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Announcements 

•  Shumo office hours change 
–  See website for details 

•  HW2 due next Thurs 
–  Please start soon! 

•  Project meetings this week 
–  Sign up on doodle if you haven’t already  
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Where We Are 

•  Data models 
–  Relational 
–  IMS / Codasyl 
–  Unstructured 

•  Query processing 
–  Algorithms for relational operators 
–  Indexing and physical design 

•  Queries that real-world users write 
–  Data warehousing 
–  Transaction processing 



Where We Are 

•  What queries do real people write? 
– Data warehousing 

•  Column stores (today) 
•  Parallel databases (Thursday) 
•  Programming models (next week) 

– Transaction processing 
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Why Data Warehouses? 

•  DBMSs designed to manage operational data 
–  Goal: support every day activities 
–  Online transaction processing (OLTP) 
–  Ex: Tracking sales and inventory of each Wal-mart store  

•  Enterprises also need to analyze and explore their data 
–  Goal: summarize and discover trends to support decision making 
–  Online analytical processing (OLAP) 

•  To support OLAP consolidate all data into a warehouse 



The Origin of Data Warehouses 

Sales DB 

Sale transactions 

7 Cashiers CSE 544 - Fall 2015 

Nightly 
Backups 

Walmart, 90s 



The Origin of Data Warehouses 

Sales DB 

Sale  
transactions 
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Nightly 
Backups 

Amazon, 00s 
Operational 

DB 
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Data Warehouse Overview 

•  Consolidated data from many sources 
–  Must create a single unified schema 
–  The warehouse is like a materialized view 

•  Very large size: terabytes of data are common 

•  Complex read-only queries (no updates) 

•  Fast response time is (not as) important  
–  Compared to transaction processing 
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Creating a Data Warehouse 
•  Extract data from distributed operational databases 

•  Clean to minimize errors and fill in missing information 

•  Transform to reconcile semantic mismatches 
–  Performed by defining views over the data sources 

•  Load to materialize the above defined views 
–  Build indexes and additional materialized views 

•  Refresh to propagate updates to warehouse periodically 

•  This is known as the ETL pipeline 



Alternative: Distributed DBMS 

•  User submits a query at one site 

•  Query is defined over data located at different sites 
–  Different physical locations 
–  Different types of DBMSs 

•  Query optimizer finds the best distributed query plan 
–  Query executes across all the locations 
–  Results shipped to query site and returned to user 

•  (Stay tuned for the next lecture!) 
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Back to Warehouses: Outline 

•  Multidimensional data model and operations 

•  Data cube & rollup operators 

•  Data warehouse implementation issues 

•  Other extensions for data analysis 
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Data Analysis Cycle 

•  Formulate query that extracts data from the database 
–  Typically ad-hoc complex query with group by and aggregate 

•  Visualize the data (e.g., spreadsheet) 
–  Dataset is an N-dimensional space 

•  Analyze the data 
–  Identify “interesting” subspace by aggregating other dimensions 
–  Categorize the data an compare categories with each other 
–  Roll-up and drill-down on the data 
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Multidimensional Data Model 

•  Focus of the analysis is a collection of measures 
–  Example: Wal-mart sales 

•  Each measure depends on a set of dimensions 
–  Example: product (pid), location (lid), and time of the sale (timeid)  

203 54 102 18 

296 87 334 25 

23 76 93 11 

17 62 154 8 

timeid 
1 2 3 4 

pid 

10 
11 
12 
13 

locid 
Slicing: equality 
selection on one or 
more dimensions 
 
Dicing: range selection 
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Star Schema 

pid timeid locid sales Sales 

pid pname category price 
Product 

locid city state country 
Location 

timeid date week month 
Times 

quarter year 

Facts table: Sales 
In BCNF 
 
Dimensions tables 
•  Product 
•  Location 
•  Times 
Not necessarily 
normalized 

Representing multidimensional data as relations (ROLAP) 
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Dimension Hierarchies 

Dimension values can form a hierarchy described by attributes 

category 

pname 

Product 

country 

state 

Location 

city 

quarter 

week 

date 

month 

year 

Time 
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Desired Operations 

•  Histograms (agg. over computed categories) 
–  Problem: awkward to express in SQL (paper p.34) 

•  Summarize at different levels: roll-up and drill-down 
–  Ex: total sales by day, week, quarter, and year  

•  Pivoting 
–  Ex: pivot on location and time 
–  Result of pivot is a cross-tabulation 
–  Column values become labels 

500 200 700 

150 850 1000 

250 400 650 

900 1450 2350 

WI CA Total 
2005 
2006 
2007 
Total 
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Challenge 1: Representation 

•  Problem: How to represent multi-level aggregation? 
–  Ex: Table 3 in the paper need 2N columns for N dimensions! 
–  Ex: Table 4 has even more columns! 
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Challenge 1: Representation 

              

P1: RPS/ASH P2: RPS
Data Mining and Knowledge Discovery KL411-02-Gray March 5, 1997 16:21

38 GRAY ET AL.

The representation suggested by Table 5 and unioned GROUP BYs “solve” the problem of
representing aggregate data in a relational data model. The problem remains that expressing
roll-up, and cross-tab queries with conventional SQL is daunting. A six dimension cross-
tab requires a 64-way union of 64 different GROUP BY operators to build the underlying
representation.
There is another very important reason why it is inadequate to use GROUP BYs. The

resulting representation of aggregation is too complex to analyze for optimization. Onmost
SQL systems this will result in 64 scans of the data, 64 sorts or hashes, and a long wait.

