CSE 544 Principles of Database Management Systems

Alvin Cheung Fall 2015 Lecture 16 - Stream Processing

Announcements

- HW1 graded
 - Send staff an email if you have comments
- Lecture plan for last 2 weeks of classes posted online
 Next Tuesday will be the last class
- No OH today

Course Outline

- Data Models
- Query Execution
- Data Analytics (OLAP)
- Transaction Processing (OLTP)
- Recovery and Replication
- Advanced Topics
 - Today: stream processing
 - Thursday: DBMS in the real world
 - Next Tuesday: NoSQL

References

- Aurora: A New Model and Architecture for Data Stream
 Management. Daniel Abadi et. al. VLDB Journal. 12(2). 2003
- Additional references:
 - Chandrasekaran et al, "TelegraphCQ: Continuous Dataflow Processing for an Uncertain World." CIDR 2003.
 - The STREAM Group, "STREAM: The Stanford Stream Data Manager." IEEE Data Engineering Bulletin, March 2003.
 - Meehan et al, "S-Store: Streaming Meets Transaction Processing." PVLDB 8(13), 2015.

Outline

Stream processing applications

- Background
- Examples
- Requirements

Aurora system

- Stream model and query model
- Processing model
- Operators
- Query examples
- Other features

• STREAMS system

- DSMS motivation
- CQL
- Query evaluation

Why data streams?

- Data constantly being generated all the time
 - Trading transactions, sensors, phones
- Real-time processing required
 - Update trade positions, people's locations, etc
 - Cannot wait until data are ingested into warehouse
- Too much data to store!
 - Airbus A350 generates 2.5Tb of data **per day** with 6000 sensors
 - New model in 2020 will capture 3x that amount

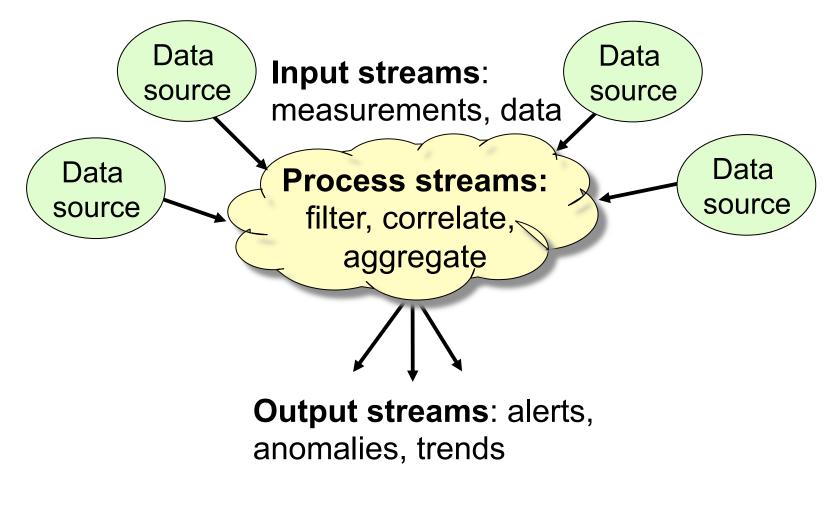
Why data streams?

- Four Vs of big data:
 - Volume
 - Velocity
 - Variety
 - Veracity

Why data streams?

- Four Vs of big data:
 - Volume
 - Velocity
 - Variety
 - Veracity

Stream Processing



CSE 544 - Fall 2015

Application Domains

- Network monitoring
 - Intrusion, fraud, anomaly detection, click streams
- Financial services
 - Market feed processing, ticker failure detection
- Sensor-based environment monitoring
 - Weather conditions, air quality, car traffic
 - Civil engineering, military applications, etc.
- Medical applications
 - Patient monitoring, equipment tracking
- Near real-time data analytics

Requirements

Input data is pushed continuously

- Traditional DBMSs not designed for continuous loading or inserting of individual data items
- "DBMS-active, human passive" model

