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Announcements

« Shumo office hours change
— See website for details

« HW2 due next Thurs

— Please start soon!

* Project meetings this week
— Sign up on doodle if you haven't already
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Where We Are

« Data models
— Relational
— IMS / Codasyl
— Unstructured

* Query processing
— Algorithms for relational operators
— Indexing and physical design

* Queries that real-world users write
— Data warehousing
— Transaction processing



Where We Are

* \What queries do real people write?

— Data warehousing
« Column stores (today)
 Parallel databases (Thursday)
* Programming models (next week)

— Transaction processing
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Why Data Warehouses?

« DBMSs designed to manage operational data
— Goal: support every day activities
— Online transaction processing (OLTP)
— Ex: Tracking sales and inventory of each Wal-mart store

* Enterprises also need to analyze and explore their data

— Goal: summarize and discover trends to support decision making
— Online analytical processing (OLAP)

« To support OLAP consolidate all data into a warehouse

CSE 544 - Fall 2015 6



The Origin of Data Warehouses
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Data Warehouse Overview

Consolidated data from many sources
— Must create a single unified schema
— The warehouse is like a materialized view

Very large size: terabytes of data are common
Complex read-only queries (no updates)

Fast response time is (not as) important
— Compared to transaction processing
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Creating a Data Warehouse

« Extract data from distributed operational databases
« Clean to minimize errors and fill in missing information

« Transform to reconcile semantic mismatches
— Performed by defining views over the data sources

 Load to materialize the above defined views
— Build indexes and additional materialized views

* Refresh to propagate updates to warehouse periodically

 This is known as the ETL pipeline
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Alternative: Distributed DBMS

» User submits a query at one site

* Query is defined over data located at different sites
— Different physical locations
— Different types of DBMSs

* Query optimizer finds the best distributed query plan
— Query executes across all the locations
— Results shipped to query site and returned to user

« (Stay tuned for the next lecture!)
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Back to Warehouses: Outline

« Multidimensional data model and operations
« Data cube & rollup operators
« Data warehouse implementation issues

« Other extensions for data analysis
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Data Analysis Cycle

« Formulate query that extracts data from the database
— Typically ad-hoc complex query with group by and aggregate

* Visualize the data (e.g., spreadsheet)
— Dataset is an N-dimensional space

* Analyze the data
— ldentify “interesting” subspace by aggregating other dimensions
— Categorize the data an compare categories with each other
— Roll-up and drill-down on the data
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Multidimensional Data Model

* Focus of the analysis is a collection of measures
— Example: Wal-mart sales

« Each measure depends on a set of dimensions

— Example: product (pid), location (lid), and time of the sale (timeid)
locid

10 [203| 54 [102] 18 Slicing: equality
.4 11 |[206| 87 [334] 25 selection on one or
pi

12 123176 1 93 | 11 more dimensions

13|17 |62 |154| 8

1 2 3 4
timeid

Dicing: range selection
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Star Schema

Representing multidimensional data as relations (ROLAP)

Product Location
pid |pname [category| price locid | city |state|country
Facts table: Sales
In BCNF Sales | pid [timeid|locid |sales
Dimensions tables
* Product
* Location timeid| date |week|monthiquarter| year
* Times .
Times

Not necessarily
normalized
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Dimension Hierarchies

Dimension values can form a hierarchy described by attributes

Product Time L ocation
category ye|ar country
quarter \
/\ state
pname week month \
date
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Desired Operations

« Histograms (agg. over computed categories)
— Problem: awkward to express in SQL (paper p.34)

« Summarize at different levels: roll-up and drill-down

— Ex: total sales by day, week, quarter, and year

* Pivoting
— EX: pivot on location and time
— Result of pivot is a cross-tabulation
— Column values become labels
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Challenge 1: Representation

* Problem: How to represent multi-level aggregation?
— Ex: Table 3 in the paper need 2N columns for N dimensions!
— Ex: Table 4 has even more columns!
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Challenge 1: Representation

* Problem: How to represent multi-level aggregation?
— Ex: Table 3 in the paper need 2N columns for N dimensions!
— Ex: Table 4 has even more columns!
— And that’s without considering any hierarchy on the dimensions!

« Solution: special “all” value

T.year L.state SUM(S.sales)

2005 | WI 500
2005 | CA 200 Note: SQL-1999
2005 | ALL 700 standard uses NULL

values instead of ALL

ALL | ALL 2350
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Challenge 2.
Computing Aggregations

« Need 2N different SQL queries to compute all aggregates

— Expressing roll-up of a single column and cross-table queries is
thus daunting

— Cannot optimize all these independent queries

« Solution: CUBE and ROLLUP operators
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Outline

« Multidimensional data model and operations
« Data cube & rollup operators
« Data warehouse implementation issues

« Other extensions for data analysis

CSE 544 - Fall 2015
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Data Cube

CUBE is the N-dimensional generalization of aggregate

Cube in SQL-1999

SELECT T.year, L.state, SUM(S.sales)

FROM Sales S, Times T, Locations L

WHERE S.timeid=T.timeid and S.locid=L.locid

GROUP BY CUBE (T.year,L.state)

Creating a data cube requires generating the power set
of the aggregation columns
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Rollup

* Rollup produces a subset of a cube

* Rollup in SQL-1999
SELECT T.year,T.quarter, SUM(S.sales)
FROM Sales S, Times T
WHERE S.timeid=T.timeid

GROUP BY ROLLUP (T.year,T.quarter)

« Will aggregate over each pair of (year,quarter), each
year, and total, but will not aggregate over each quarter
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Computing Cubes and Rollups

