CSE 544

Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 8 - Data Warehousing and
Column Stores

Announcements

« Shumo office hours change
— See website for details

« HW2 due next Thurs

— Please start soon!

* Project meetings this week
— Sign up on doodle if you haven't already

CSE 544 - Fall 2015

Where We Are

« Data models
— Relational
— IMS / Codasyl
— Unstructured

* Query processing
— Algorithms for relational operators
— Indexing and physical design

* Queries that real-world users write
— Data warehousing
— Transaction processing

Where We Are

* \What queries do real people write?

— Data warehousing
« Column stores (today)
 Parallel databases (Thursday)
* Programming models (next week)

— Transaction processing

CSE 544 - Fall 2015

References

« Data Cube: A Relational Aggregation Operator
Generalizing Group By, Cross-Tab, and Sub-Totals.

Jim Gray et. al. Data Mining and Knowledge Discovery 1,
29-53. 1997

« Database management systems.

Ramakrishnan and Gehrke.
Third Ed. Chapter 25

CSE 544 - Fall 2015)

Why Data Warehouses?

« DBMSs designed to manage operational data
— Goal: support every day activities
— Online transaction processing (OLTP)
— Ex: Tracking sales and inventory of each Wal-mart store

* Enterprises also need to analyze and explore their data

— Goal: summarize and discover trends to support decision making
— Online analytical processing (OLAP)

« To support OLAP consolidate all data into a warehouse

CSE 544 - Fall 2015 6

The Origin of Data Warehouses

Walmart, 90s

.

.

Sales DB

Nightly
Backups

all 2015

The Origin of Data Warehouses
Operational

Amazon, 00s
: E— Sale °
transactions

Nightly
Backups

all 2015

Sales DB

Data Warehouse Overview

Consolidated data from many sources
— Must create a single unified schema
— The warehouse is like a materialized view

Very large size: terabytes of data are common
Complex read-only queries (no updates)

Fast response time is (not as) important
— Compared to transaction processing

CSE 544 - Fall 2015

Creating a Data Warehouse

« Extract data from distributed operational databases
« Clean to minimize errors and fill in missing information

« Transform to reconcile semantic mismatches
— Performed by defining views over the data sources

 Load to materialize the above defined views
— Build indexes and additional materialized views

* Refresh to propagate updates to warehouse periodically

 This is known as the ETL pipeline

10

Alternative: Distributed DBMS

» User submits a query at one site

* Query is defined over data located at different sites
— Different physical locations
— Different types of DBMSs

* Query optimizer finds the best distributed query plan
— Query executes across all the locations
— Results shipped to query site and returned to user

« (Stay tuned for the next lecture!)

CSE 544 - Fall 2015

11

Back to Warehouses: Outline

« Multidimensional data model and operations
« Data cube & rollup operators
« Data warehouse implementation issues

« Other extensions for data analysis

CSE 544 - Fall 2015

13

Data Analysis Cycle

« Formulate query that extracts data from the database
— Typically ad-hoc complex query with group by and aggregate

* Visualize the data (e.g., spreadsheet)
— Dataset is an N-dimensional space

* Analyze the data
— ldentify “interesting” subspace by aggregating other dimensions
— Categorize the data an compare categories with each other
— Roll-up and drill-down on the data

CSE 544 - Fall 2015 14

Multidimensional Data Model

* Focus of the analysis is a collection of measures
— Example: Wal-mart sales

« Each measure depends on a set of dimensions

— Example: product (pid), location (lid), and time of the sale (timeid)
locid

10 [203| 54 [102] 18 Slicing: equality
.4 11 |[206| 87 [334] 25 selection on one or
pi

12 123176 1 93 | 11 more dimensions

13|17 |62 |154| 8

1 2 3 4
timeid

Dicing: range selection

CSE 544 - Fall 2015 15

Star Schema

Representing multidimensional data as relations (ROLAP)

Product Location
pid |pname [category| price locid | city |state|country
Facts table: Sales
In BCNF Sales | pid [timeid|locid |sales
Dimensions tables
* Product
* Location timeid| date |week|monthiquarter| year
* Times .
Times