Users want to execute continuous queries

 Traditional DBMSs have no direct support for such queries. Can use triggers, but triggers do not scale

Low-latency processing

- Need to see results in near real-time
- Data is possibly high-volume and high-rate

Other Requirements

- Distribution
- Load management and load shedding
- Approximate processing, approximate answers
- Fault-tolerance and revision processing
- Exploiting data archives

Outline

- Stream processing applications
 - Examples
 - Requirements

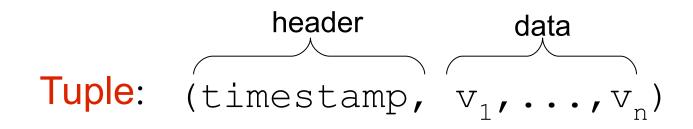
Aurora system

- Stream model and query model
- Processing model
- Operators
- Query examples
- Other features

STREAMS system

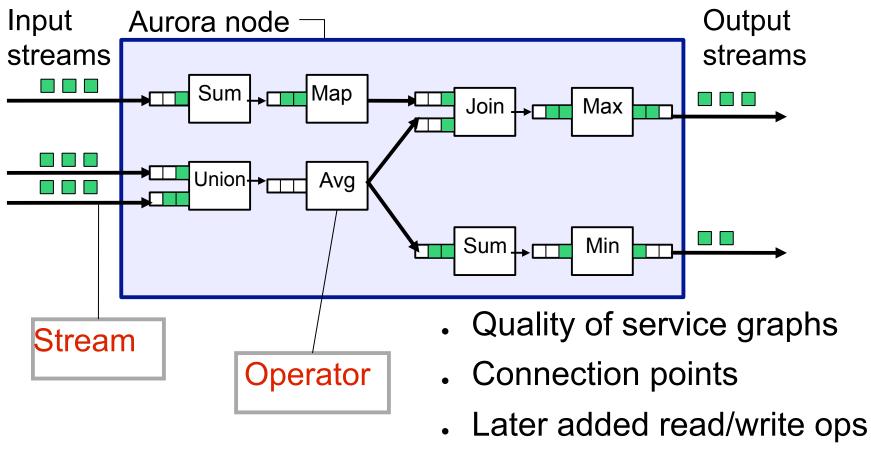
- DSMS motivation
- CQL
- Query evaluation

Stream Data Model



- Stream: append-only sequence of tuples
- All tuples on a stream have same schema
- Timestamp is used for QoS

Query Model



. No query language (!)

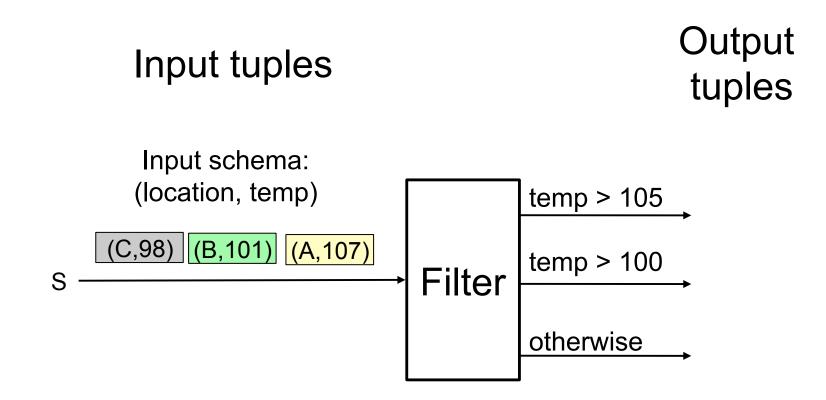
Aurora Operators

- Order-agnostic
 - Filter
 - Мар
 - Union
- Order-sensitive
 - Aggregate
 - Join
 - BSort, Resample