Naive algorithm
— For each new tuple, update each of 2N matching cells

More efficient algorithm
— Use intermediate aggregates to compute others
— Relatively easy for distributive and algebraic functions

Updating a cube in response to updates is more
challenging

CSE 544 - Fall 2015
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Outline

« Multidimensional data model and operations
« Data cube & rollup operators
« Data warehouse implementation issues

« Other extensions for data analysis

CSE 544 - Fall 2015
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Indexes

« Bitmap indexes: good for sparse attributes (few values)

M| F custid |name|gender| rating 112 |3 |4
0 | 1 10 | Alice F 3 O] 01110
110 11 Bob M 4 OO0 |01
110 12 |Chuck] M 1 1101010

« Join indexes: to speed-up specific join queries
— Example: Join fact table F with dimension tables D1 and D2

— Index contain triples of rids <r,,r,,r> from D,, D,, and F that join

— Alternatively, two indexes, each one with pairs <v,,r> or <v,,r>
where v,, v, are values of tuples from D,, D, that join with r
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Materialized Views

 How to choose views to materialize?
— Physical database tuning

 How to keep view up-to-date?
— Could recompute entire view for each update: expensive
— Better approach: incremental view maintenance
— Example: recompute only affected partition

— How often to synchronize? Periodic updates (at night) are typical
« Think back in the case of Walmart
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Outline

« Multidimensional data model and operations
« Data cube & rollup operators
« Data warehouse implementation issues

* Other extensions for data analysis

CSE 544 - Fall 2015
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Additional Extensions
for Decision Support

 Window queries
SELECT L.state, T.month, AVG(S.sales) over W AS movavg
FROM Sales S, Times T, Locations L
WHERE S.timeid = T.timeid AND S.locid=L.locid
WINDOW W AS (PARTITION BY L.State
ORDER BY T.month
RANGE BETWEEN INTERVAL ‘1’ MONTH PRECEDING
AND INTERVAL ‘1’ MONTH FOLLOWING)

* Top-k queries: optimize queries to return top k results

* Online aggregation: produce results incrementally
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Leveraging Column Stores

CSE 544 - Fall 2015
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Main Idea

 Most DBMS (up till now) store each tuple using row-major

order

§§§;>RmN

« Store tuples by column-major order instead?

\

j\\\\\\>Cdumn

Why?
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From Row-Store to Column-Store

BN

Rows stored Columns stored
contiguously on disk contiguously on disk
(+ tuple headers) (no headers needed)



Recall Record Formats
iIn Row Stores

Variable length records

-

Field 1

Field 2

Field K

\

J
\

Record header
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More Detailed Example

Row-based Column-based
(4 pages) (4 pages)
C-Store also
Page { avoids large
tuple headers

- Page

OOwWom| > > >

AIBRIBRDN NDNDNN =

QOO W@ >> >

AERBRDNDIINNN -
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Column-Store Optimizations

Numbers from earlier paper and C-Store system: “Column-Stores vs.
Row-Stores: How Different Are they Really?” Abadi et. al. SIGMOD’08.

Vectorized processing / Block iteration (1.5X)
— Pass blocks of values between ops instead of individual tuples
Compression: e.g., run-length encoding of columns (10X)

Late tuple materialization (3X improvement)
— Process individual columns as long as possible
— Merge columns into complete tuples as late as possible

Invisible joins (1.5X)
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Compression Example

Row-based Column-based | Compressed
(4 pages) (4 pages) (2 pages)
A 1
A |1 4 XA 1X1
Page { A2 ~B= 2XB || 4X2
N A 5 2XC 5X4
Al 2 .
s 12| [5][2
B | 4 c 4 - Page
Cl 4 C 4 | )
C 4 CSE 544 - Fall 2015 40




Late Tuple Materialization

EX: SELECT R.b from R where R.a=X and R.d=Y

Early materialization Late materialization

Extract values
T

A

R R

a b c d CSE544-Fall2015 g b c d 41
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Bit-vector
100
010
000
100
001
001
100

start =47

values

(65,78,82)

LINENUM RETFLAG SHIPDATE
values values values
(encoded) (encoded)

Figure 4.2: An example multi-column block containing values for the SHIPDATE,
RETFLAG, and LINENUM columns. The block spans positions 47 to 53; within
this range, positions 48, 49, 52, and 53 are active (i.e., they have passed all selection
predicates).



Joins

SELECT emp.age, dept.name
FROM emp, dept
WHERE emp.dept_id = dept.id

2(1|{Johnson
42 38 1] [2 4|2| Jones
36 49 9l [4 2|3|Johnson
d Ay B Y P 1[4] Smith
44 36 5 [1
38 i T
4//////
2(1 114 1{4| Smith
42 s [2]1 S 2|1|Johnson
2(3 203 2(3|Johnson
114 49 412| Jones
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Simulating a Column-Store DBMS
In a Row-Store DBMS

* Vertical partitioning
— Two-column tables: (key, attribute)

* Index-only plans
— Create a B+ tree index on each attribute
— Answer queries using indexes only, without reading actual data

 Materialized views
— Each view contains a subset of columns
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Conclusion

« Column-store DBMS outperforms row-store DBMS
— Measured on a data warehousing benchmark (SSBM)

« Late materialization and compression are key factors

 Difficult to simulate a column-store in a row-store
— Tuple overheads cause data blow-up
— Column joins are expensive
— Hard to get the DBMS to “do the right thing” (e.g., index plans)

* Not the end of the story, however, ... see CIDR'09 paper
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