Not necessarily
normalized

CSE 544 - Fall 2015

16

Dimension Hierarchies

Dimension values can form a hierarchy described by attributes

Product Time L ocation
category ye|ar country
quarter \
/\ state
pname week month \
date

CSE 544 - Fall 2015 17

Desired Operations

« Histograms (agg. over computed categories)
— Problem: awkward to express in SQL (paper p.34)

« Summarize at different levels: roll-up and drill-down

— Ex: total sales by day, week, quarter, and year

* Pivoting
— EX: pivot on location and time
— Result of pivot is a cross-tabulation
— Column values become labels

CSE 544 - Fall 2015

2005
2006
2007

Total

Wi

CA

Total

500

200

700

150

850

1000

250

400

650

900

1450

2350

18

Challenge 1: Representation

* Problem: How to represent multi-level aggregation?
— Ex: Table 3 in the paper need 2N columns for N dimensions!
— Ex: Table 4 has even more columns!

CSE 544 - Fall 2015

19

Challenge 1: Representation

'“W
EXd

tem Groeup By
(with total)

il

RED
WHITE
BLUE

l:mnTll!

!f.'hl'-'_- The Dwta Cube and
M The Sub-Space Aggreguies

Ot Oy

e
By Make

By Y

By blake & Year

RED:
WHITE
(RN B

By Culor & Year
By ks & Colkix
] Hy Colee

20

ECECT Esdal, Tear,
FEOH Baled
MRS Enda] inm CFPecd’. CThawyt

&ML TRED BITHERF 1090 ANDT 1W9T
NP BD TUWE Madal

Cwlar,

W sl any B4 Splua

Tmdkir, Tulsrg

1.1 ShDE
=Emly RN red L]
Chasy LpAC wniLa A7
Cheyy oEnd mlas LF |
Chaiy Dpel ad §d
Chavy USA] wmite EN
Chavy L8] BDles &8
CEayy 883 pwd i3
CEEYY EAAT wakke Hd
Chasy unqy mlws Tl
Pard E990 Ted B4 |
Ferdl EH50 wlica 63
FErd ZNAE mles B3I |
[FH - EN1 rad 3
Fard a9l whiie &
Fecd iEnl Elaa 23
Ferd 280 ad il
FEid@ zpn: whirs 3
Pasi@ QAT Blms 3R

CUBE

Crearry]88 cedl]
Clawdy 1MHE whillas (1]
Charry 1530 (TR LEE
Chemy 1831 zlian ik
Cherey 189 red 1 |
Cleey 18N whliln KN
Crewey 1803 AL LER
Chaery 1833 mlan FL
Doy 18%] 4 08 sk
Cle®; 1893 whlile Y
Cremy 1891 ELL 1%l
Charry ALL mlEa LEx
Chearey BLL 40]
Clearey LI, =&ike ENE
Etewy Rii ELL LT
Feord s T]
Foord ELL Pmid T
Foord dfdd wnkcE]
Focrd 185 ELL, Pk
Fiard b1 L B! mlam Ky
Foid ELL & rud N3
Foaa 183l WALCE]
Ford 18%] KLl iLE
Fuprdll Ay mian i}]
Ficid ELLE] rad -1
Feaa ammd whiLE |
Feard 184 all, ikd
Fooyed ELL mlan Ly
Ficid RLL rad 18H
Foad Eli. wEiLe 10N
Ford ELL BLL abb
AL, 1a%H Biua Lis
LB tLL i red R
ALE AERE whELa 10E
ALL QRN ELL FEE
ALE L LE TCam 138
RLL 4EN] iwid 138
BLL LB wnits i
alr LNE] KLL FLE
(T8 LENI Wilam 113
RLL LEE] rud Lh
ELL LEAd whiica R EY
ALL LES] A&LL Ju
BIT. ELL L ¥
ALL ALL ruil 1NN
BLL Bl wRLLa 1L¥
RLL ELL ALL LETE

21

Challenge 1: Representation

* Problem: How to represent multi-level aggregation?
— Ex: Table 3 in the paper need 2N columns for N dimensions!
— Ex: Table 4 has even more columns!
— And that’s without considering any hierarchy on the dimensions!

