Query Evaluation on Probabilistic Databases

CSE 544: Wednesday, May 24, 2006

Problem Setting

Tables:

Review

	name		rating	p	
Movie	Mo	onkey La	ove	good	.5
title		year	р	fair	.2
Twelve Monkeys	5	1995	.8	fair	.6
Monkey Love		1997	.4	poor	.9
Monkey Love		1935	.9		
Monkey Love P		2005	.7		

Problem: complexity of query evaluation

Queries:

A(x,y) := Review(x,y),Movie(x,z), z > 1991

Answers:

title	rating	Р
Twelve Monkeys	fair	.53
Monkey Love	good	.42
Monkey Love Pl	fair	.15

Top k

Two Problems

Fixed schema S, conjunctive query Q(x,y)

Query evaluation problem

Fix answer tuple (a,b)
Given database I, compute Pr(Q(a,b))

Top-k answering problem

Fix k > 0 Given database I, find k answer tuples with highest probabilities

Related Work: DB

- © Cavallo&Pitarelli:1987
- Barbara, Garcia-Molina, Porter:1992
- Lakshmanan, Leone, Ross & Subrahmanian: 1997
- Fuhr&Roellke:1997
- @ Dalvi&S:2004
- Widom: 2005

Related Work: Logic

- Query reliability [Gradel, Gurevitch, Hirsch'98]
- Degrees of belief [Bacchus, Grove, Halpern, Koller'96]
- Probabilistic Logic [Nielson]
- Probabilistic model checking [Kwiatkowska'02]
- Probabilistic Relational Model [Taskar, Abbeel, Koller'02]

Probabilistic Database

Schema S, Domain D, Set of instances Inst

Definition

Probabilistic database is a probability distribution

 $Pr: Inst \rightarrow [0,1], \Sigma_I Pr[I] = 1$

If Pr[I] > 0 then I is called "possible world"

Probabilistic Database

Representation:

- Independent tuples:
 I-database DB over some schema Si
- Independent and disjoint tuples:
 ID-database DB over some schema Sid

Semantics:

DB "means" probability distribution Pr over schema S

Independent Events

A tuple is in the database with probability p

Any two tuples are independent events

Representation

I-Databases

Reviewsⁱ(M,S,p)

Movie	Score	Р
m42	good	P ₁
m99	good	P ₂
m76	poor	Рз

Reviews(M,S)

Mov	Scor
THE RESERVE	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN COLUMN

Mov	Scor
m42	good

Mov	Scor
m99	good

Mov	Scor
m42	good
m99	good

Mov	Scor
m76	poor

Mov	Scor
m42	good
m76	poor

10000	Mov	Scor
	m42	1995
	m76	poor

Mov	Scor
m42	good
m99	good
m76	poor

$$Pr[I_1]=$$

$$(1-p_1)^*(1-p_2)^*(1-p_3)$$

$$Pr[I_4] = p_1^* p_2^* (1-p_3)$$

$$Pr[I_1] + Pr[I_2] + ... + Pr[I_8] = 1$$

Possible worlds semantics,

Disjoint Events

Needed in

- Many-to-1 matchings
- Possible values for attributes [Barbara'92]

<u>Name</u>	Age
John	34 (0.3) 43 (0.7)
Mary	25

Name	Age	Р
John	34	0.3
John	43	0.7
Mary	25	1.0

ID-Databases

Activitiesid

Time ^d	Activity	Р
†	walk	P ₁
†	run	P ₂
t+1	walk	P ₃

Activities

[{		{		7		7		
Time	Act	Time	Act	Time	Act	Time	Act	Time	Act	Tim
		t	walk	t	run	†+1	walk	t	walk	t
Pr[I1]]=						1	†+1	walk	†+1
(1-p ₁ -r	$(1-p_1-p_2)^*(1-p_3)$ $Pr[I_3]= p_2^*(1-p_3)$ $Pr[I_5]= p_1^*p_3$									

