CSE 544

Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 10 — Parallel Programming Models:
Map Reduce and Spark

Announcements

« HWZ2 due this Thursday

« AWS accounts

— Any success?

* Feel free to drop by OH if you have project questions
— We will do another round of meetings after project milestones

Mid-Term Evals

* Aspects that people find useful:
— Pace of the class
— Examples during lectures
— Paper readings
— Mix of theory and practical concepts

* Things that can be improved:

Discussion board

— Paper readings and late policies Assignment dropbox
— HW feedback (?) Gradebook
— Website

m— Anonymous feedback
— HW lengths

— Anything else?

CSE 544 - Fall 2015

Programming Models for Analytics

* How real-world users perform data analytics
— SQL queries (last 2 lectures)
— Map Reduce programs (today)
— Spark programs (today)

— (there are many others as well: Pig, Hive, Pandas, etc)

CSE 544 - Fall 2015 4

References

 MapReduce: A major step backwards. DeWitt and Stonebraker,
The Database Column, January 2008.

 Resilient distributed datasets: a fault-tolerant abstraction for in-
memory cluster computing. Zaharia et al, NSDI 2012.

CSE 544 - Fall 2015)

Map Reduce

Google: [Dean 2004]
Open source implementation: Hadoop

MapReduce = high-level programming model and
implementation for large-scale parallel data processing

Core idea:
— Explicit parallelism

CSE 544 - Fall 2015

Map Reduce Motivation

* Not designed to be a DBMS

« Designed to simplify task of writing parallel programs
— A simple programming model that applies to many large-scale computing

problems

* Hides messy details in MapReduce runtime library:

Automatic parallelization

Load balancing

Network and disk transfer optimizations

Handling of machine failures

Robustness

Improvements to core library benefit all users of library!

CSE 544 - Fall 2015 7

content in part from: Jeff Dean

Data Processing at Massive Scale

« Want to process petabytes of data and more

* Massive parallelism:
— 100s, or 1000s, or 10000s servers (think data center)
— Many hours

 Failure:
— If medium-time-between-failure is 1 year
— Then 10000 servers have one failure / hour

CSE 544 - Fall 2015 8

Data Storage: GFS/HDFS

« MapReduce job input is a file

« Common implementation is to store files in a highly
scalable file system such as GFS/HDFS

— GFS: Google File System (proprietary)
— HDFS: Hadoop File System (open source)

— Each data file is split into M blocks (64MB or more)

— Blocks are stored on random machines & replicated
— Files are append only

CSE 544 - Fall 2015

Running your favorite parallel algorithm...

| | | |

Reduce

P oo AN
SEoooE

Does this look familiar?

CSE 544 - Fall 2015 10

Typical Problems Solved by MR

Read a lot of data
Map: extract something you care about from each record

Shuffle and Sort
Reduce: aggregate, summarize, filter, transform

Write the results

Outline stays the same,
map and reduce change to
fit the problem

CSE 544 - Fall 2015 11

slide source: Jeff Dean

Data Model

Files !
A file = a bag of (key, wvalue) pairs
A MapReduce program:

* Input: a bag of (inputkey, wvalue) pairs
e Qutput: a bag of (outputkey, walue)pairs

CSE 544 - Fall 2015

12

Step 1: the MAP Phase

User provides the MAP-function:
* Input: (input key, value)
 Qutput: bag of (intermediate key, wvalue)

System applies map function in parallel to all (input
key, wvalue) pairs in the input file

CSE 544 - Fall 2015

13

Step 2: the REDUCE Phase

User provides the REDUCE function:

Input: (intermediate key, bag of values)
Output (original MR paper): bag of output (values)
Output (Hadoop): bag of (output key, wvalues)

System groups all pairs with the same intermediate key, and
passes the bag of values to the REDUCE function

CSE 544 - Fall 2015 14

Famous (Infamous”?) Example

« Counting the number of occurrences of each word in a
large collection of documents

