
CSE 544
Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 14 – Distributed Transactions

Transactions

•  Main issues:

– Concurrency control

– Recovery from failures

2

Distributed Transactions

3

References

•  C. Mohan, B. Lindsay, and R. Obermarck. Transaction Management
in the R* Distributed Database Management System. ACM
Transactions On Database Systems 11 (4), 1986. Also in the Red
Book (3rd and 4th ed).

•  Chapters 8 and 9 in Principles of Transaction Processing. Second

Ed. Phil Bernstein and Eric Newcomer.

•  Chapter 22 in Ramakrishnan and Gehrke

4

Distributed Transactions

5

Employees (eid, salary, level)
where level < 5

Employees (eid, salary, level)
where level >= 5

UPDATE Employees
SET salary = salary * 1.05
WHERE level < 7

UPDATE Employees
SET salary = salary * 1.03
WHERE level >= 7

Need to update
both partitions

Must preserve ACID!

Typical Architecture

6

Employees (eid, salary, level)
where level < 5

Employees (eid, salary, level)
where level >= 5

Coordinator

Subordinate 1 Subordinate 2

User Queries User doesn’t know how
data is distributed

Distributed Transactions

•  Concurrency control
–  Allow multiple distributed queries execute at the same time

•  Failure recovery
–  Transaction must be committed at all sites or at none of the sites!

•  No matter what failures occur and when they occur
–  Two-phase commit protocol (2PC)

7

Distributed Concurrency Control

•  Different techniques are possible
–  Pessimistic, optimistic, locking, timestamps

•  Common implementation: distributed two-phase locking
–  Simultaneously hold locks at all sites involved

•  Deadlock detection techniques
–  Global wait-for graph (not very practical)

–  Timeouts

•  If deadlock: abort least costly local transaction
–  How to define cost?

8

What about failures?

9

Two-Phase Commit: Motivation

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) COMMIT

3) COMMIT 4) Coordinator
crashes

But I already aborted!

What do we do now?

10

Two-Phase Commit Protocol

•  One coordinator and many subordinates
–  Phase 1: prepare

•  All subordinates must flush tail of write-ahead log to disk before ack
•  Must ensure that if coordinator decides to commit, they can commit!

–  Phase 2: commit or abort
–  Log records for 2PC include transaction and coordinator ids
–  Coordinator also logs ids of all subordinates

•  Principle
–  When a process makes a decision: vote yes/no or commit/abort
–  Or when a subordinate wants to respond to a message: ack
–  First force-write a log record (to make sure it survives a failure)
–  Only then send message about decision

11

2PC: Phase 1, Prepare

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

3) Force-write: prepare

3) Force-write: prepare

3) Force-write: prepare

4) YES

4) YES
4) YES

12

2PC: Phase 2, Commit

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) Force-write:
commit

2) COMMIT

2) COMMIT

2) COMMIT

3) Force-write: commit

3) Force-write: commit

3) Force-write: commit

4) ACK

4) ACK
4) ACK

Transaction is
now committed! 5) Commit transaction

and “forget” it

5) Commit transaction
and “forget” it

5) Commit transaction and “forget” it

5) Write: end, then forget transaction

13

2PC with Abort

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

3) Force-write: prepare

3) Force-write: abort

3) Force-write: abort

4) YES

4) No
4) NO

5) Abort transaction
and “forget” it

5) Abort transaction and “forget” it 14

2PC with Abort

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) Force-write:
abort

2) ABORT

3) Force-write: abort
4) ACK

5) Write: end, then forget transaction

5) Abort transaction
and “forget” it

15

Coordinator State Machine

•  All states involve waiting
for messages

COMMITTING ABORTING

INIT

Receive: Commit
Send: Prepare

R: No votes
FW: Abort
S: Abort

R: Yes votes
FW: Commit
S: Commit

END

COLLECTING

R: ACKS
W: End
Forget

R: ACKS
W: End
Forget

Subordinate State Machine

•  INIT and PREPARED
involve waiting

PREPARED

COMMITTING ABORTING

INIT

R: Prepare
FW: Prepare
S: Yes vote

R: Prepare
FW: Abort
S: No vote

Abort
and forget

R: Abort
FW: Abort
S: Ack

Commit
and forget

R: Commit
FW: Commit
S: Ack

17

Handling Site Failures

•  Approach 1: no site failure detection
–  Can only do retrying & blocking

•  Approach 2: timeouts
–  Since unilateral abort is ok,

–  Subordinate can timeout in init state
–  Coordinator can timeout in collecting state

