
CSE 544
Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 5 - DBMS Architecture
and Indexing

CSE 544 - Fall 2015 1

Announcements

•  HW1 is due next Thursday
–  How is it going?

•  Projects:

–  Proposals are due next Wednesday (not graded)
–  Submit on dropbox

CSE 544 - Fall 2015 2

CSE 544 - Fall 2015

Where We Are

•  What we have already seen
–  Overview of the relational model

•  Motivation and where model came from
•  Physical and logical independence

–  How to design a database
•  From ER diagrams to conceptual design
•  Schema normalization

–  How different data models work

•  Where we go from here
–  How can we efficiently implement this model?
–  How can we run RA plans efficiently?

3

CSE 544 - Fall 2015

References

•  Anatomy of a database system. J. Hellerstein and M. Stonebraker. In
Red Book (4th ed).

•  Chapters 8 through 11 (in the R&G book, third ed.)
–  Disk and files: Sections 9.3 through 9.7
–  Index structures: Section 8.3
–  Hash-based indexes: Section 8.3.1 and Chapter 11
–  B+ trees: Section 8.3.2 and Chapter 10

4

CSE 544 - Fall 2015

DBMS Architecture

Process Manager

Admission Control

Connection Mgr

Query Processor

Parser

Query Rewrite

Optimizer

Executor

Storage Manager

Access Methods

Lock Manager

Buffer Manager

Log Manager

Shared Utilities

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

[Anatomy of a Db System.
J. Hellerstein & M. Stonebraker.
Red Book. 4ed.]

5

CSE 544 - Fall 2015

DBMS Architecture

Process Manager

Admission Control

Connection Mgr

Query Processor

Parser

Query Rewrite

Optimizer

Executor

Storage Manager

Access Methods

Lock Manager

Buffer Manager

Log Manager

Shared Utilities

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

[Anatomy of a Db System.
J. Hellerstein & M. Stonebraker.
Red Book. 4ed.]

6

CSE 544 - Fall 2015

Process Model

Why not simply queue all user requests?
(and serve them one at the time)

Alternatives
1.  Process per connection
2.  Server process (thread per connection)

•  OS threads or DBMS threads
3.  Server process with I/O process

Advantages and problems of each model?

7

CSE 544 - Fall 2015

Process Per Connection

•  Overview
–  DB server forks one process for each client connection

•  Advantages
–  Easy to implement (OS time-sharing, OS isolation, debuggers, etc.)
–  Provides more physical memory than a single process can use

•  Drawbacks
–  Need OS support

•  Since all processes access the same data on disk, need concurrency control

–  Not scalable: memory overhead and expensive context switches
•  Goal is efficient support for high-concurrency transaction processing

8

CSE 544 - Fall 2015

Server Process

•  Overview
–  DB assigns one thread per connection (from a thread pool)

•  Advantages
–  Shared structures can simply reside on the heap
–  Threads are lighter weight than processes (memory, context switching)

•  Drawbacks
–  Concurrent programming is hard to get right (race conditions, deadlocks)
–  Portability issues can arise when using OS threads
–  Big problem: entire process blocks on synchronous I/O calls

•  Solution 1: OS provides asynchronous I/O (true in modern OS)
•  Solution 2: Use separate process(es) for I/O tasks

9

CSE 544 - Fall 2015

DBMS Threads vs OS Threads

•  Why do some DBMSs implement their own threads?
–  Legacy: originally, there were no OS threads
–  Portability: OS thread packages are not completely portable
–  Performance: fast task switching

•  Drawbacks
–  Replicating a good deal of OS logic
–  Need to manage thread state, scheduling, and task switching

•  How to map DBMS threads onto OS threads or processes?
–  Rule of thumb: one OS-provided dispatchable unit per physical device
–  See page 9 and 10 of Hellerstein and Stonebraker’s paper

10

CSE 544 - Fall 2015

Commercial Systems

•  Oracle
–  Unix default: process-per-user mode
–  Unix: DBMS threads multiplexed across OS processes
–  Windows: DBMS threads multiplexed across OS threads