Act me run walk

 $Pr[I_1] + Pr[I_2] + ... + Pr[I_6] = 1$

ID subsumes I

Reviewsid

Movied	Scored	Р
m42	good	P ₁
m99	good	P ₂
m76	poor	P ₃

Reviewsi

Movie	Score	Р
m42	good	P ₁
m99	good	P ₂
m76	poor	Р3

Note:

Reviewsid

Movie	Score	Р
m42	good	P ₁
m99	good	P ₂
m76	poor	P ₃

means <u>all</u> tuples are disjoint

Queries

Syntax: conjunctive queries over schema S

Q(y) := Movie(x,y), Review(x,z), z >= 3

Moviei

id	year	Р
m42	1995	0.95
m99	2002	0.65
m76	2002	0.1
m05	2005	0.7

Reviewi

mid	rating	P
m42	4	0.7
m42	5	0.45
m99	5	0.82
m99	4	0.68
m05	5	0.79

Two Query Semantics

Possible answer sets

Given set A:

$$Pr[\{t \mid I \models Q(t)\} = A]$$

Used for views

Possible tuples

- Given tuple t:
- $Pr[I \models Q(t)]$

Used for query evaluation and top-k

Query Semantics

id	year	P
m42	2004	
m99	1901	
m76	1902	

id	year
m99	1935
m05	1903

id	year	p ₃
m76	1995	
m99	1935	
m05	2004	

id	year
m87	1934
m44	1904

Q(y) := Movie(x,y), Review(x,z)

Tuple probabilities

	year	P	
	1935	$p_2 + p_3 =$	0.6
	2004	$p_1 + p_3 =$	0.5
Service H	1995	p ₃ =	0.2
	• • •	• • •	

Summary on Data Model

- Data Model:
 Semantics = possible worlds
 Syntax = I-databases or ID-databases
- Queries:
 Syntax = unchanged (conjunctive queries)
 Semantics = tuple probabilities

Problem Definition

Fix schema S, query Q, answer tuple t

<u>Problem</u>: given I/ID-database DB, compute Pr[I = Q(t)]

notation: Pr[Q(t)]

Conventions:

For upper bounds (P or #P): probabilities are rationals For lower bounds (#P): probabilities are 1/2

Query Evaluation on I-Databases

Outline

- Intuition
- Extensional plans: PTIME case
- Hard queries: #P-complete case
- Dichotomy Theorem

Q(y) := Movie(x,y),Review(x,z) Intuition

Moviei

id	year	p
m42	1995	p ₁
m99	2002	P ₂
m76	2002	p ₃
m05	2005	p ₄

Reviewi

mid	rate	р
m42	4	q_1
m42	2	q ₂
m42	3	q ₃
m99	1	q ₄
m99	3	q ₅
m76	5	q 6

Answer

Year	P
1995	$p_1 \times (1 - (1 - q_1) \times (1 - q_2) \times (1 - q_3))$
2002	$1 - (1 - p_2 \times (1 - (1 - q_4) \times (1 - q_5))) \times (1 - p_3 \times q_6)$

I-Extensional Plans

[Barbara92,Lakshmanan97]

Add
$$p$$

Join \bowtie $p = p_1 * p_2$

Projection $\prod p = 1-(1-p_1)(1-p_2)...(1-p_n)$

Selection σ $p = p$

Note: data complexity is PTIME

Extensional Query Plans

21

X	1-(1	1-(1-p1)(1-p2)(1-p3)		
1				
	X	p1		
	X	p2		
	X	8 d		
	8			

Extensional Query Plans

Each tuple t has a probability t.P

Algebra operators compute t.P

Data complexity: PTIME

Q(y) := Movie(x,y),Review(x,z)

 $1-(1-pq_1)(1-pq_2)(1-pq_3)$ 1995

Movie Review 1995 m1 p q_1 m1 **q**₂ m1 **q**₃ **INCORRECT!**

CORRECT

#P-Complete Queries

Ri

S

 T^{i}

A	Р
	p 1
	p ₂
	p ₃
	p ₄

A	В

В	P
	q_1
	q ₂
	q ₃
	q ₄

 $Q_{bad} := R^i(x), S(x,y), T^i(y)$

Theorem: Data complexity is #P-complete

Proof:

Theorem [Provan&Ball83] Counting the number of satisfying assignments for bipartite DNF is #P-complete

Reduction:

X2Y3 V X1Y2 V X4Y3 V X3Y1

 R^{i}

A	р
x_1	1/2
X 2	1/2
X 3	1/2
X 4	1/2

S

A	В
X 2	У 3
$ x_1 $	y 2
X 4	Уз
X 3	y 1

Ti

В	p
У1	1/2
У2	1/2
Уз	1/2

 $Q_{bad} := R^{i}(x), S(x,y), T^{i}(y)$

I-Dichotomy

Q = boolean conjunctive query

Definition 1. For each variable x: goals(x) = set of goals that contain x

Definition 2. Q is hierarchical if forall x, y:

(a) $goals(x) \cap goals(y) = \emptyset$, or

(b) $goals(x) \subseteq goals(y)$, or

(c) $goals(y) \subseteq goals(x)$

Q := R(x), S(x,y), T(x,y,z), K(x,v)

X y S R V K

"hierarchical"

Q := R(x), S(x,y), T(y)

"non-hierarchical"

[Dalvi&S.'04]

I-Dichotomy

```
Schema S^{i} = \{R_{1}^{i}, R_{2}^{i}, ..., R_{m}^{i}\}
```

Theorem Let Q = conjunctive query w/o self-joins. Then one of the following holds:

Q is in PTIME

Q has a correct extensional plan

Q is hierarchical

or:

Q is #P-complete

Q has subgoals R(x,...), S(x,y,...), T(y,...)

Proof

Lemma 1.

If Q is non-hierarchical, then #P-complete

Proof:

Q:- Ri(v,x), Si(x,y), Ti(y,z), Ki(z)

rest is like for Qbad

Proof

Lemma 2. If Q is hierarchical, then PTIME

Proof:

Case 1: has no root

 $Pr(Q) = Pr(Q_1) Pr(Q_2) Pr(Q_3)$

This is extensional join \bowtie

Proof

Case 2: has root x

$$Dom=\{a_1, a_2, ..., a_n\}$$

$$Pr(Q) = 1 - (1-Pr(Q(a_1/x))(1-Pr(Q(a_2/x))...(1-Pr(Q(a_n/x)))$$

This is an extensional projection: T

QED

Query Evaluation on ID-Databases

- ID-extensional plans
- #P-complete queries
- Dichotomoy Theorem

Extensional Plans for ID-DBs

Only difference: two kinds of projections: independent $1-(1-p_1)...(1-p_n)$ disjoint $p_1 + ... + p_n$

#P-Complete Queries

 $Q_1 := R^i(x), S^i(x,y), T^i(y)$

 $Q_2 := R^d(x^d, y), S^d(y^d)$

 $Q_3 := R^d(x^d, y), S^d(z^d, y)$

[Dalvi&S.'04]

I-DB Dichotomy

Schema Sid s.t. each table is either Ri or Rid

Theorem Let Q = conjunctive query w/o self-joins. Then one of the following holds:

Q is in PTIME Q has a correct extensional plan

or:

Q is #P-complete Q has one of Q₁, Q₂, Q₃ as subqueries

Extensions

Extensions of the dichotomoy theorem exists for:

- Mixed schemas (some relations are deterministic)
- Functional dependencies

Summary on Query Evaluation

Extensional plans: popular, efficient, BUT

- "Equivalent" plans lead to different results
- Some queries admit "correct" plans

Some simple queries: #P-complete complexity

Dichotomy theorem

Future work: remove 'no-self-join' restriction

Conclusions

- Strong motivation from practical applications Merge query and search technologies
- Probabilistic DB's are hard! Hacks don't work (yet). Need principled approach.

Thank you!

Questions?