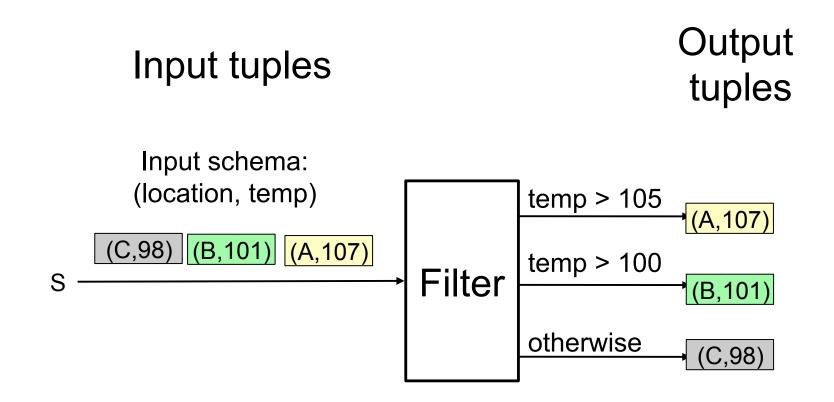
Why do we need new operators?

- Ops cannot block & cannot accumulate state that grows with input

Filter Example



Filter Example



Map Example

new.location = old.location
new.temp_celcius = 5/9*(old.temp - 32)

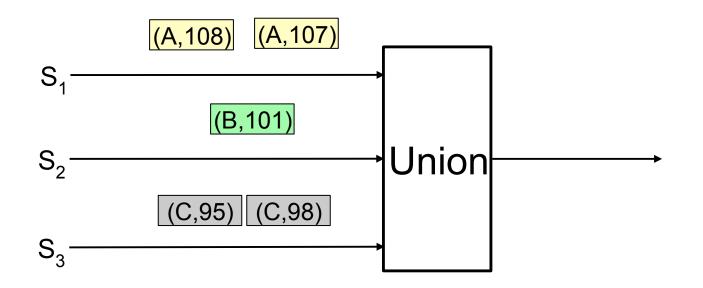
CSE 544 - Fall 2015

Map Example

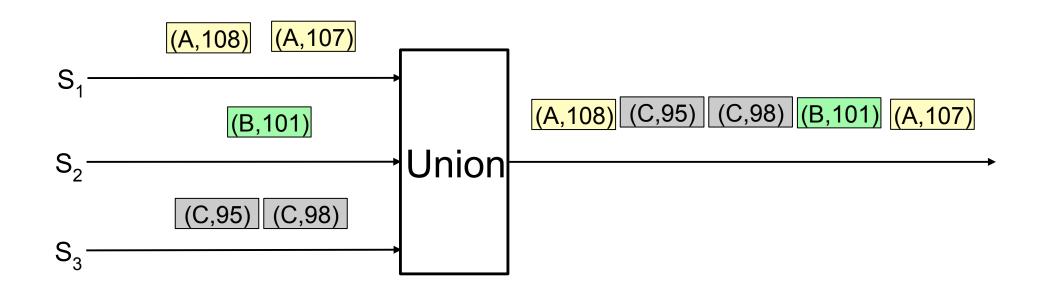
new.location = old.location
new.temp_celcius = 5/9*(old.temp - 32)

