} as subqueries

Extensions

Extensions of the dichotomoy theorem exists for:

- Mixed schemas (some relations are deterministic)
- Functional dependencies

Summary on Query Evaluation

Extensional plans: popular, efficient, BUT

- "Equivalent" plans lead to different results
- Some queries admit "correct" plans

Some simple queries: \#P-complete complexity
Dichotomy theorem
Future work: remove 'no-self-join' restriction

Conclusions

- Strong motivation from practical applications Merge query and search technologies
- Probabilistic DB's are hard ! Hacks don't work (yet). Need principled approach.

Thank you !

Questions ?