•  IBM DB2
–  Unix: process-per-user mode
–  Windows: OS thread-per-user

•  SQL Server
–  Windows default: OS thread-per-user
–  Windows: DBMS threads multiplexed across OS threads

11

CSE 544 - Fall 2015

DBMS Architecture

Process Manager

Admission Control

Connection Mgr

Query Processor

Parser

Query Rewrite

Optimizer

Executor

Storage Manager

Access Methods

Lock Manager

Buffer Manager

Log Manager

Shared Utilities

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

[Anatomy of a Db System.
J. Hellerstein & M. Stonebraker.
Red Book. 4ed.]

12

CSE 544 - Fall 2015

Admission Control

•  Why does a DBMS need admission control?
–  To avoid thrashing and provide “graceful degradation” under load

•  When does DBMS perform admission control?
–  In the dispatcher process: want to drop clients as early as possible to

avoid wasting resources on incomplete requests
•  This type of admission control can also be implemented before the request

reaches the DBMS (e.g., application server or web server)
–  Before query execution: delay queries to avoid thrashing

•  Can make decisions based on estimated resource needs for a query

13

CSE 544 - Fall 2015

DBMS Architecture

Process Manager

Admission Control

Connection Mgr

Query Processor

Parser

Query Rewrite

Optimizer

Executor

Storage Manager

Access Methods

Lock Manager

Buffer Manager

Log Manager

Shared Utilities

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

[Anatomy of a Db System.
J. Hellerstein & M. Stonebraker.
Red Book. 4ed.]

14

CSE 544 - Fall 2015

Storage Model

•  Problem: DBMS needs spatial and temporal control over storage
–  Spatial control for performance
–  Temporal control for correctness and performance

Alternatives
•  Use “raw” disk device interface directly

–  Interact directly with device drivers for the disks

•  Use OS files

15

CSE 544 - Fall 2015

Spatial Control
Using “Raw” Disk Device Interface

•  Overview
–  DBMS issues low-level storage requests directly to disk device

•  Advantages
–  DBMS can ensure that important queries access data sequentially
–  Can provide highest performance

•  Disadvantages
–  Requires devoting entire disks to the DBMS
–  Reduces portability as low-level disk interfaces are OS specific
–  Many devices are in fact “virtual disk devices”

16

CSE 544 - Fall 2015

Spatial Control
Using OS Files

•  Overview
–  DBMS creates one or more very large OS files

•  Advantages
–  Allocating large file on empty disk can yield good physical locality

•  Disadvantages
–  OS can limit file size to a single disk
–  OS can limit the number of open file descriptors
–  But these drawbacks have mostly been overcome by modern OSs

17

CSE 544 - Fall 2015

Commercial Systems

•  Most commercial systems offer both alternatives
–  Raw device interface for peak performance
–  OS files more commonly used

•  In both cases, we end-up with a DBMS file abstraction implemented
on top of OS files or raw device interface

18

CSE 544 - Fall 2015

DBMS Architecture

Process Manager

Admission Control

Connection Mgr

Query Processor

Parser

Query Rewrite

Optimizer

Executor

Storage Manager

Access Methods

Lock Manager

Buffer Manager

Log Manager

Shared Utilities

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

[Anatomy of a Db System.
J. Hellerstein & M. Stonebraker.
Red Book. 4ed.]

19

CSE 544 - Fall 2015

Temporal Control
Buffer Manager

•  Correctness problems
–  DBMS needs to control when data is written to disk in order to provide

transactional semantics (we will study transactions later)
–  OS buffering can delay writes, causing problems when crashes occur

•  Performance problems
–  OS optimizes buffer management for general workloads
–  DBMS understands its workload and can do better
–  Areas of possible optimizations

•  Page replacement policies
•  Read-ahead algorithms (physical vs logical)
•  Deciding when to flush tail of write-ahead log to disk

