
CSE 544
Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 2 – SQL and Schema Normalization

CSE 544 - Fall 2015 1

Announcements

•  Paper review
–  First paper review is due on Wednesday 10:30am
–  Details on website

•  Find partners (0 or more) for the project
–  Project groups due on Friday (email)
–  You don’t need to choose a project yet; more suggestions will

continue to be posted on website

•  Homework 1 will be released by tomorrow!
–  Due in two weeks

CSE 544 - Fall 2015 2

CSE 544 - Fall 2015

Outline

Three topics today

•  Wrap up relational algebra

•  Crash course on SQL

•  Brief overview of database design

3

CSE 544 - Fall 2015

Outline

Three topics today

•  Wrap up relational algebra

•  Crash course on SQL

•  Brief overview of database design

4

CSE 544 - Fall 2015

Relational Operators

•  Selection: σcondition(S)
–  Condition is Boolean combination (∧,∨) of terms
–  Term is: attr. op constant, attr. op attr.
–  Op is: <, <=, =, ≠, >=, or >

•  Projection: πlist-of-attributes(S)
•  Union (∪), Intersection (∩), Set difference (–),
•  Cross-product or cartesian product (×)
•  Join: R θ S = σθ(R × S)
•  Division: R/S
•  Rename ρ(R(F),E)

5

CSE 544 - Fall 2015

Cross-Product Example

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P.age P.zip disease
54 98125 heart
54 98125 heart
20 98120 flu
20 98120 flu

name V.age V.zip
p1 54 98125
p2 20 98120
p1 54 98125
p2 20 98120

P x V

name age zip
p1 54 98125
p2 20 98120

6

CSE 544 - Fall 2015

Join Galore

•  Theta-join: R θ S = σθ(R x S)
–  Join of R and S with a join condition θ
–  Cross-product followed by selection θ

•  Equijoin: R θ S = πA (σθ(R x S))
–  Join condition θ consists only of equalities
–  Projection πA drops all redundant attributes

•  Natural join: R S = πA (σθ(R x S))
–  aka Equijoin
–  Equality on all fields with same name in R and in S

7

CSE 544 - Fall 2015

Theta-Join Example

age zip disease
50 98125 heart
19 98120 flu

AnonPatient P Voters V

P.age P.zip disease
19 98120 flu

name V.age V.zip
p2 20 98120

P P.zip = V.zip and P.age <= V.age + 1 and P.age >= V.age - 1 V

name age zip
p1 54 98125
p2 20 98120

8

CSE 544 - Fall 2015

Equijoin Example

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P P.age=V.age V

name age zip
p1 54 98125
p2 20 98120

age P.zip disease name V.zip

54 98125 heart p1 98125

20 98120 flu p2 98120

9

CSE 544 - Fall 2015

Natural Join Example

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P V

name age zip
p1 54 98125
p2 20 98120

age zip disease name

54 98125 heart p1

20 98120 flu p2

10

CSE 544 - Fall 2015

Even More Joins

•  Outer join
–  Include tuples with no matches in the output
–  Use NULL values for missing attributes

•  Variants
–  Left outer join
–  Right outer join
–  Full outer join

11

CSE 544 - Fall 2015

Outer Join Example

age zip disease
54 98125 heart
20 98120 flu
33 98120 lung

AnonPatient P Voters V

P o V

name age zip
p1 54 98125
p2 20 98120

age zip disease name

54 98125 heart p1

20 98120 flu p2

33 98120 lung null

12

CSE 544 - Fall 2015

Example of Algebra Queries

Relations
 Supplier(sno,sname,scity,sstate)!
!Part(pno,pname,psize,pcolor)!
!Supply(sno,pno,qty,price)!

Q2: Name of supplier of parts with size greater than 10
πsname(Supplier Supply (σpsize>10 (Part))

Q3: Name of supplier of red parts or parts with size greater than 10
πsname(Supplier Supply (σpsize>10 (Part) ∪ σpcolor=‘red’ (Part)))

(Many more examples in R&G)

13

Logical Query Plans

An RA expression but represented as a tree

CSE 544 - Fall 2015 14

Supplier Supply

pno=pno

Part

Π sname

σ psize > 10
sno=sno

Relations are sets of tuples
Each operator takes relations
as input and outputs a relation
Can easily compose operators
into expressions also called plans