CSE 544 - Fall 2015

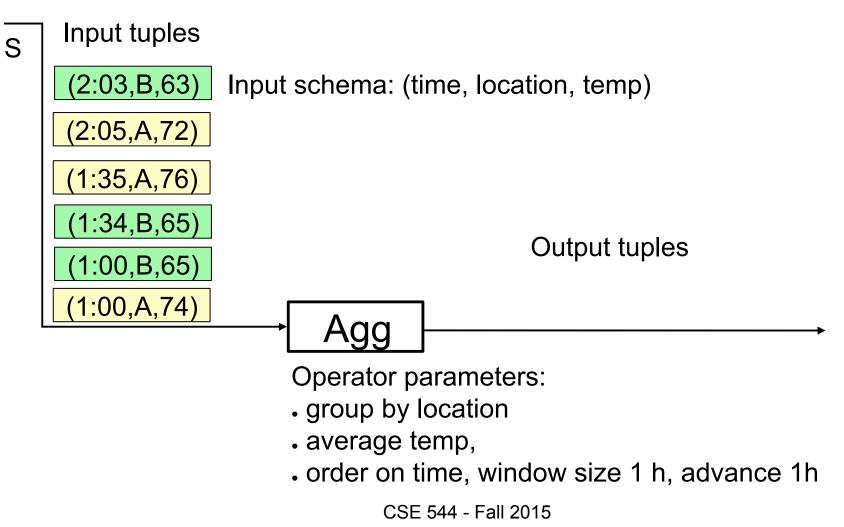
Union Example



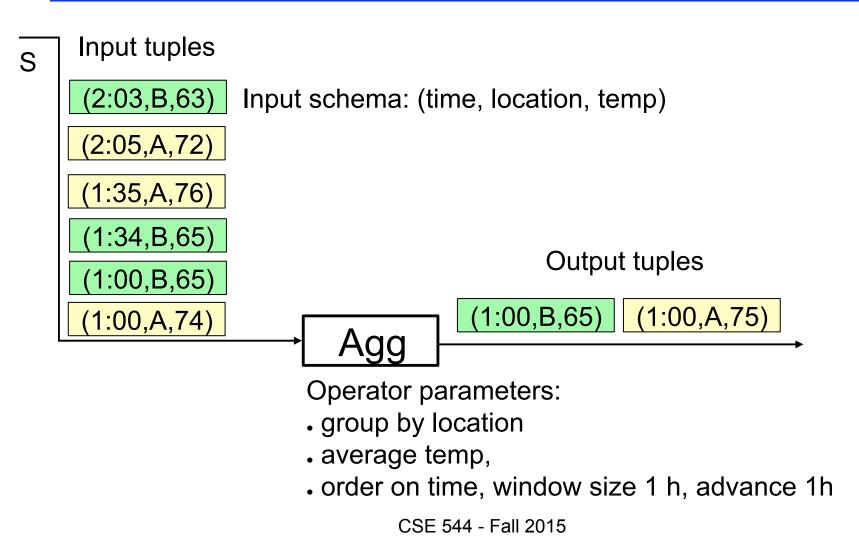
Union Example



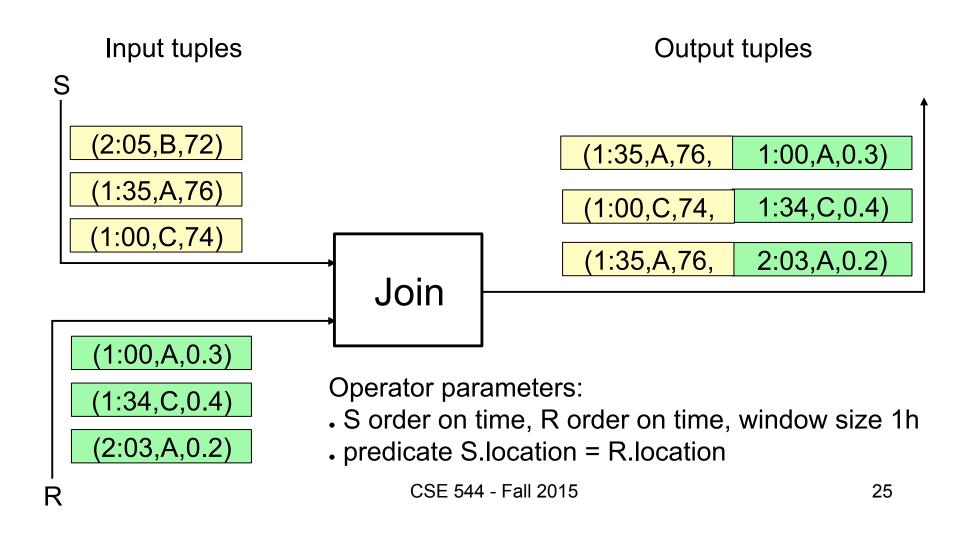
Aggregate Example



Aggregate Example



Join Example



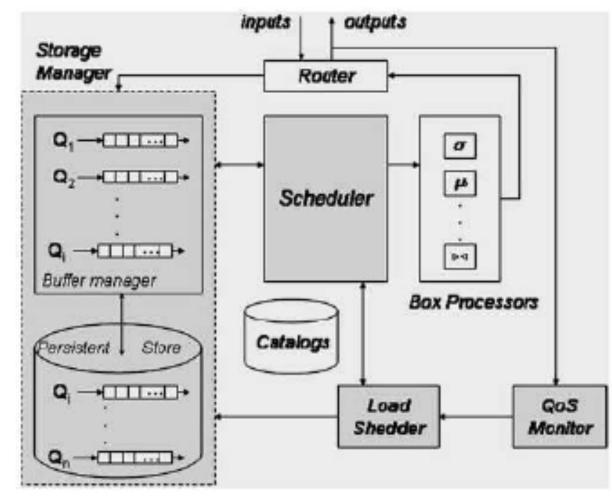
Sample Query

- Application: network intrusion detection
- Schema of input stream

(src_ip,src_port,dst_ip,dst_port,time)

- Query
 - Alert me if an IP address establishes more than 100 connections per minute
 - and within 30 seconds of that event
 - the IP tries to connect to more than 10 distinct ports within a minute