« Solution: special “all” value

T.year L.state SUM(S.sales)

2005 | WI 500
2005 | CA 200 Note: SQL-1999
2005 | ALL 700 standard uses NULL

values instead of ALL

ALL | ALL 2350

CSE 544 - Fall 2015 22

Challenge 2.
Computing Aggregations

« Need 2N different SQL queries to compute all aggregates

— Expressing roll-up of a single column and cross-table queries is
thus daunting

— Cannot optimize all these independent queries

« Solution: CUBE and ROLLUP operators

CSE 544 - Fall 2015 23

Outline

« Multidimensional data model and operations
« Data cube & rollup operators
« Data warehouse implementation issues

« Other extensions for data analysis

CSE 544 - Fall 2015

24

Data Cube

CUBE is the N-dimensional generalization of aggregate

Cube in SQL-1999

SELECT T.year, L.state, SUM(S.sales)

FROM Sales S, Times T, Locations L

WHERE S.timeid=T.timeid and S.locid=L.locid

GROUP BY CUBE (T.year,L.state)

Creating a data cube requires generating the power set
of the aggregation columns

CSE 544 - Fall 2015 25

Rollup

* Rollup produces a subset of a cube

* Rollup in SQL-1999
SELECT T.year,T.quarter, SUM(S.sales)
FROM Sales S, Times T
WHERE S.timeid=T.timeid

GROUP BY ROLLUP (T.year,T.quarter)

« Will aggregate over each pair of (year,quarter), each
year, and total, but will not aggregate over each quarter

CSE 544 - Fall 2015 26

Computing Cubes and Rollups

Naive algorithm
— For each new tuple, update each of 2N matching cells

More efficient algorithm
— Use intermediate aggregates to compute others
— Relatively easy for distributive and algebraic functions

Updating a cube in response to updates is more
challenging

CSE 544 - Fall 2015

27

Outline

« Multidimensional data model and operations
« Data cube & rollup operators
« Data warehouse implementation issues

« Other extensions for data analysis

CSE 544 - Fall 2015

28

Indexes

« Bitmap indexes: good for sparse attributes (few values)

M| F custid |name|gender| rating 112 |3 |4
0 | 1 10 | Alice F 3 O] 01110
110 11 Bob M 4 OO0 |01
110 12 |Chuck] M 1 1101010

« Join indexes: to speed-up specific join queries
— Example: Join fact table F with dimension tables D1 and D2

— Index contain triples of rids <r,,r,,r> from D,, D,, and F that join

— Alternatively, two indexes, each one with pairs <v,,r> or <v,,r>
where v,, v, are values of tuples from D,, D, that join with r

CSE 544 - Fall 2015

29

Materialized Views

 How to choose views to materialize?
— Physical database tuning

 How to keep view up-to-date?
— Could recompute entire view for each update: expensive
— Better approach: incremental view maintenance
— Example: recompute only affected partition

— How often to synchronize? Periodic updates (at night) are typical
« Think back in the case of Walmart

CSE 544 - Fall 2015 30

Outline

« Multidimensional data model and operations
« Data cube & rollup operators
« Data warehouse implementation issues

* Other extensions for data analysis

CSE 544 - Fall 2015

31

Additional Extensions
for Decision Support

 Window queries
SELECT L.state, T.month, AVG(S.sales) over W AS movavg
FROM Sales S, Times T, Locations L
WHERE S.timeid = T.timeid AND S.locid=L.locid
WINDOW W AS (PARTITION BY L.State
ORDER BY T.month
RANGE BETWEEN INTERVAL ‘1’ MONTH PRECEDING
AND INTERVAL ‘1’ MONTH FOLLOWING)

* Top-k queries: optimize queries to return top k results

* Online aggregation: produce results incrementally

CSE 544 - Fall 2015 32

Leveraging Column Stores

CSE 544 - Fall 2015

33

References

* The Design and Implementation of Modern Column-
Oriented Database Systems Daniel Abadi, Peter Boncz,
Stavros Harizopoulos, Stratos ldreos, Samuel Madden.