« Each Document
— The key = document id (did)
— The value = set of words (word)

reduce(String key, lterator values):

map(String key, String value): // key: a word

// key: document name // values: a list of counts
/[value: document contents int result = 0;

for each word w in value: for each v in values:

Emitintermediate(w, “17); result += Parselnt(v);
Emit(AsString(result));

CSE 544 - Fall 2015 15

MAP REDUCE
—> | (w1,1)
(did1,v1) | —>[wen | Shule
2| w3,1) >< w1, (1,1,1,...,1)) (w1, 25)
w2, (1,1,...)) (w2, 77)
(did2,v2) |~ | w0 w3,(1...) w3, 12)
—> | (w2,1)
CSE 544 - Fall 2015 16

Jobs v.s. Tasks

A MapReduce Job

— One single “query,” e.g. count the words in all docs
— More complex queries may consist of multiple jobs

A Map Task, or a Reduce Task

— A group of instantiations of the map-, or reduce-function, which
are scheduled on a single worker

CSE 544 - Fall 2015 17

Workers

A worker is a process that executes one task at a time

Typically there is one worker per processor, hence 4 or 8
per node

Often talk about “slots”
— E.g., Each server has 2 map slots and 2 reduce slots

CSE 544 - Fall 2015 18

MAP Tasks REDUCE Tasks

+->[wy | Shuffle
(did1,v1) | > w21 N
| w31) w1, (1,1,1,...,1)) —> | (w1, 25)
w2, (1,1,...)) —> | (w2, 77)
(did2,v2) | [[w1 (W3,(1...)) > | (3,12)
L > | (w2,1) >
(did3,v3) [\
T D
CSE 544 - Fall 201 19

Parallel MapReduce Detalls

i Ej Output to disk,
\ l replicated in cluster

Reduce Task

Intermediate data
oes to local disk
o @m g
Map Task
Data not
necessarily local
<
‘ File system: GFS
or HDFS

CSE 544 - Fall 2015

MapReduce Implementation

There is one master node
Input file gets partitioned further into M’ splits

— Each split is a contiguous piece of the input file

Master assigns workers (=servers) to the M’ map tasks,
keeps track of their progress

Workers write their output to local disk
Output of each map task is partitioned into R regions
Master assigns workers to the R reduce tasks

Reduce workers read regions from the map workers’
local disks

CSE 544 - Fall 2015 21

Example Map Reduce Execution

PageRank Application

0 50 100 150 200 250 300 350

* Shuffle M Sort Exec

<> <

Tasks

e
N\
B
L L L L L L

N
\\\ TR
;\\‘\‘.;Q‘QQ‘x\“{;ﬁﬁ\\“{:l‘iQ\\‘\‘.:RQ\\‘\‘.:KQ\\‘\‘.;Q‘QQ\\“Q;\“QQ\\“Q;Q‘Qﬁ\%ﬂﬁ\“@?ﬁ\%ﬂﬁ\%}:ﬁ%ﬁ\%}:

e

\\\

A

B

Q00NN
e
e

A

.-

mAaOcCcOm™

.

\\\

Y
CSE 544 - Fall 2015 22

Example: CloudBurst

Slot ID
A Map Reduce

IO, OO

>

Time
CloudBurst. Lake Washington Dataset (1.1GB). 80 Mappers 80 Reducers.

CSE 544 - Fall 2015 23

MapReduce Phases

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

Split Record Reader—»Map —.>:Combine:—.—>‘ Copy i—?@—»‘ Reduce \
filej l filel
e —
Local storage i
HDFS

CSE 544 - Fall 2015 24

Interesting Implementation Detalls

« Worker failure:
— Master pings workers periodically
— If down then reassigns its task to another worker
— (# a parallel DBMS restarts whole query)

 How many map and reduce tasks:
— Larger is better for load balancing
— But more tasks also add overheads
— (# parallel DBMS spreads ops across all nodes)

CSE 544 - Fall 2015 25

MapReduce Granularity lllustration

Relative Runtime

O -_DNWP,P,POTIO N O
N T R T N R B N

—
© O

O Seaflow

® Astro
14 1 8.8 4.1
87.2 63.1 77.7

1..