20

CSE 544 - Fall 2015

Buffer Manager

Disk

Main
memory

Page requests from higher-level code

Buffer pool

Disk page

Free frame

1 page corresponds
to 1 disk block

Disk is a collection
of blocks

Disk space manager

Buffer pool manager
Files and access methods

21

CSE 544 - Fall 2015

Commercial Systems

•  DBMSs implement their own buffer pool managers

•  Modern filesystems provide good support for DBMSs
–  Using large files provides good spatial control
–  Using interfaces like the mmap suite

•  Provides good temporal control
•  Helps avoid double-buffering at DBMS and OS levels

22

CSE 544 - Fall 2015

DBMS Architecture

Process Manager

Admission Control

Connection Mgr

Query Processor

Parser

Query Rewrite

Optimizer

Executor

Storage Manager

Files and
Access Methods
Lock Manager

Buffer Manager

Log Manager

Shared Utilities

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

[Anatomy of a Db System.
J. Hellerstein & M. Stonebraker.
Red Book. 4ed.]

23

Access Methods

•  A DBMS stores data on disk by breaking it into pages
–  A page is the size of a disk block.
–  A page is the unit of disk IO

•  Buffer manager caches these pages in memory
•  Access methods do the following:

–  They organize pages into collections called DB files
–  They organize data inside pages
–  They provide an API for operators to access data in these files

24 CSE 544 - Fall 2015

CSE 544 - Fall 2015

Data Storage

•  Basic abstraction
–  Collection of records or file
–  Typically, 1 relation = 1 database file
–  A file consists of one or more pages

•  How to organize pages into files?
•  How to organize records inside a file?

•  Simplest approach: heap file (unordered)

25

CSE 544 - Fall 2015

Heap File Operations

•  Create or destroy a file
•  Insert a record
•  Delete a record with a given rid (rid)

–  rid: unique tuple identifier
–  used to identify disk address of page containing record

•  Get a record with a given rid
•  Scan all records in the file

26

CSE 544 - Fall 2015

Heap File Implementation 1

Header
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Linked list of pages:
Data
page

Data
page

Full pages

Pages with some free space
27

CSE 544 - Fall 2015

Heap File Implementation 2

Data
page

Data
page

Data
page

Better: directory of pages

Directory

Header page

Directory contains free-space count for each page.
Faster inserts for variable-length records

28

CSE 544 - Fall 2015

Page Formats

Issues to consider
•  1 page = 1 disk block = fixed size (e.g. 8KB)
•  Records:

–  Fixed length
–  Variable length

•  Record id = RID
–  Typically RID = (PageID, SlotNumber)

Why do we need RID’s in a relational DBMS ?
See discussion about indexes later in the lecture

29

CSE 544 - Fall 2015

Types of Files

•  Heap file (what we discussed so far)
–  Unordered

•  Sorted file (also called sequential file)
•  Clustered file (aka indexed file)

30

CSE 544 - Fall 2015

Searching in a Heap File

30 18 …

70 21

20 20

40 19

80 19

60 18

10 21

50 22

File is not sorted on any attribute
Student(sid: int, age: int, …)

1 record

1 page

31

CSE 544 - Fall 2015

Heap File Search Example

•  10,000 students
•  10 student records per page
•  Total number of pages: 1,000 pages
•  Find student whose sid is 80

–  Must read on average 500 pages

•  Find all students older than 20
–  Must read all 1,000 pages

•  Can we do better?

32

CSE 544 - Fall 2015

Sequential File

10 21 …

20 20

30 18

40 19

50 22

60 18

70 21

80 19

File sorted on an attribute, usually on primary key
Student(sid: int, age: int, …)

33

CSE 544 - Fall 2015

Sequential File Example

•  Total number of pages: 1,000 pages
•  Find student whose sid is 80

–  Could do binary search, read log2(1,000) ≈ 10 pages

•  Find all students older than 20
–  Must still read all 1,000 pages

•  Can we do even better?