Processing Model



[Figure 3 from Abadi 03] CSE 544 - Fall 2015

Additional Features

Load management

– What happens when system is overloaded?

Fault-tolerance

- What happens if a node fails?
- What happens if the network fails?
- What happens if input data is wrong?

Exploiting data archives

- Historical queries, ad-hoc queries
- Integrating push-based processing with pull-based

Outline

Stream processing applications

- Examples
- Requirements

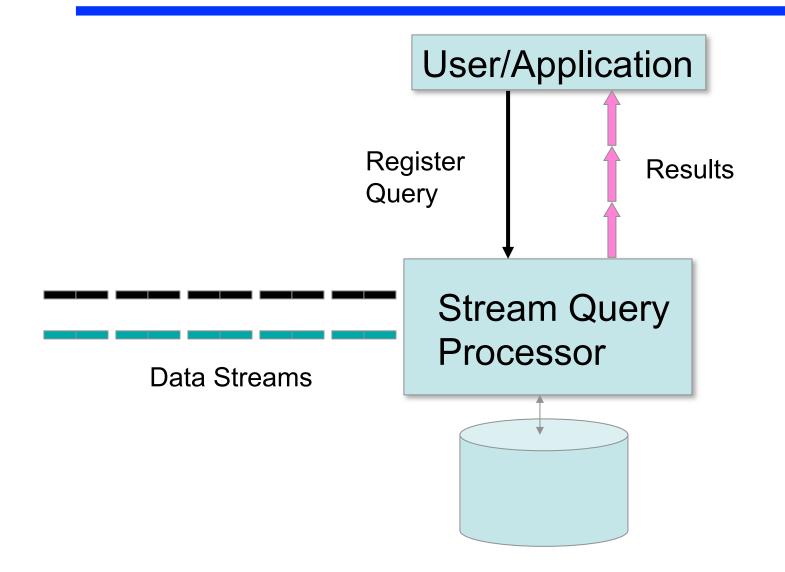
Aurora system

- Stream model and query model
- Processing model
- Operators
- Query examples
- Other features

