
CSE 544
Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 8 - Data Warehousing and
Column Stores

Announcements

•  Shumo office hours change
–  See website for details

•  HW2 due next Thurs
–  Please start soon!

•  Project meetings this week
–  Sign up on doodle if you haven’t already

CSE 544 - Fall 2015 2

3

Where We Are

•  Data models
–  Relational
–  IMS / Codasyl
–  Unstructured

•  Query processing
–  Algorithms for relational operators
–  Indexing and physical design

•  Queries that real-world users write
–  Data warehousing
–  Transaction processing

Where We Are

•  What queries do real people write?
– Data warehousing

•  Column stores (today)
•  Parallel databases (Thursday)
•  Programming models (next week)

– Transaction processing

CSE 544 - Fall 2015 4

CSE 544 - Fall 2015 5

References

•  Data Cube: A Relational Aggregation Operator
Generalizing Group By, Cross-Tab, and Sub-Totals.
 Jim Gray et. al. Data Mining and Knowledge Discovery 1,
29-53. 1997

•  Database management systems.
 Ramakrishnan and Gehrke.
 Third Ed. Chapter 25

CSE 544 - Fall 2015 6

Why Data Warehouses?

•  DBMSs designed to manage operational data
–  Goal: support every day activities
–  Online transaction processing (OLTP)
–  Ex: Tracking sales and inventory of each Wal-mart store

•  Enterprises also need to analyze and explore their data
–  Goal: summarize and discover trends to support decision making
–  Online analytical processing (OLAP)

•  To support OLAP consolidate all data into a warehouse

The Origin of Data Warehouses

Sales DB

Sale transactions

7 Cashiers CSE 544 - Fall 2015

Nightly
Backups

Walmart, 90s

The Origin of Data Warehouses

Sales DB

Sale
transactions

8 Users CSE 544 - Fall 2015

Nightly
Backups

Amazon, 00s
Operational

DB

CSE 544 - Fall 2015 9

Data Warehouse Overview

•  Consolidated data from many sources
–  Must create a single unified schema
–  The warehouse is like a materialized view

•  Very large size: terabytes of data are common

•  Complex read-only queries (no updates)

•  Fast response time is (not as) important
–  Compared to transaction processing

10

Creating a Data Warehouse
•  Extract data from distributed operational databases

•  Clean to minimize errors and fill in missing information

•  Transform to reconcile semantic mismatches
–  Performed by defining views over the data sources

•  Load to materialize the above defined views
–  Build indexes and additional materialized views

•  Refresh to propagate updates to warehouse periodically

•  This is known as the ETL pipeline

Alternative: Distributed DBMS

•  User submits a query at one site

•  Query is defined over data located at different sites
–  Different physical locations
–  Different types of DBMSs

•  Query optimizer finds the best distributed query plan
–  Query executes across all the locations
–  Results shipped to query site and returned to user

•  (Stay tuned for the next lecture!)
 CSE 544 - Fall 2015 11

CSE 544 - Fall 2015 13

Back to Warehouses: Outline

•  Multidimensional data model and operations

•  Data cube & rollup operators

•  Data warehouse implementation issues

•  Other extensions for data analysis

CSE 544 - Fall 2015 14

Data Analysis Cycle

•  Formulate query that extracts data from the database
–  Typically ad-hoc complex query with group by and aggregate

•  Visualize the data (e.g., spreadsheet)
–  Dataset is an N-dimensional space

•  Analyze the data
–  Identify “interesting” subspace by aggregating other dimensions
–  Categorize the data an compare categories with each other
–  Roll-up and drill-down on the data

CSE 544 - Fall 2015 15

Multidimensional Data Model

•  Focus of the analysis is a collection of measures
–  Example: Wal-mart sales

•  Each measure depends on a set of dimensions
–  Example: product (pid), location (lid), and time of the sale (timeid)