34

CSE 544 - Fall 2015

Indexes

•  Index: data structure that organizes data records on disk to
optimize selections on the search key fields for the index

•  An index contains a collection of data entries, and supports
efficient retrieval of all data entries with a given search key value k

35

CSE 544 - Fall 2015

Indexes

•  Search key = can be any set of fields
–  not the same as the primary key, nor a key

•  Index = collection of data entries

•  Data entry for key k can be:
–  The actual record with key k

•  In this case, the index is also a special file organization
•  Called: “indexed file organization”

–  (k, RID)
–  (k, list-of-RIDs)

36

CSE 544 - Fall 2015

Primary Index
•  Primary index: determines location of indexed records
•  Dense index: each record in data file is pointed to by a

(key,rid) pairs in index

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

1 data entry

1 page

Index File Data File

37

CSE 544 - Fall 2015

Primary Index
with Duplicate Keys

•  Sparse index: pointer to lowest search key on each page:

•  Search for 20
10

10

20

30

10

10

10

20

20

20

30

40

20 is
here...

...but
need to
search

here too

38

CSE 544 - Fall 2015

Primary Index Example

•  Let’s assume all pages of index fit in memory

•  Find student whose sid is 80
–  Index (dense or sparse) points directly to the page
–  Only need to read 1 page from disk.

•  Find all students older than 20
–  Must still read all 1,000 pages.

•  How can we make both queries fast?

39

CSE 544 - Fall 2015

Secondary Indexes

•  To index other attributes than primary key
•  Always dense (why ?)

18

18

19

19

20

21

21

22

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

40

CSE 544 - Fall 2015

Clustered vs.
Unclustered Index

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

 Clustered = records close in index are close in data

41

CSE 544 - Fall 2015

Index Classification Summary
•  Primary/secondary

–  Primary = determines the location of indexed records
–  Secondary = cannot reorder data, does not determine data location

•  Dense/sparse
–  Dense = every key in the data appears in the index
–  Sparse = the index contains only some keys

•  Clustered/unclustered
–  Clustered = records close in index are close in data
–  Unclustered = records close in index may be far in data

•  B+ tree / Hash table / …

42

CSE 544 - Fall 2015

Large Indexes

•  What if index does not fit in memory?

•  Why not index the index itself ?
–  Hash-based index
–  Tree-based index

43

CSE 544 - Fall 2015

Hash-Based Index

18

18

20

22

19

21

21

19

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H1

h1(sid) = 00

h1(sid) = 11

sid

H2 age

h2(age) = 00

h2(age) = 01

Another example of primary index
and indexed-file organization

Another example
of secondary index

Good for point queries but not range queries

44

CSE 544 - Fall 2015

Tree-Based Index

•  How many index levels do we need?
•  Can we create them automatically?

–  Yes!

•  Can do something even more powerful!

45

CSE 544 - Fall 2015

B+ Trees

•  Search trees

•  Idea in B Trees
–  Make 1 node = 1 page (= 1 block)
–  Keep tree balanced in height

•  Idea in B+ Trees
–  Make leaves into a linked list : facilitates range queries

46

CSE 544 - Fall 2015

B+ Trees

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

 Note: can also store data records directly as data entries

47

CSE 544 - Fall 2015

•  Parameter d = the degree
•  Each node has d <= m <= 2d keys (except root)

•  Each leaf has d <= m <= 2d keys:

B+ Trees Basics

30 120 240

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

40 50 60

40 50 60

Next leaf

Data records

Each node also
has m+1 pointers

48

CSE 544 - Fall 2015

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

Degree d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

30 < 40 ≤ 40

49

CSE 544 - Fall 2015

Searching a B+ Tree

•  Exact key values:
–  Start at the root
–  Proceed down, to the leaf

•  Range queries:
–  Find lowest bound as above
–  Then sequential traversal

Select name
From Student
Where age = 25

Select name
From Student
Where 20 <= age
 and age <= 30

50

Index on Student(age)

CSE 544 - Fall 2015

B+ Tree Design

•  How large should d be ?
•  Example:

–  Key size = 4 bytes
–  Pointer size = 8 bytes
–  Block size = 4096 bytes

•  2d x 4 + (2d+1) x 8 <= 4096
•  d = 170

51

CSE 544 - Fall 2015

B+ Trees in Practice

•  Typical order: 100. Typical fill-factor: 67%.
–  average fanout = 133

•  Typical capacities
–  Height 4: 1334 = 312,900,700 records
–  Height 3: 1333 = 2,352,637 records

•  Can often hold top levels in buffer pool
–  Level 1 = 1 page = 8 Kbytes
–  Level 2 = 133 pages = 1 Mbyte
–  Level 3 = 17,689 pages = 133 Mbytes

52

CSE 544 - Fall 2015

Insertion in a B+ Tree

Insert (K, P)
•  Find leaf where K belongs, insert
•  If no overflow (2d keys or less), halt
•  If overflow (2d+1 keys), split node, insert in parent:

•  If leaf, also keep K3 in right node
•  When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 p5

K1 K2

P0 P1 P2

K4 K5

P3 P4 p5

parent
 K3

parent

53

CSE 544 - Fall 2015

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

54

CSE 544 - Fall 2015

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90 19

After insertion

55

CSE 544 - Fall 2015

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90 19

Now insert 25

56

CSE 544 - Fall 2015

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

After insertion

50

57

CSE 544 - Fall 2015

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

But now have to split !

50

58

CSE 544 - Fall 2015

Insertion in a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

After the split

50

30 40 50

59

CSE 544 - Fall 2015

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

Delete 30

50

30 40 50

60

CSE 544 - Fall 2015

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 90 19

After deleting 30

50

40 50

May change to
40, or not

61

CSE 544 - Fall 2015

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 90 19

Now delete 25

50

40 50

62

CSE 544 - Fall 2015

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 90 19

After deleting 25
Need to rebalance
Rotate

50

40 50

63

CSE 544 - Fall 2015

Deletion from a B+ Tree

80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 90 19

Now delete 40

50

40 50

64

CSE 544 - Fall 2015

Deletion from a B+ Tree

80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 60 65 80 85 90 19

After deleting 40
Rotation not possible
Need to merge nodes

50

50

65

CSE 544 - Fall 2015

Deletion from a B+ Tree

80

19 60 100 120 140

10 15 18 19 20 50 60 65 80 85 90

10 15 18 20 60 65 80 85 90 19

Final tree

50

66

CSE 544 - Fall 2015

Summary on B+ Trees

•  Default index structure on most DBMSs

•  Very effective at answering ‘point’ queries:
 productName = ‘gizmo’

•  Effective for range queries:
 50 < price AND price < 100

•  Less effective for multirange:
 50 < price < 100 AND 2 < quant < 20

67

Indexes in Postgres

68

CREATE INDEX V1_N ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX VVV ON V(M, N)

CLUSTER V USING V2 Makes V2 clustered

CSE 544 - Fall 2015

Index Selection Problem 1

V(M, N, P)

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

Which indexes should we create? 69

Index Selection Problem 1

70

V(M, N, P)

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

CSE 544 - Fall 2015 A: V(N) and V(P) (hash tables or B-trees)

Index Selection Problem 2

71

V(M, N, P)

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 544 - Fall 2015 Which indexes should we create?

Index Selection Problem 2

72

V(M, N, P)

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:
SELECT *
FROM V
WHERE N>? and N<?

CSE 544 - Fall 2015 A: definitely V(N) (must B-tree); unsure about V(P)

Index Selection Problem 3

73

V(M, N, P)

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 544 - Fall 2015 Which indexes should we create?

Index Selection Problem 3

74

V(M, N, P)

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

A: V(N, P) (must be B-tree)

Index Selection Problem 4

75

V(M, N, P)

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:
Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

CSE 544 - Fall 2015 Which indexes should we create?

Index Selection Problem 4

76

V(M, N, P)

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:
Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

CSE 544 - Fall 2015 A: V(N) secondary, V(P) primary index