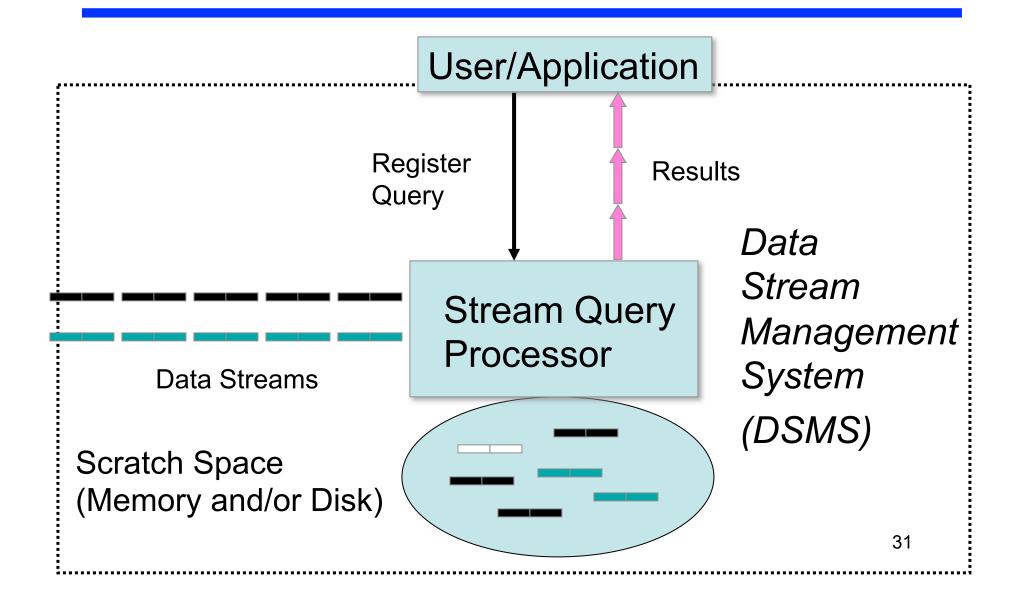
STREAMS system

- DSMS motivation
- CQL
- Query evaluation

System Model



New Approach for Data Streams



DBMS versus DSMS

- Persistent relations
- One-time queries
- Random access
- Access plan determined by query processor and physical DB design
- "Unbounded" disk store

- Transient streams (and persistent relations)
- Continuous queries
- Sequential access
- Unpredictable data arrival and characteristics
- Bounded main memory

Query Language & Semantics

- Specifying queries over streams
 - SQL-like versus dataflow network of operators
 - Sliding windows as a query construct
- Semantic issues
 - Blocking operators, e.g., *aggregation, order-by*
 - Streams as sets versus lists
 - Timestamping
 - (compare to Aurora)

Issues in Query Evaluation

- Approximation
- Adaptivity
- Multiple queries
- Distributed streams

Query Evaluation – Approximation

- Why approximate?
 - Streams are coming too fast
 - Exact answer requires unbounded storage or significant computational resources
 - Ad hoc queries reference history
- Issues in approximation
 - Sliding windows, sampling, synopses, ...
 - How is approximation controlled?
 - How is it understood by user?
- Tradeoff between accuracy / efficiency / storage
- A lot of work on **streaming algorithms**

Query Evaluation – Adaptivity

- Why adaptivity?
 - Queries are long-running
 - Fluctuating stream arrival & data characteristics
 - Evolving query loads
- Issues in adaptivity
 - Adaptive resource allocation (memory, computation)
 - Adaptive query execution plans