203 54 102 18

296 87 334 25

23 76 93 11

17 62 154 8

timeid
1 2 3 4

pid

10
11
12
13

locid
Slicing: equality
selection on one or
more dimensions

Dicing: range selection

CSE 544 - Fall 2015 16

Star Schema

pid timeid locid sales Sales

pid pname category price
Product

locid city state country
Location

timeid date week month
Times

quarter year

Facts table: Sales
In BCNF

Dimensions tables
•  Product
•  Location
•  Times
Not necessarily
normalized

Representing multidimensional data as relations (ROLAP)

CSE 544 - Fall 2015 17

Dimension Hierarchies

Dimension values can form a hierarchy described by attributes

category

pname

Product

country

state

Location

city

quarter

week

date

month

year

Time

CSE 544 - Fall 2015 18

Desired Operations

•  Histograms (agg. over computed categories)
–  Problem: awkward to express in SQL (paper p.34)

•  Summarize at different levels: roll-up and drill-down
–  Ex: total sales by day, week, quarter, and year

•  Pivoting
–  Ex: pivot on location and time
–  Result of pivot is a cross-tabulation
–  Column values become labels

500 200 700

150 850 1000

250 400 650

900 1450 2350

WI CA Total
2005
2006
2007
Total

CSE 544 - Fall 2015 19

Challenge 1: Representation

•  Problem: How to represent multi-level aggregation?
–  Ex: Table 3 in the paper need 2N columns for N dimensions!
–  Ex: Table 4 has even more columns!

CSE 544 - Fall 2015 20

Challenge 1: Representation

P1: RPS/ASH P2: RPS
Data Mining and Knowledge Discovery KL411-02-Gray March 5, 1997 16:21

38 GRAY ET AL.

The representation suggested by Table 5 and unioned GROUP BYs “solve” the problem of
representing aggregate data in a relational data model. The problem remains that expressing
roll-up, and cross-tab queries with conventional SQL is daunting. A six dimension cross-
tab requires a 64-way union of 64 different GROUP BY operators to build the underlying
representation.
There is another very important reason why it is inadequate to use GROUP BYs. The

resulting representation of aggregation is too complex to analyze for optimization. Onmost
SQL systems this will result in 64 scans of the data, 64 sorts or hashes, and a long wait.

3. CUBE and ROLLUP operators

The generalization of group by, roll-up and cross-tab ideas seems obvious: Figure 3 shows
the concept for aggregation up to 3-dimensions. The traditional GROUP BY generates the
N -dimensional data cube core. The N � 1 lower-dimensional aggregates appear as points,
lines, planes, cubes, or hyper-cubes hanging off the data cube core.
The data cube operator builds a table containing all these aggregate values. The total

aggregate using function f() is represented as the tuple:

ALL, ALL, ALL, . . . , ALL, f(*)

Points in higher dimensional planes or cubes have fewer ALL values.

Figure 3. The CUBE operator is the N -dimensional generalization of simple aggregate functions. The 0D data
cube is a point. The 1D data cube is a line with a point. The 2D data cube is a cross tabulation, a plane, two lines,
and a point. The 3D data cube is a cube with three intersecting 2D cross tabs.

CSE 544 - Fall 2015 21

P1: RPS/ASH P2: RPS
Data Mining and Knowledge Discovery KL411-02-Gray March 5, 1997 16:21

DATA CUBE: A RELATIONAL AGGREGATION OPERATOR 39

Figure 4. A 3D data cube (right) built from the table at the left by the CUBE statement at the top of the figure.

Creating a data cube requires generating the power set (set of all subsets) of the aggrega-
tion columns. Since the CUBE is an aggregation operation, it makes sense to externalize it
by overloading the SQL GROUP BY operator. In fact, the cube is a relational operator, with
GROUP BY and ROLL UP as degenerate forms of the operator. This can be conveniently
specified by overloading the SQL GROUP BY3.
Figure 4 has an example of the cube syntax. To give another, here follows a statement to

aggregate the set of temperature observations:

SELECT day, nation, MAX(Temp)
FROM Weather
GROUP BY CUBE

Day(Time) AS day,
Country(Latitude, Longitude)