CSE 544 - Fall 2015

Extended Operators
of Relational Algebra

•  Duplicate elimination (δ)
–  Since commercial DBMSs operate on multisets/bags not sets

•  Aggregate operators (γ)
–  Useful in practice and requires bag semantics
–  Min, max, sum, average, count

•  Grouping operators (γ)
–  Partitions tuples of a relation into “groups”
–  Aggregates can then be applied to groups

•  Sort operator (τ)
15

CSE 544 - Fall 2015

Relational Calculus

•  Alternative to relational algebra
–  Declarative query language
–  Describe what we want NOT how to get it

•  Tuple relational calculus query
–  { T | p(T) }
–  Where T is a tuple variable
–  p(T) denotes a formula that describes T
–  Result: set of all tuples for which p(T) is true
–  Language for p(T) is subset of first-order logic

Q1: Names of patients who have heart disease
{ T | ∃ P ∈ AnonPatient ∃ V ∈ Voter

 (P.zip = V.zip ∧ P.age = V.age ∧ P.disease = ‘heart’ ∧ T.name = V.name) }
16

CSE 544 - Fall 2015

Outline

Three topics today

•  Wrap up relational algebra

•  Crash course on SQL

•  Brief overview of database design

17

CSE 544 - Fall 2015

Structured Query Language: SQL

•  Influenced by relational calculus

•  Declarative query language

•  Multiple aspects of the language
–  Data definition language (DDL)

•  Statements to create, modify tables and views
–  Data manipulation language (DML)

•  Statements to issue queries, insert, delete data
–  More

18

CSE 544 - Fall 2015

Outline

•  Today: crash course in SQL DML
–  Data Manipulation Language
–  SELECT-FROM-WHERE-GROUPBY
–  Study independently: INSERT/DELETE/MODIFY

•  Study independently SQL DDL
–  Data Definition Language
–  CREATE TABLE, DROP TABLE, CREATE INDEX,

CLUSTER, ALTER TABLE, …
–  E.g. google for the postgres manual, or type this in psql:

\h create  
\h create table  
\h cluster  

19

CSE 544 - Fall 2015

SQL Query

 SELECT <attributes>
 FROM <one or more relations>
 WHERE <conditions>

Basic form: (plus many many many more bells and
whistles)

20

CSE 544 - Fall 2015

Simple SQL Query

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

SELECT PName, Price, Manufacturer
FROM Product
WHERE Price > 100

Product

PName Price Manufacturer

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

“selection” and
“projection”

21

CSE 544 - Fall 2015

Eliminating Duplicates

SELECT DISTINCT category
FROM Product

Compare to:

SELECT category
FROM Product

Category

Gadgets

Gadgets

Photography

Household

Category

Gadgets

Photography

Household

22

CSE 544 - Fall 2015

Ordering the Results

SELECT pname, price, manufacturer
FROM Product
WHERE category=‘gizmo’ AND price > 50
ORDER BY price, pname

Ties are broken by the 2nd attribute on the ORDER BY list, etc.

Ordering is ascending, unless you specify the DESC keyword.

Can also request only top-k with LIMIT clause

23

CSE 544 - Fall 2015

Joins

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all products under $200 manufactured in Japan;
return their names and prices.

SELECT P.pname, P.price
FROM Product P, Company C
WHERE P.manufacturer=C.cname AND C.country=‘Japan’
 AND P.price <= 200

SELECT P.pname, P.price
FROM Product P JOIN Company C ON P.manufacturer=C.cname
WHERE C.country=‘Japan’ AND P.price <= 200

24

Semantics of SQL Queries

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do
 for x2 in R2 do
 …..
 for xn in Rn do
 if Conditions
 then Answer = Answer ∪ {(a1,…,ak)}
return Answer

CSE 544 - Fall 2015 25

CSE 544 - Fall 2015

Aggregation

SELECT count(*)
FROM Product
WHERE year > 1995

Except count, all aggregations apply to a single attribute

SELECT avg(price)
FROM Product
WHERE maker=“Toyota”

SQL supports several aggregation operations:

 sum, count, min, max, avg

26

Grouping and Aggregation

Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Let’s see what this means…

Find total quantities for all sales over $1, by product.

CSE 544 - Fall 2015 27

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause:
 grouped attributes and aggregates.