–  Prepared state is still blocking

•  2PC is a blocking protocol

18

Site Failure Handling Principles

•  Retry mechanism
–  In prepared state, periodically query coordinator
–  In committing/aborting state, periodically resend messages to

subordinates

•  If doesn't know anything about transaction respond
“abort” to inquiry messages about fate of transaction

•  If there are no log records for a transaction after a
crash then abort transaction and “forget” it

19

Site Failure Scenarios

20

COMMITTING ABORTING

INIT

Receive: Commit
Send: Prepare

R: No votes
FW: Abort
S: Abort

R: Yes votes
FW: Commit
S: Commit

END

COLLECTING

R: ACKS
W: End

R: ACKS
W: End

PREPARED

COMMITTING ABORTING

INIT

R: Prepare
FW: Prepare
S: Yes vote

R: Prepare
FW: Abort
S: No vote

Abort
and forget

R: Abort
FW: Abort
S: Ack

R: Commit
FW: Commit
S: Ack

Commit
and forget

Observations

•  Coordinator keeps transaction in transactions table until it
receives all acks
–  To ensure subordinates know to commit or abort
–  So acks enable coordinator to “forget” about transaction

•  Read-only transactions: no changes ever need to be
undone nor redone

•  After crash, if recovery process finds no log records for a
transaction, the transaction is presumed to have aborted

21

Presumed Abort Protocol

•  Optimization goals
–  Fewer messages and fewer force-writes

•  Principle
–  If nothing known about a transaction, assume ABORT

•  Aborting transactions need no force-writing
•  Avoid log records for read-only transactions

–  Reply with a READ vote instead of YES vote
•  Optimizes read-only transactions

22

2PC State Machines (repeat)

COMMITTING ABORTING

INIT

Receive: Commit
Send: Prepare

R: No votes
FW: Abort
S: Abort

R: Yes votes
FW: Commit
S: Commit

END

COLLECTING

R: ACKS
W: End

R: ACKS
W: End

PREPARED

COMMITTING ABORTING

INIT

R: Prepare
FW: Prepare
S: Yes vote

R: Prepare
FW: Abort
S: No vote

Abort
and forget

R: Abort
FW: Abort
S: Ack

R: Commit
FW: Commit
S: Ack

Commit
and forget 23

Presumed Abort State Machines

COMMITTING

INIT

Receive: Commit
Send: Prepare

R: No votes
W: Abort
S: Abort

R: Yes votes
FW: Commit
S: Commit

END

COLLECTING

R: ACKS
W: End

PREPARED

COMMITTING ABORTING

INIT

R: Prepare
FW: Prepare
S: Yes vote

R: Prepare
W: Abort
S: No vote

Abort
and forget

R: Abort
W: Abort

R: Commit
FW: Commit
S: Ack

Commit
and forget 24

Presumed Abort for Read-Only

INIT

Receive: Commit
Send: Prepare

END

COLLECTING

R: Read
Forget

DONE

INIT

R: Prepare
S: Read vote

Forget

25

Replication

26

Outline

•  Goals of replication

•  Three types of replication
–  Eager replication
–  Lazy replication
–  Two-tier replication

27

Goals of Replication

•  Goal 1: availability
•  Goal 2: performance

•  As expected, it’s easy to build a replicated
system that reduces performance and availability

Some
requests

Other
requests

Three replicas

28

Eager Replication

•  Also called synchronous replication
•  All updates are applied to all replicas (or to a majority) as

part of a single transaction (need two phase commit)
–  E.g., triggers on tables apply updates to replicas within transaction

•  Main goal: as if there was only one copy
–  Maintain consistency
–  Maintain one-copy serializability
–  i.e., execution of transactions has same effect as an execution on

a non-replicated db

•  Transactions must acquire global locks

29

Eager Master

•  One master for each object holds primary copy
–  The “Master” is also called “Primary”
–  To update object, transaction must acquire a lock at the master
–  Lock at the master is global lock

•  Master propagates updates to replicas synchronously
–  Updates propagate as part of the same distributed transaction
–  For example, using triggers

30

Crash Failures

•  What happens when a secondary crashes?
–  Nothing happens
–  When secondary recovers, it catches up

•  What happens when the master/primary fails?
–  Blocking would hurt availability
–  Must chose a new primary: run election
–  See the Paxos algorithm (CSE 550)

31

Network Failures / Partitions

•  Network failures can cause trouble...
–  Secondaries think that primary failed
–  Secondaries elect a new primary
–  But primary can still be running
–  Now have two primaries!