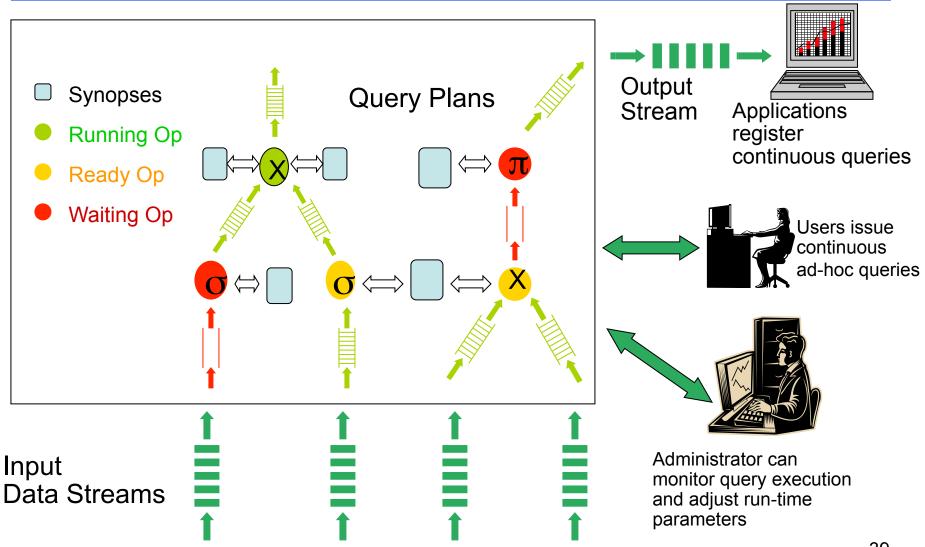
Query Evaluation – Multiple Queries

- Possibly large number of continuous queries
- Long-running
- Shared resources
- Multi-query optimization

Query Evaluation – Distributed Streams

- Many physical streams but one logical stream
 e.g., maintain top 100 visited pages at Yahoo
- 2 Correlate streams at distributed servers
 - e.g., network monitoring
- 3 Many streams controlled by a few servers
 - e.g., sensor networks
- Issues
 - Move processing to streams, not streams to processor
 - Approximation-bandwidth tradeoff

STREAM Architecture



STREAM Internals

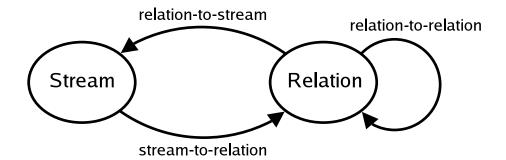
- Query plans: operators, synopses, queues
- Memory management
 - Dynamic allocation to buffers, queues, synopses
 - Accuracy vs. memory tradeoff
 - Operators adapt gracefully to memory reallocation
- Scheduler
 - Handles variable-rate input streams
 - Handles varying operator and query requirements

CQL: Data Models

- Continuous Query Language
- Data models: **both** data streams and relations
 - Streams: unbounded bag (multiset) of (s, t) pairs
 - s: tuple
 - t: timestamp of the arrival time of s
 - Relations: time-varying bags of tuples
 - R(t): bag of tuples at time t
 - Also called an instantaneous relation

CQL: Operators

• Should be able to convert from relations to streams, streams to relations, relations to relations



Stream-to-Relation Operators

- Tuple-based sliding window
 - [Rows N] : returns the N tuples from stream with largest timestamps from a relation
 - Example: R(t) [Rows N]
 - [Rows Unbounded] means all return tuples from relation
- Time-based sliding window
 - [Range w] : returns all tuples from a relation with timestamps between t and w
 - Example: R(t) [Range w]
- Partitioned sliding window
 - $\{A_1, A_2, ..., A_k\}$: divide stream into k different substreams where each A_i is true

Relation-to-Stream Operators

- Istream (insert stream) : returns a stream from relation R, with a tuple generated whenever a tuple is inserted into R
- Dstream (delete stream) : returns a stream from relation R, with a tuple generated whenever at a tuple is deleted from R
- Rstream (relation stream) : returns a stream that contains a snapshot of relation R at particular time instant t

CQL Example

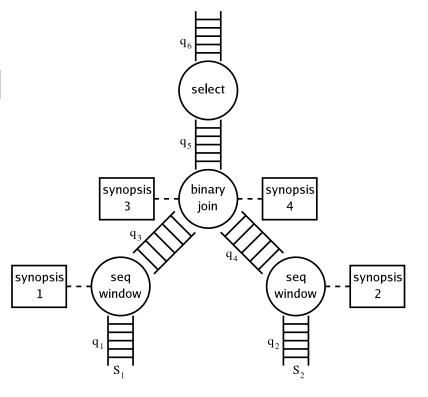
- Select Istream(*)
 From S [Rows Unbounded]
 Where S.A > 10
- Evaluation:
 - Convert S to a relation by applying [Rows Unbounded]
 - Evaluate predicate S.A > 10
 - Convert results into a stream by applying Istream(*)
- What query is this equivalent to?

