
CSE 544
Principles of Database
Management Systems

Fall 2016
Lecture 2 – Relational Algebra and SQL

CSE 544 - Fall 2016 1

Announcements

• Paper review
– First paper review is posted now (due Wednesday 6pm)
– Details on website

• Milestone 1 of the project was due
– You don’t need to choose a project yet; more suggestions will

continue to be posted on website
– M2 Project Proposal due next Wednesday

CSE 544 - Fall 2016 2

CSE 544 - Fall 2016

Outline

Three topics today

• Relational algebra

• Crash course on SQL

3

CSE 544 - Fall 2016

Relational Operators

• Selection: scondition(S)
– Condition is Boolean combination (Ù,Ú) of terms
– Term is: attr. op constant, attr. op attr.
– Op is: <, <=, =, ≠, >=, or >

• Projection: plist-of-attributes(S)
• Union (È), Intersection (Ç), Set difference (–),
• Cross-product or cartesian product (´)
• Join: R q S = sq(R ´ S)
• Division: R/S
• Rename r(R(F),E)

4

Join Galore

• Theta-join: R q S = sq(R x S)
– Join of R and S with a join condition q
– Cross-product followed by selection q

• Equijoin: R q S = pA (sq(R x S))
– Join condition q consists only of equalities
– Projection pA drops all redundant attributes*

• Natural join: R S = pA (sq(R x S))
– aka Equijoin
– Equality on all fields with same name in R and in S
– Natural join does drop redundant attributes

5

*Alvin is wrong…

CSE 544 - Fall 2016

Theta-Join Example

age zip disease
50 98125 heart
19 98120 flu

AnonPatient P Voters V

P.age P.zip disease
19 98120 flu

name V.age V.zip
p2 20 98120

P P.zip = V.zip and P.age <= V.age + 1 and P.age >= V.age - 1 V

name age zip
p1 54 98125
p2 20 98120

6

CSE 544 - Fall 2016

Equijoin Example

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P P.age=V.age V

name age zip
p1 54 98125
p2 20 98120

age P.zip disease name V.zip

54 98125 heart p1 98125

20 98120 flu p2 98120

7

CSE 544 - Fall 2016

Natural Join Example

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P V

name age zip
p1 54 98125
p2 20 98120

age zip disease name

54 98125 heart p1

20 98120 flu p2

8

CSE 544 - Fall 2016

Even More Joins

• Outer join
– Include tuples with no matches in the output
– Use NULL values for missing attributes

• Variants
– Left outer join
– Right outer join
– Full outer join

9

CSE 544 - Fall 2016

Outer Join Example

age zip disease
54 98125 heart
20 98120 flu
33 98120 lung

AnonPatient P Voters V

P o V

name age zip
p1 54 98125
p2 20 98120

age zip disease name

54 98125 heart p1

20 98120 flu p2

33 98120 lung null

10

CSE 544 - Fall 2016

Extended Operators
of Relational Algebra

• Duplicate elimination (d)
– Since commercial DBMSs operate on multisets/bags not sets

• Aggregate operators (g)
– Useful in practice and requires bag semantics
– Min, max, sum, average, count

• Grouping operators (g)
– Partitions tuples of a relation into “groups”
– Aggregates can then be applied to groups

• Sort operator (t)
11

CSE 544 - Fall 2016

Relational Calculus

• Alternative to relational algebra
– Declarative query language
– Describe what we want NOT how to get it

• Tuple relational calculus query
– { T | p(T) }
– Where T is a tuple variable
– p(T) denotes a formula that describes T
– Result: set of all tuples for which p(T) is true
– Language for p(T) is subset of first-order logic

Q1: Names of patients who have heart disease
{ T | $ P Î AnonPatient $ V Î Voter

(P.zip = V.zip Ù P.age = V.age Ù P.disease = ‘heart’ Ù T.name = V.name) }
12

Example

• Show set division on white board…

CSE 544 - Fall 2016 13

CSE 544 - Fall 2016

Outline

Three topics today

• Wrap up relational algebra

• Crash course on SQL

• Brief overview of database design

14

CSE 544 - Fall 2016

Structured Query Language: SQL

• Influenced by relational calculus

• Declarative query language

• Multiple aspects of the language
– Data definition language (DDL)

• Statements to create, modify tables and views
– Data manipulation language (DML)

• Statements to issue queries, insert, delete data
– More

15

CSE 544 - Fall 2016

Outline

• Today: crash course in SQL DML
– Data Manipulation Language
– SELECT-FROM-WHERE-GROUPBY
– Study independently: INSERT/DELETE/MODIFY

• Study independently SQL DDL
– Data Definition Language
– CREATE TABLE, DROP TABLE, CREATE INDEX,