3. CUBE and ROLLUP operators

The generalization of group by, roll-up and cross-tab ideas seems obvious: Figure 3 shows
the concept for aggregation up to 3-dimensions. The traditional GROUP BY generates the
N -dimensional data cube core. The N � 1 lower-dimensional aggregates appear as points,
lines, planes, cubes, or hyper-cubes hanging off the data cube core.
The data cube operator builds a table containing all these aggregate values. The total

aggregate using function f() is represented as the tuple:

ALL, ALL, ALL, . . . , ALL, f(*)

Points in higher dimensional planes or cubes have fewer ALL values.

Figure 3. The CUBE operator is the N -dimensional generalization of simple aggregate functions. The 0D data
cube is a point. The 1D data cube is a line with a point. The 2D data cube is a cross tabulation, a plane, two lines,
and a point. The 3D data cube is a cube with three intersecting 2D cross tabs.
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P1: RPS/ASH P2: RPS
Data Mining and Knowledge Discovery KL411-02-Gray March 5, 1997 16:21

DATA CUBE: A RELATIONAL AGGREGATION OPERATOR 39

Figure 4. A 3D data cube (right) built from the table at the left by the CUBE statement at the top of the figure.

Creating a data cube requires generating the power set (set of all subsets) of the aggrega-
tion columns. Since the CUBE is an aggregation operation, it makes sense to externalize it
by overloading the SQL GROUP BY operator. In fact, the cube is a relational operator, with
GROUP BY and ROLL UP as degenerate forms of the operator. This can be conveniently
specified by overloading the SQL GROUP BY3.
Figure 4 has an example of the cube syntax. To give another, here follows a statement to

aggregate the set of temperature observations:

SELECT day, nation, MAX(Temp)
FROM Weather
GROUP BY CUBE

Day(Time) AS day,
Country(Latitude, Longitude)

AS nation;

The semantics of the CUBE operator are that it first aggregates over all the <select
list> attributes in the GROUP BY clause as in a standard GROUP BY. Then, it UNIONs
in each super-aggregate of the global cube—substituting ALL for the aggregation columns.
If there are N attributes in the <select list>, there will be 2N � 1 super-aggregate
values. If the cardinality of the N attributes are C1,C2, . . . ,CN then the cardinality of the
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Challenge 1: Representation 

•  Problem: How to represent multi-level aggregation? 
–  Ex: Table 3 in the paper need 2N columns for N dimensions! 
–  Ex: Table 4 has even more columns! 
–  And that’s without considering any hierarchy on the dimensions! 

•  Solution: special “all” value 

2005 WI 500 

2005 CA 200 

2005 ALL 700 

... ... ... 

T.year L.state SUM(S.sales) 

ALL ALL 2350 

Note: SQL-1999 
standard uses NULL 
values instead of ALL 
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Challenge 2:  
Computing Aggregations 

•  Need 2N different SQL queries to compute all aggregates 
–  Expressing roll-up of a single column and cross-table queries is 

thus daunting 
–  Cannot optimize all these independent queries 

•  Solution: CUBE and ROLLUP operators 



CSE 544 - Fall 2015 24 

Outline 

•  Multidimensional data model and operations 

•  Data cube & rollup operators 

•  Data warehouse implementation issues 

•  Other extensions for data analysis 
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Data Cube 

•  CUBE is the N-dimensional generalization of aggregate 

•  Cube in SQL-1999 
 SELECT T.year, L.state, SUM(S.sales) 

 FROM Sales S, Times T, Locations L 

 WHERE S.timeid=T.timeid and S.locid=L.locid 

 GROUP BY CUBE (T.year,L.state) 
 

•  Creating a data cube requires generating the power set 
of the aggregation columns 
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Rollup 

•  Rollup produces a subset of a cube 

•  Rollup in SQL-1999 
 SELECT T.year,T.quarter, SUM(S.sales) 

 FROM Sales S, Times T 

 WHERE S.timeid=T.timeid 

 GROUP BY ROLLUP (T.year,T.quarter) 
 

•  Will aggregate over each pair of (year,quarter), each 
year, and total, but will not aggregate over each quarter 
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Computing Cubes and Rollups 

•  Naive algorithm 
–  For each new tuple, update each of 2N matching cells 

•  More efficient algorithm 
–  Use intermediate aggregates to compute others 
–  Relatively easy for distributive and algebraic functions 

•  Updating a cube in response to updates is more 
challenging  
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Outline 