AS nation;

The semantics of the CUBE operator are that it first aggregates over all the <select
list> attributes in the GROUP BY clause as in a standard GROUP BY. Then, it UNIONs
in each super-aggregate of the global cube—substituting ALL for the aggregation columns.
If there are N attributes in the <select list>, there will be 2N � 1 super-aggregate
values. If the cardinality of the N attributes are C1,C2, . . . ,CN then the cardinality of the

CSE 544 - Fall 2015 22

Challenge 1: Representation

•  Problem: How to represent multi-level aggregation?
–  Ex: Table 3 in the paper need 2N columns for N dimensions!
–  Ex: Table 4 has even more columns!
–  And that’s without considering any hierarchy on the dimensions!

•  Solution: special “all” value

2005 WI 500

2005 CA 200

2005 ALL 700

...

T.year L.state SUM(S.sales)

ALL ALL 2350

Note: SQL-1999
standard uses NULL
values instead of ALL

CSE 544 - Fall 2015 23

Challenge 2:
Computing Aggregations

•  Need 2N different SQL queries to compute all aggregates
–  Expressing roll-up of a single column and cross-table queries is

thus daunting
–  Cannot optimize all these independent queries

•  Solution: CUBE and ROLLUP operators

CSE 544 - Fall 2015 24

Outline

•  Multidimensional data model and operations

•  Data cube & rollup operators

•  Data warehouse implementation issues

•  Other extensions for data analysis

CSE 544 - Fall 2015 25

Data Cube

•  CUBE is the N-dimensional generalization of aggregate

•  Cube in SQL-1999
 SELECT T.year, L.state, SUM(S.sales)

 FROM Sales S, Times T, Locations L

 WHERE S.timeid=T.timeid and S.locid=L.locid

 GROUP BY CUBE (T.year,L.state)

•  Creating a data cube requires generating the power set
of the aggregation columns

CSE 544 - Fall 2015 26

Rollup

•  Rollup produces a subset of a cube

•  Rollup in SQL-1999
 SELECT T.year,T.quarter, SUM(S.sales)

 FROM Sales S, Times T

 WHERE S.timeid=T.timeid

 GROUP BY ROLLUP (T.year,T.quarter)

•  Will aggregate over each pair of (year,quarter), each
year, and total, but will not aggregate over each quarter

CSE 544 - Fall 2015 27

Computing Cubes and Rollups

•  Naive algorithm
–  For each new tuple, update each of 2N matching cells

•  More efficient algorithm
–  Use intermediate aggregates to compute others
–  Relatively easy for distributive and algebraic functions

•  Updating a cube in response to updates is more
challenging

CSE 544 - Fall 2015 28

Outline

•  Multidimensional data model and operations

•  Data cube & rollup operators

•  Data warehouse implementation issues

•  Other extensions for data analysis

CSE 544 - Fall 2015 29

Indexes

•  Bitmap indexes: good for sparse attributes (few values)

•  Join indexes: to speed-up specific join queries
–  Example: Join fact table F with dimension tables D1 and D2
–  Index contain triples of rids <r1,r2,r> from D1, D2, and F that join
–  Alternatively, two indexes, each one with pairs <v1,r> or <v2,r>

where v1, v2 are values of tuples from D1, D2 that join with r

M F custid name gender rating 1 2 3 4
0 1 10 Alice F 3 0 0 1 0
1 0 11 Bob M 4 0 0 0 1
1 0 12 Chuck M 1 1 0 0 0

CSE 544 - Fall 2015 30

Materialized Views

•  How to choose views to materialize?
–  Physical database tuning

•  How to keep view up-to-date?
–  Could recompute entire view for each update: expensive
–  Better approach: incremental view maintenance
–  Example: recompute only affected partition

–  How often to synchronize? Periodic updates (at night) are typical
•  Think back in the case of Walmart