5.7 2.0 1.6
98.7 : 14.1

CSE 544 - Fall 2015

Hours
Minutes

26

Interesting Implementation Detalls

Backup tasks:

« Sftraggler = a machine that takes unusually long time to
complete one of the last tasks. e.g.:

— Bad disk forces frequent correctable errors (30MB/s - 1MB/s)
— The cluster scheduler has scheduled other tasks on that machine

« Stragglers are a main reason for slowdown

« Solution: pre-emptive backup execution of the last few
remaining in-progress tasks

CSE 544 - Fall 2015 27

Declarative Languages on MR

« PIG Latin (Yahoo!)

— New language, like Relational Algebra
— Open source

« HiveQL (Facebook)
— SQL-like language
— Open source
« SQL / Tenzing (Google)

— SQL on MR
— Proprietary

CSE 544 - Fall 2015

28

Example Pig system

A LOAD 'filel' AS (sid,pid,mass,px:double);
_ _ B = LOAD 'file2' AS (sid,pid,mass,px:double);
JPiglatin |c - FILTER A BY px < 1.0;
program| \p = JOIN C BY sid,
() B BY sid;
output STORE g INTO 'output.txt';
’ !

Parsed
program

Ensemble of

MapReduce jobs 29

MapReduce State

* Lots of extensions to address limitations
— Capabilities to write DAGs of MapReduce jobs
— Declarative languages

— Ability to read from structured storage (e.g., indexes)
— Etc.

* Most companies use both types of engines
* Increased integration of both engines

CSE 544 - Fall 2015

Parallel DBMS vs MapReduce

« Parallel DBMS
— Relational data model and schema
— Declarative query language: SQL
— Many pre-defined operators: relational algebra
— Can easily combine operators into complex queries
— Query optimization, indexing, and physical tuning
— Streams data from one operator to the next without blocking

— Can do more than just run queries: Data management
« Updates and transactions, constraints, security, etc.

CSE 544 - Fall 2015 31

Parallel DBMS vs MapReduce

 MapReduce
— Data model is a file with key-value pairs!
— No need to “load data” before processing it
— Easy to write user-defined operators
— Can easily add nodes to the cluster (no need to even restart)
— Uses less memory since processes one key-group at a time
— Intra-query fault-tolerance thanks to results on disk
— Intermediate results on disk also facilitate scheduling
— Handles adverse conditions: e.g., stragglers
— Arguably more scalable... but also needs more nodes!

CSE 544 - Fall 2015 32

Parallel DBMS vs MapReduce

 From DeWitt and Stonebraker article:

— Lack of schema @

— No physical tuning
« Indexes
» Access methods
— No novelty
 map fn list 2 calls fn on each element in list, and returns a new list

 fold fn list > passes each element in list to fn, fn computes an
“aggregate” value

« AKA group by and aggregate
— Missing features as compared to DBMS

« Updates and deletes
- ETL tools eciure

CSE 544 - Fall 2015 33

Parallel DBMS vs MapReduce

Many technical similarities between the two systems

At the end of the day, it's all about the users
— They are the ones who need to deal with these tools

January 17, 2008 7:37 PM
Joe Hellerstein said:

As a wise philosopher once said, Be a lover, not a fighter!