•  Multidimensional data model and operations 

•  Data cube & rollup operators 

•  Data warehouse implementation issues 

•  Other extensions for data analysis 
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Indexes 

•  Bitmap indexes: good for sparse attributes (few values) 

•  Join indexes: to speed-up specific join queries 
–  Example: Join fact table F with dimension tables D1 and D2 
–  Index contain triples of rids <r1,r2,r> from D1, D2, and F that join 
–  Alternatively, two indexes, each one with pairs <v1,r> or <v2,r> 

where v1, v2 are values of tuples from D1, D2 that join with r 

M F custid name gender rating 1 2 3 4 
0 1 10 Alice F 3 0 0 1 0 
1 0 11 Bob M 4 0 0 0 1 
1 0 12 Chuck M 1 1 0 0 0 
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Materialized Views 

•  How to choose views to materialize? 
–  Physical database tuning 

•  How to keep view up-to-date? 
–  Could recompute entire view for each update: expensive 
–  Better approach: incremental view maintenance 
–  Example: recompute only affected partition 

–  How often to synchronize? Periodic updates (at night) are typical 
•  Think back in the case of Walmart 
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Outline 

•  Multidimensional data model and operations 

•  Data cube & rollup operators 

•  Data warehouse implementation issues 

•  Other extensions for data analysis 
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Additional Extensions 
for Decision Support 

•  Window queries 
SELECT L.state, T.month, AVG(S.sales) over W AS movavg 

FROM Sales S, Times T, Locations L 

WHERE S.timeid = T.timeid AND S.locid=L.locid 

WINDOW W AS (PARTITION BY L.State 

   ORDER BY T.month 

   RANGE BETWEEN INTERVAL ‘1’ MONTH PRECEDING 

   AND INTERVAL ‘1’ MONTH FOLLOWING) 

•  Top-k queries: optimize queries to return top k results 

•  Online aggregation: produce results incrementally 



CSE 544 - Fall 2015 

Leveraging Column Stores 

33 
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Main Idea 

•  Most DBMS (up till now) store each tuple using row-major 
order 

35 

Row 

•  Store tuples by column-major order instead? 

Column 
Why? 



From Row-Store to Column-Store 

Rows stored  
contiguously on disk 

(+ tuple headers) 

Columns stored  
contiguously on disk 
(no headers needed) 



Recall Record Formats 
in Row Stores 

Variable length records 

Field 1 Field 2 . . . . . . Field K 
 
 
 
Record header 
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More Detailed Example 

Row-based 
(4 pages) 

A 1 
A 2 
A 2 
A 2 

Page 

C 4 
C 4 

B 2 
B 4 

Column-based 
(4 pages) 

A 
A 
A 

1 

A 

2 

Page C 

2 

C 

4 
4 
4 

B 

2 

B 

2 

C-Store also 
avoids large 
tuple headers 
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Column-Store Optimizations 

Numbers from earlier paper and C-Store system: “Column-Stores vs. 
Row-Stores: How Different Are they Really?” Abadi et. al. SIGMOD’08. 
  
•  Vectorized processing / Block iteration (1.5X) 

–  Pass blocks of values between ops instead of individual tuples 

•  Compression: e.g., run-length encoding of columns (10X) 
•  Late tuple materialization (3X improvement) 

–  Process individual columns as long as possible 
–  Merge columns into complete tuples as late as possible 

•  Invisible joins (1.5X) 
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Compression Example 
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Row-based 
(4 pages) 

A 1 
A 2 
A 2 
A 2 

Page 

C 4 
C 4 

B 2 
B 4 

Column-based 
(4 pages) 

A 
A 
A 

1 

A 

2 

Page C 

2 

C 

4 
4 
4 

B 

2 

B 

2 

Compressed 
(2 pages) 

4XA 
2XB 
2XC 

1X1 
4X2 
5X4 

40 



Late Tuple Materialization 

Ex: SELECT R.b from R where R.a=X and R.d=Y 

a b c d 

R 

σ	



π	



Early materialization 

a b c d 

R 

σ	



Late materialization 

σ	



1 
1 
0 

0 
1 

1 
0 
0 
1 
0 

∩ 

Extract values 
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Late Tuple 
Materialization 





Joins 
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Simulating a Column-Store DBMS 
in a Row-Store DBMS 

•  Vertical partitioning 
–  Two-column tables: (key, attribute) 

•  Index-only plans 
–  Create a B+ tree index on each attribute 
–  Answer queries using indexes only, without reading actual data 

•  Materialized views 
–  Each view contains a subset of columns 
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Conclusion 

•  Column-store DBMS outperforms row-store DBMS 
–  Measured on a data warehousing benchmark (SSBM) 

•  Late materialization and compression are key factors 

•  Difficult to simulate a column-store in a row-store 
–  Tuple overheads cause data blow-up 
–  Column joins are expensive 
–  Hard to get the DBMS to “do the right thing” (e.g., index plans) 

•  Not the end of the story, however, … see CIDR’09 paper 
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