CSE 544 - Fall 2015 28

1&2. FROM-WHERE-GROUPBY

CSE 544 - Fall 2015

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10 WHERE	 price	 >	 1	

29

3. SELECT

Product TotalSales

Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

CSE 544 - Fall 2015

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

What can go in SELECT clause?
Will return ONE TUPLE per

group

30

HAVING Clause

SELECT product, sum(price*quantity)
FROM Purchase
WHERE price > 1
GROUP BY product
HAVING Sum(quantity) > 30

Same query as earlier, except that we consider only products
that had at least 30 sales.

HAVING clause contains conditions on aggregates.

CSE 544 - Fall 2015 31

WHERE vs HAVING

•  WHERE condition is applied to individual rows
–  The rows may or may not contribute to the aggregate
–  No aggregates allowed here

•  HAVING condition is applied to the entire group
–  Entire group is returned, or not al all
–  May use aggregate functions in the group

CSE 544 - Fall 2015 32

General form of Grouping
and Aggregation

S = may contain attributes a1,…,ak and/or any
aggregates but NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn
C2 = is any condition on aggregate expressions

 and on attributes a1,…,ak

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

CSE 544 - Fall 2015 33

Semantics of SQL With Group-By

Evaluation steps:
1.  Evaluate FROM-WHERE using Nested Loop Semantics
2.  Group by the attributes a1,…,ak
3.  Apply condition C2 to each group (may have aggregates)
4.  Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

CSE 544 - Fall 2015
34

Subqueries

•  A subquery is a SQL query nested inside a larger query
•  Such inner-outer queries are called nested queries
•  A subquery may occur in:

–  A SELECT clause
–  A FROM clause
–  A WHERE clause

•  Rule of thumb: avoid writing nested queries when
possible; keep in mind that sometimes it’s impossible

CSE 544 - Fall 2015 35

Subqueries in WHERE

CSE 544 - Fall 2015

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *
 FROM Product P
 WHERE C.cid = P.cid and P.price < 200)

Existential quantifiers

Using EXISTS:

Product (pname, price, cid)
Company(cid, cname, city)

36

Subqueries in WHERE

CSE 544 - Fall 2015

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid
 FROM Product P
 WHERE P.price < 200)

Existential quantifiers

Using IN

Product (pname, price, cid)
Company(cid, cname, city)

37

Subqueries in WHERE

CSE 544 - Fall 2015

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ANY (SELECT price
 FROM Product P
 WHERE P.cid = C.cid)

Existential quantifiers

Using ANY:

Product (pname, price, cid)
Company(cid, cname, city)

38

Subqueries in WHERE

CSE 544 - Fall 2015

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid= P.cid and P.price < 200

Existential quantifiers are easy ! J

Existential quantifiers

Now let’s unnest it:

Product (pname, price, cid)
Company(cid, cname, city)

39

Subqueries in WHERE

CSE 544 - Fall 2015

Find all companies whose products all have price < 200

Universal quantifiers are hard ! L

Find all companies that make only products with price < 200

same as:

Universal quantifiers Product (pname, price, cid)
Company(cid, cname, city)

40

Subqueries in WHERE

CSE 544 - Fall 2015

2. Find all companies s.t. all their products have price < 200

1. Find the other companies: i.e. s.t. some product ≥ 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid
 FROM Product P
 WHERE P.price >= 200)

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid
 FROM Product P
 WHERE P.price >= 200)

41

Subqueries in WHERE

CSE 544 - Fall 2015

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *
 FROM Product P
 WHERE P.cid = C.cid and P.price >= 200)

Universal quantifiers

Using EXISTS:

Find all companies that make only products with price < 200

Product (pname, price, cid)
Company(cid, cname, city)

42

Subqueries in WHERE

CSE 544 - Fall 2015

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ALL (SELECT price
 FROM Product P
 WHERE P.cid = C.cid)

Using ALL:

Universal quantifiers

Find all companies that make only products with price < 200

Product (pname, price, cid)
Company(cid, cname, city)

43

Can we unnest the universal
quantifier query ?

•  A query Q is monotone if:
–  Whenever we add tuples to one or more of the tables…
–  … the answer to the query cannot contain fewer tuples

•  Fact: all unnested queries are monotone
–  Proof: using the “nested for loops” semantics

•  Fact: Query with universal quantifier is not monotone

•  Consequence: we cannot unnest a query with a
universal quantifier

CSE 544 - Fall 2015 44

CSE 544 - Fall 2015

Outline

Three topics today

•  Wrap up relational algebra

•  Crash course on SQL

•  Brief overview of database design

45

Database Design

•  The relational model is great, but how do I design my
database schema?