Google Dumps MapReduce in
Favor of New Hyper-Scale
Analytics System

CSE 544 - Fall 2015 34

Spark

[Zaharia et al, NSDI 2012]
Open source implementation on top of Hadoop

Spark = high-level programming model and
implementation for large-scale parallel data processing

Core idea:
— Resilient Distributed Datasets (RDDs) as the basic data model

CSE 544 - Fall 2015 35

Resilient Distributed Datasets

 Primary abstraction in Spark

Immutable once constructed
Can be used to construct more RDDs
Each RDD traces lineage information of how it was computed

lterate each element in RDD to perform computation
« Compare this with Map Reduce

CSE 544 - Fall 2015

36

Creating RDDs

« Load from files (from local file system, HDFS [Hadoop
File System], Amazon S3, etc)

« (Generate from in-memory data structures (e.g., lists)

« Compute from an existing RDD

CSE 544 - Fall 2015

37

Examples

>>> rdd1 = sc.textFile(“data.txt”)

>>> list = [1, 2, 3, 4, 5]
>>> rdd2 = sc.parallelize(list, 2)

Divide RDD into 2
partitions

Spark Context
object

CSE 544 - Fall 2015

38

Partitions

« Spark’s unit of parallelism

— An RDD divided into N partitions means that it can be potentially
be operated in parallel by N different workers

— Default value if unspecified (based on data size)
RDD split into 5 partitions

r ______ — — — — — — — — — . . —_ .

: I T T r ! Imore partitions = more parallelism I
| item-I - item-6 - item-Il item-16 - item-21 |

| item-2 I item-7 I item-12 I item-17 | item-22 1

I item-3 - item-8 - jtem-13 - item-18 : item-23 |

, ftem-4 | item-9 | item-14 | item-19 | item-24 1

I item-5 . item-10 . item-15 [item-20 : item-25 |

, | | | | !

Worker

Worker Worker

Spark
executor

Spark Spark
executor executor

Computing on RDDs

« Spark provides transformations on RDDs
— lterates over each element in RDD

 Examples:

— rdd.map(fn)
returns a new RDD by passing each element through fn

— rdd.filter(fn)
returns a new RDD by retaining those that passes fn

— rdd.distinct()
returns a new RDD with only distinct elements from source

CSE 544 - Fall 2015

40

Computing on RDDs

« Spark provides actions to get values out of RDDs
— Each one performs aggregations on a RDD

 Examples:

— rdd.reduce(fn)
computes aggregate on each element in rdd using fn

— rdd.take(n)
returns the first n elements from rdd

— rdd.count()
returns the number of elements in rdd

CSE 544 - Fall 2015

41

Example 1

list = sc.textFile(“data.txt”, 3)
cnt = list.count()

sc.textFile

data.txt >

CSE 544 - Fall 2015

list

item1
item?2
item3

item4
item5
item6

item7
item8
item9

count

S

> cnt

42

Example 2

data.txt

list =

sc.textFile(“data.txt”, 3)

filtered = list.filter(lambda a: a % 2 == 0)
cnt = filtered.count()

sc.textFile

>

list

item1
item?2
item3

filter

item4
item5
item6

>

item7
item8
item9

CSE 544 - Fall 2015

>

list

item1
item?2
item3

item4
item5

ltem7

count

S

> cnt

43

Lazy Evaluation

* Not all RDDs are computed immediately

« Spark instead remembers the set of transformations
applied to the source dataset

— Computations are applied when results are needed
— This is known as lazy evaluation

« Advantages:
— Optimizes across transformations
— Recovers from failures

— Kills slow workers and migrates jobs (recall the data skew
problem)

CSE 544 - Fall 2015

44

Data Frames

« Data frame: collection of data organized into named
columns

 Another data model besides RDD

 Example:

>>> users = sc.table(“users”)
>>> young = users[users.age < 21]
>>> young.groupBy(“gender”).count()

CSE 544 - Fall 2015

45

Spark Summary

* Programs structured around two data models:
— RDDs
— Data frames

« Emphasize on iteration over elements
— Compare that with Map Reduce

« Lazy evaluation enables further optimization

CSE 544 - Fall 2015

46

Discussion

« We have seen three different programming models for
analytics:

Writing queries (SQL)

Map Reduce

Spark

(there are many others, btw)

* Which one is better? Why?
 To what extent is each of these application dependent?

CSE 544 - Fall 2015

47