Foundations and Trends® in Databases (Vol 5, Issue 3,
2012, pp 197-280).

CSE 544 - Fall 2015 34

Main Idea

 Most DBMS (up till now) store each tuple using row-major

order

§§§;>RmN

« Store tuples by column-major order instead?

\

j\\\\\\>Cdumn

Why?

CSE 544 - Fall 2015 35

From Row-Store to Column-Store

BN

Rows stored Columns stored
contiguously on disk contiguously on disk
(+ tuple headers) (no headers needed)

Recall Record Formats
iIn Row Stores

Variable length records

-

Field 1

Field 2

Field K

\

J
\

Record header

CSE 544 - Fall 2015

37

More Detailed Example

Row-based Column-based
(4 pages) (4 pages)
C-Store also
Page { avoids large
tuple headers

- Page

OOwWom| > > >

AIBRIBRDN NDNDNN =

QOO W@ >> >

AERBRDNDIINNN -

38

Column-Store Optimizations

Numbers from earlier paper and C-Store system: “Column-Stores vs.
Row-Stores: How Different Are they Really?” Abadi et. al. SIGMOD’08.

Vectorized processing / Block iteration (1.5X)
— Pass blocks of values between ops instead of individual tuples
Compression: e.g., run-length encoding of columns (10X)

Late tuple materialization (3X improvement)
— Process individual columns as long as possible
— Merge columns into complete tuples as late as possible

Invisible joins (1.5X)

CSE 544 - Fall 2015 39

Compression Example

Row-based Column-based | Compressed
(4 pages) (4 pages) (2 pages)
A 1
A |1 4 XA 1X1
Page { A2 ~B= 2XB || 4X2
N A 5 2XC 5X4
Al 2 .
s 12| [5][2
B | 4 c 4 - Page
Cl 4 C 4 |)
C 4 CSE 544 - Fall 2015 40

Late Tuple Materialization

EX: SELECT R.b from R where R.a=X and R.d=Y

Early materialization Late materialization

Extract values
T

A

R R

a b c d CSE544-Fall2015 g b c d 41

2ol T ¢ $599

RIS mmnmn @
mammmmxm wmmm :
BB
mmMMmMmmmmmw=m g
.m M::,ﬂh:,ﬂl:ﬂm !

5eys]

Late Tuple
Materialization

join(join_input_R_join_input_S)

1011.

ith late materializat

in query w

An example of a select-project-joi

Figure 4.1

Bit-vector
100
010
000
100
001
001
100

start =47

values

(65,78,82)

LINENUM RETFLAG SHIPDATE
values values values
(encoded) (encoded)

Figure 4.2: An example multi-column block containing values for the SHIPDATE,
RETFLAG, and LINENUM columns. The block spans positions 47 to 53; within
this range, positions 48, 49, 52, and 53 are active (i.e., they have passed all selection
predicates).

Joins

SELECT emp.age, dept.name
FROM emp, dept
WHERE emp.dept_id = dept.id

2(1|{Johnson
42 38 1] [2 4|2| Jones
36 49 9l [4 2|3|Johnson
d Ay B Y P 1[4] Smith
44 36 5 [1
38 i T
4//////
2(1 114 1{4| Smith
42 s [2]1 S 2|1|Johnson
2(3 203 2(3|Johnson
114 49 412| Jones

CSE 544 - Fall 2015

Simulating a Column-Store DBMS
In a Row-Store DBMS

* Vertical partitioning
— Two-column tables: (key, attribute)

* Index-only plans
— Create a B+ tree index on each attribute
— Answer queries using indexes only, without reading actual data

 Materialized views
— Each view contains a subset of columns

CSE 544 - Fall 2015 45

Conclusion

« Column-store DBMS outperforms row-store DBMS
— Measured on a data warehousing benchmark (SSBM)

« Late materialization and compression are key factors

 Difficult to simulate a column-store in a row-store
— Tuple overheads cause data blow-up
— Column joins are expensive
— Hard to get the DBMS to “do the right thing” (e.g., index plans)

* Not the end of the story, however, ... see CIDR'09 paper

CSE 544 - Fall 2015 46