Plan Implementation

- A CQL query plan contains three components:
 - Operators
 - Queues
 - Synopses
- Operators: filters, R-to-S, S-to-R, etc
- Queues: buffers that store intermediate outputs between operators
 - Why is that needed?
- Synopses: current state of each operator
 - Last timestamp of processed tuples in a join

Example of Physical Plan

 Select *
 From S1 [Rows 1000], S2 [Range 2 Minutes]
 Where S1.A = S2.A
 And S1.A > 10

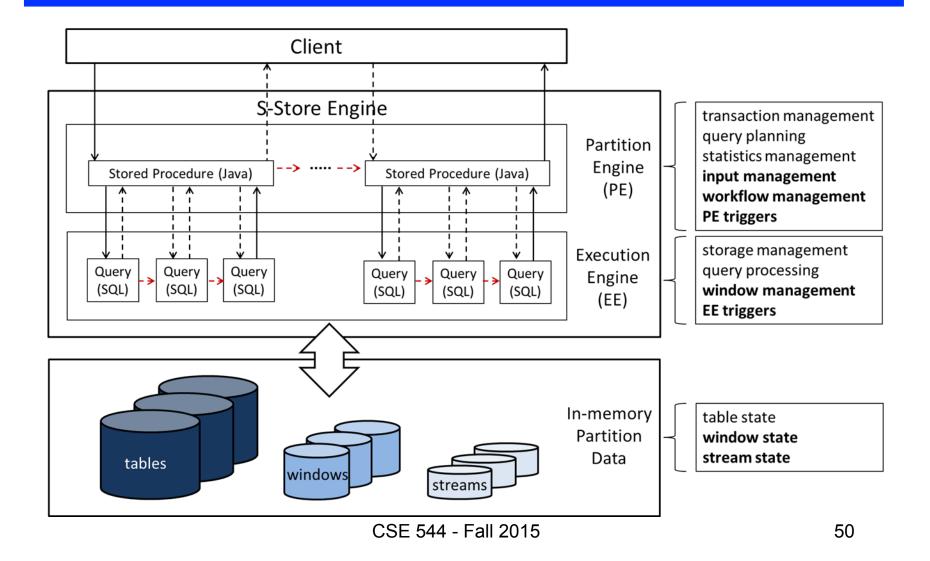


Encore: A Decade Later

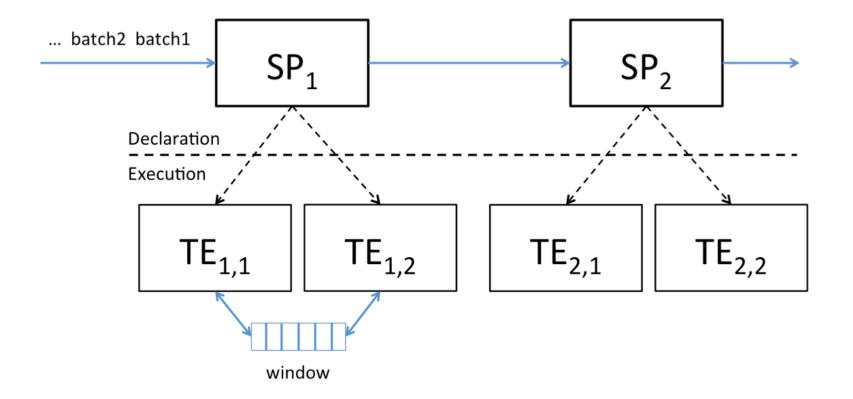
S-Store

- Streaming system with transactional support
- Built on top of H-Store (!)
- Why build transactions on top of streams?

S-Store Architecture



S-Store Transactions



CSE 544 - Fall 2015

Conclusion

- Streaming data model
 - Streams + relations
- Stream queries
 - Extensions on top of SQL
- Applications
 - Stocks, real-time apps, update machine learning models
- Issues:
 - ACID
 - Replication