CSE 544 - Fall 2015 31

Outline

•  Multidimensional data model and operations

•  Data cube & rollup operators

•  Data warehouse implementation issues

•  Other extensions for data analysis

CSE 544 - Fall 2015 32

Additional Extensions
for Decision Support

•  Window queries
SELECT L.state, T.month, AVG(S.sales) over W AS movavg

FROM Sales S, Times T, Locations L

WHERE S.timeid = T.timeid AND S.locid=L.locid

WINDOW W AS (PARTITION BY L.State

 ORDER BY T.month

 RANGE BETWEEN INTERVAL ‘1’ MONTH PRECEDING

 AND INTERVAL ‘1’ MONTH FOLLOWING)

•  Top-k queries: optimize queries to return top k results

•  Online aggregation: produce results incrementally

CSE 544 - Fall 2015

Leveraging Column Stores

33

CSE 544 - Fall 2015

References

•  The Design and Implementation of Modern Column-
Oriented Database Systems Daniel Abadi, Peter Boncz,
Stavros Harizopoulos, Stratos Idreos, Samuel Madden.
Foundations and Trends® in Databases (Vol 5, Issue 3,
2012, pp 197-280).

34

CSE 544 - Fall 2015

Main Idea

•  Most DBMS (up till now) store each tuple using row-major
order

35

Row

•  Store tuples by column-major order instead?

Column
Why?

From Row-Store to Column-Store

Rows stored
contiguously on disk

(+ tuple headers)

Columns stored
contiguously on disk
(no headers needed)

Recall Record Formats
in Row Stores

Variable length records

Field 1 Field 2 Field K

Record header

37 CSE 544 - Fall 2015

More Detailed Example

Row-based
(4 pages)

A 1
A 2
A 2
A 2

Page

C 4
C 4

B 2
B 4

Column-based
(4 pages)

A
A
A

1

A

2

Page C

2

C

4
4
4

B

2

B

2

C-Store also
avoids large
tuple headers

38

Column-Store Optimizations

Numbers from earlier paper and C-Store system: “Column-Stores vs.
Row-Stores: How Different Are they Really?” Abadi et. al. SIGMOD’08.

•  Vectorized processing / Block iteration (1.5X)

–  Pass blocks of values between ops instead of individual tuples

•  Compression: e.g., run-length encoding of columns (10X)
•  Late tuple materialization (3X improvement)

–  Process individual columns as long as possible
–  Merge columns into complete tuples as late as possible

•  Invisible joins (1.5X)

CSE 544 - Fall 2015 39

Compression Example

CSE 544 - Fall 2015

Row-based
(4 pages)

A 1
A 2
A 2
A 2

Page

C 4
C 4

B 2
B 4

Column-based
(4 pages)

A
A
A

1

A

2

Page C

2

C

4
4
4

B

2

B

2

Compressed
(2 pages)

4XA
2XB
2XC

1X1
4X2
5X4

40

Late Tuple Materialization

Ex: SELECT R.b from R where R.a=X and R.d=Y

a b c d

R

σ	

π	

Early materialization

a b c d

R

σ	

Late materialization

σ	

1
1
0

0
1

1
0
0
1
0

∩

Extract values

41 CSE 544 - Fall 2015

Late Tuple
Materialization

Joins

CSE 544 - Fall 2015 44

Simulating a Column-Store DBMS
in a Row-Store DBMS

•  Vertical partitioning
–  Two-column tables: (key, attribute)

•  Index-only plans
–  Create a B+ tree index on each attribute
–  Answer queries using indexes only, without reading actual data

•  Materialized views
–  Each view contains a subset of columns

CSE 544 - Fall 2015 45

Conclusion

•  Column-store DBMS outperforms row-store DBMS
–  Measured on a data warehousing benchmark (SSBM)

•  Late materialization and compression are key factors

•  Difficult to simulate a column-store in a row-store
–  Tuple overheads cause data blow-up
–  Column joins are expensive
–  Hard to get the DBMS to “do the right thing” (e.g., index plans)

•  Not the end of the story, however, … see CIDR’09 paper
CSE 544 - Fall 2015 46