CSE 544 - Fall 2015 46

CSE 544 - Fall 2015

Outline

•  Conceptual db design: entity-relationship model

•  Problematic database designs

•  Functional dependencies

•  Normal forms and schema normalization

47

CSE 544 - Fall 2015

Database Design Process

Data
Modeling Refinement SQL

Tables

ER diagrams Relations

Files

Physical Schema

Conceptual Schema

48

CSE 544 - Fall 2015

Conceptual Schema Design

Doctor patien_of Patient

name

zip name dno

Conceptual Model:

Relational Model:
plus FD’s
(FD = functional dependency)

Normalization:
Eliminates anomalies

49

Entity-Relationship Diagram

patient_of Doctor Patient

name

zip name

pno

specialty

dno
since

name
Attributes Entity sets

Patient patient_of

Relationship sets
50

CSE 544 - Fall 2015

Entity-Relationship Model

•  Typically, each entity has a key

•  ER relationships can include multiplicity
–  One-to-one, one-to-many, etc.
–  Indicated with arrows

•  Can model multi-way relationships

•  Can model subclasses

•  And more...

51

Many One

Subclasses to

Relations

Product

name category

price

isa isa

Educational Product Software Product

Age Group platforms

Name Price Category

Gizmo 99 gadget

Camera 49 photo

Toy 39 gadget

Name platforms

Gizmo unix

Name Age
Group

Gizmo toddler

Toy retired

Product

Sw.Product

Ed.Product

Other ways to convert are possible
52 CSE 544 - Fall 2015

CSE 544 - Fall 2015

General approach to Translating
Diagram into Relations

Normally translate as follows:
•  Each entity set becomes a relation
•  Each relationship set becomes a relation

–  Except many-one relationships. Can combine them with entity set.

One bad way to translate our diagram into relations
•  PatientOf (pno, name, zip, dno, since)
•  Doctor (dno, dname, specialty)

53

CSE 544 - Fall 2015

Outline

•  Conceptual db design: entity-relationship model

•  Problematic database designs

•  Functional dependencies

•  Normal forms and schema normalization

54

CSE 544 - Fall 2015

Problematic Designs

•  Some db designs lead to redundancy
–  Same information stored multiple times

•  Problems
–  Redundant storage
–  Update anomalies
–  Insertion anomalies
–  Deletion anomalies

55

CSE 544 - Fall 2015

Problem Examples

pno name zip dno since
1 p1 98125 2 2000

1 p1 98125 3 2003

2 p2 98112 1 2002

3 p1 98143 1 1985

PatientOf

If we update
to 98119, we
get inconsistency

Redundant

What if we want to insert a patient without a doctor?
What if we want to delete the last doctor for a patient?
Illegal as (pno,dno) is the primary key, cannot have nulls

56

CSE 544 - Fall 2015

Solution: Decomposition

pno name zip
1 p1 98125

2 p2 98112

3 p1 98143

Patient
pno dno since
1 2 2000

1 3 2003

2 1 2002

3 1 1985

PatientOf

Decomposition solves the problem,
but need to be careful…

57

CSE 544 - Fall 2015

Lossy Decomposition

pno name zip
1 p1 98125

2 p2 98112

3 p1 98143

Patient
name dno since
p1 2 2000

p1 3 2003

p2 1 2002

p1 1 1985

PatientOf

Decomposition can cause us to lose information!

58

CSE 544 - Fall 2015

Schema Refinement Challenges

•  How do we know that we should decompose a relation?
–  Functional dependencies
–  Normal forms

•  How do we make sure decomposition does not lose info?
–  Lossless-join decompositions
–  Dependency-preserving decompositions

59

CSE 544 - Fall 2015

Outline

•  Conceptual db design: entity-relationship model

•  Problematic database designs

•  Functional dependencies

•  Normal forms and schema normalization

60

CSE 544 - Fall 2015

Functional Dependency

•  A functional dependency (FD) is an integrity constraint
that generalizes the concept of a key

•  An instance of relation R satisfies the FD: X → Y
–  if for every pair of tuples t1 and t2
–  if t1.X = t2.X then t1.Y = t2.Y
–  where X, Y are two nonempty sets of attributes in R

•  We say that X determines Y

•  FDs come from domain knowledge

61

FD Example

CSE 544 - Fall 2015

EmpID à Name, Phone, Position
Position à Phone
but not Phone à Position

An FD holds, or does not hold on an instance:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

62

FD Terminology

•  FD’s are constraints
–  On some instances they hold
–  On others they do not

•  If every instance of R will be one in which a given FD will
hold, then we say that R satisfies the FD
–  If we say that R satisfies an FD F, we are stating a constraint on R

•  FDs come from domain knowledge

CSE 544 - Fall 2015 63

CSE 544 - Fall 2015

Decomposition Problems

•  FDs will help us identify possible redundancy
–  Identify redundancy and split relations to avoid it.