32

Majority Consensus

•  To avoid problem, only majority partition can continue
processing at any time

•  In general,
–  Whenever a replica fails or recovers...
–  a set of communicating replicas must determine...
–  whether they have a majority before they can continue

33

Eager Group

•  With n copies
–  Exclusive lock on x copies is global exclusive lock
–  Shared lock on s copies is global shared lock
–  Must have: 2x > n and s + x > n

•  Majority locking
–  s = x = ⎡(n+1)/2⎤
–  No need to run any reconfiguration algorithms

•  Read-locks-one, write-locks-all
–  s=1 and x = n, high read performance
–  Need to make sure algorithm runs on quorum of machines

34

Eager Replication Properties

•  Favors consistency over availability
–  Only majority partition can process requests
–  There appears to be a single copy of the db

•  High runtime overhead
–  Must lock and update at least majority of replicas
–  Two-phase commit
–  Runs at pace of slowest replica in quorum
–  So overall system is now slower
–  Higher deadlock rate (transactions take longer)

35

Lazy Replication

•  Also called asynchronous replication
•  Also called optimistic replication

•  Main goals: availability and performance

•  Approach
–  One replica updated by original transaction
–  Updates propagate asynchronously to other replicas

36

Lazy Master

•  One master holds primary copy
–  Transactions update primary copy
–  Master asynchronously propagates updates to replicas, which

process them in same order (e.g. through log shipping)
–  Ensures single-copy serializability

•  What happens when master/primary fails?
–  Can lose most recent transactions when primary fails!
–  After electing a new primary, secondaries must agree who is

most up-to-date

37

Lazy Group

•  Also called multi-master
•  Best scheme for availability
•  Cannot guarantee one-copy serializability!

R1 R2
Init: x=1
Update x=2

Init: x=1
Update x=3

38

Lazy Group

•  Cannot guarantee one-copy serializability!
•  Instead guarantee convergence

–  DB state does not reflect any serial execution
–  But all replicas have the same state

•  Detect conflicts and reconcile replica states
•  Different reconciliation techniques are possible

–  Manual
–  Most recent timestamp wins
–  Site A wins over site B
–  User-defined rules, etc.

39

Detecting Conflicts
Using Timestamps

R1 R2

x=2, Old: T0 New: T1

Init: x=1 at T0
Update at T1 : x=2

Init: x=1 at T0

x=2 at T1 x=2 at T1

40

R1 R2

x=2, Old: T0 New: T1

Conflict!

Init: x=1 at T0
Update at T1 : x=2

Init: x=1 at T0

Update at T2: x=3

Conflict! x=3, Old: T0 New: T2

Reconciliation rule
T2 > T1, so x=3

Reconciliation rule
T2 > T1, so x=3

Detecting Conflicts
Using Timestamps

41

Lazy Group
Replication Properties

•  Favors availability over consistency
–  Can read and update any replica
–  High runtime performance

•  Weak consistency
–  Conflicts and reconciliation

42

Important principle in systems research:
TINSTAAFL

Two-Tier Replication

•  Benefits of lazy master and lazy group
•  Each object has a master with primary copy
•  When disconnected from master

–  Secondary can only run tentative transactions

•  When reconnects to master
–  Master reprocesses all tentative transactions
–  Checks an acceptance criterion
–  If passes, we now have final commit order
–  Secondary undoes tentative and redoes committed

43

Conclusion
(distributed txns and replication)

•  Distributed transactions are very important
–  Necessary for scalability (throughput and global services)
–  But ACID properties require expensive 2PC protocol

•  Replication is a very important problem
–  Fault-tolerance (various forms of replication)
–  Caching (lazy master)
–  Warehousing (lazy master)
–  Mobility (two-tier techniques)

•  Replication is complex, but basic techniques and
trade-offs are very well known
–  Eager or lazy replication
–  Master or no master
–  For eager replication: use quorum

44