•  Can we get the data back correctly ?
–  Lossless-join decomposition

•  Can we recover the FD’s on the ‘big’ table from the FD’s
on the small tables?
–  Dependency-preserving decomposition
–  So that we can enforce all FDs without performing joins

64

CSE 544 - Fall 2015

Outline

•  Conceptual db design: entity-relationship model

•  Problematic database designs

•  Functional dependencies

•  Normal forms and schema normalization

65

CSE 544 - Fall 2015

Normal Forms

•  Based on Functional Dependencies
–  2nd Normal Form (obsolete)
–  3rd Normal Form
–  Boyce Codd Normal Form (BCNF)

•  Based on Multivalued Dependencies
–  4th Normal Form

•  Based on Join Dependencies
–  5th Normal Form

We only discuss
these two

66

CSE 544 - Fall 2015

BCNF

A simple condition for removing anomalies from relations:

A relation R is in BCNF if:

 If A1, ..., An → B is a non-trivial dependency in R ,

 then {A1, ..., An} is a superkey for R

BCNF ensures that no redundancy can be detected
using FD information alone

67

CSE 544 - Fall 2015

Our Example

pno name zip dno since
1 p1 98125 2 2000

1 p1 98125 3 2003

2 p2 98112 1 2002

3 p1 98143 1 1985

PatientOf

pno,dno is a key, but pno → name, zip
BCNF violation so we decompose

68

CSE 544 - Fall 2015

Decomposition in General

R1 = projection of R on A1, ..., An, B1, ..., Bm
R2 = projection of R on A1, ..., An, C1, ..., Cp

R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)

R1(A1, ..., An, B1, ..., Bm) R2(A1, ..., An, C1, ..., Cp)

Theorem If A1, ..., An à B1, ..., Bm
Then the decomposition is lossless

Note: don’t necessarily need A1, ..., An à C1, ..., Cp
69

CSE 544 - Fall 2015

BCNF Decomposition Algorithm

Repeat
 choose A1, …, Am → B1, …, Bn that violates BCNF condition
 split R into

 R1(A1, …, Am, B1, …, Bn) and R2(A1, …, Am, [rest])

 continue with both R1 and R2
Until no more violations

Lossless-join decomposition: Attributes common to R1 and
R2 must contain a key for either R1 or R2

70

CSE 544 - Fall 2015

BCNF and Dependencies

FD’s: Unit → Company; Company, Product → Unit
So, there is a BCNF violation, and we decompose.

Unit Company Product

71

CSE 544 - Fall 2015

BCNF and Dependencies

FD’s: Unit → Company; Company, Product → Unit
So, there is a BCNF violation, and we decompose.

Unit → Company

No FDs

In BCNF we lose the FD: Company, Product → Unit

Unit Company Product

Unit Company

Unit Product

72

CSE 544 - Fall 2015

3NF

A simple condition for removing anomalies from relations:

A relation R is in 3rd normal form if :

Whenever there is a nontrivial dep. A1, A2, ..., An → B for R,
then {A1, A2, ..., An } is a super-key for R,
or B is part of a key.

73

CSE 544 - Fall 2015

3NF Discussion

•  3NF decomposition v.s. BCNF decomposition:
–  Use same decomposition steps, for a while
–  3NF may stop decomposing, while BCNF continues

•  Tradeoffs
–  BCNF = no anomalies, but may lose some FDs
–  3NF = keeps all FDs, but may have some anomalies

74

CSE 544 - Fall 2015

Summary

•  Database design is not trivial
–  Use ER models
–  Translate ER models into relations
–  Normalize to eliminate anomalies

•  Normalization tradeoffs
–  BCNF: no anomalies, but may lose some FDs
–  3NF: keeps all FDs, but may have anomalies
–  Too many small tables affect performance

75