CLUSTER, ALTER TABLE, …
– E.g. google for the postgres manual, or type this in psql:

\h create
\h create table
\h cluster

16

CSE 544 - Fall 2016

SQL Query

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

Basic form: (plus many many many more bells and
whistles)

17

CSE 544 - Fall 2016

Simple SQL Query

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

SELECT PName, Price, Manufacturer
FROM Product
WHERE Price > 100

Product

PName Price Manufacturer

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

“selection” and
“projection”

18

CSE 544 - Fall 2016

Eliminating Duplicates

SELECT DISTINCT category
FROM Product

Compare to:

SELECT category
FROM Product

Category

Gadgets

Gadgets

Photography

Household

Category

Gadgets

Photography

Household

19

CSE 544 - Fall 2016

Ordering the Results

SELECT pname, price, manufacturer
FROM Product
WHERE category=‘gizmo’ AND price > 50
ORDER BY price, pname

Ties are broken by the 2nd attribute on the ORDER BY list, etc.

Ordering is ascending, unless you specify the DESC keyword.

Can also request only top-k with LIMIT clause

20

CSE 544 - Fall 2016

Joins

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all products under $200 manufactured in Japan;
return their names and prices.

SELECT P.pname, P.price
FROM Product P, Company C
WHERE P.manufacturer=C.cname AND C.country=‘Japan’

AND P.price <= 200

SELECT P.pname, P.price
FROM Product P JOIN Company C ON P.manufacturer=C.cname
WHERE C.country=‘Japan’ AND P.price <= 200

21

Semantics of SQL Queries

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer È {(a1,…,ak)}
return Answer

CSE 544 - Fall 2016 22

CSE 544 - Fall 2016

Aggregation

SELECT count(*)
FROM Product
WHERE year > 1995

Except count, all aggregations apply to a single attribute

SELECT avg(price)
FROM Product
WHERE maker=‘Toyota’

SQL supports several aggregation operations:

sum, count, min, max, avg

23

Grouping and Aggregation

Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Let’s see what this means…

Find total quantities for all sales over $1, by product.

CSE 544 - Fall 2016 24

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause:
grouped attributes and aggregates.

CSE 544 - Fall 2016 25

1&2. FROM-WHERE-GROUPBY

CSE 544 - Fall 2016

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

WHERE	price	>	1

26

3. SELECT

Product TotalSales
Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

CSE 544 - Fall 2016

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

What can go in SELECT clause?
Will return ONE TUPLE per

group

27

HAVING Clause

SELECT product, sum(price*quantity)
FROM Purchase
WHERE price > 1
GROUP BY product
HAVING Sum(quantity) > 30

Same query as earlier, except that we consider only products
that had at least 30 sales.

HAVING clause contains conditions on aggregates.

CSE 544 - Fall 2016 28

WHERE vs HAVING

• WHERE condition is applied to individual rows
– The rows may or may not contribute to the aggregate
– No aggregates allowed here

• HAVING condition is applied to the entire group
– Entire group is returned, or not al all
– May use aggregate functions in the group

CSE 544 - Fall 2016 29

General form of Grouping
and Aggregation

S = may contain attributes a1,…,ak and/or any
aggregates but NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn
C2 = is any condition on aggregate expressions

and on attributes a1,…,ak

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BY a1,…,ak

HAVING C2

CSE 544 - Fall 2016 30

Semantics of SQL With Group-By

Evaluation steps:
1. Evaluate FROM-WHERE using Nested Loop Semantics
2. Group by the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)
4. Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BY a1,…,ak

HAVING C2

CSE 544 - Fall 2016
31

Subqueries

• A subquery is a SQL query nested inside a larger query
• Such inner-outer queries are called nested queries
• A subquery may occur in:

– A SELECT clause
– A FROM clause
– A WHERE clause

• Rule of thumb: avoid writing nested queries when
possible; keep in mind that sometimes it’s impossible

CSE 544 - Fall 2016 32

Subqueries in WHERE

CSE 544 - Fall 2016

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid and P.price < 200)

Existential quantifiers

Using EXISTS:

Product (pname, price, cid)
Company(cid, cname, city)

33

Subqueries in WHERE

CSE 544 - Fall 2016

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 200)

Existential quantifiers

Using IN

Product (pname, price, cid)
Company(cid, cname, city)

34

Subqueries in WHERE

CSE 544 - Fall 2016

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Existential quantifiers

Using ANY:

Product (pname, price, cid)
Company(cid, cname, city)

35

Subqueries in WHERE

CSE 544 - Fall 2016

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid= P.cid and P.price < 200

Existential quantifiers are easy ! J

Existential quantifiers

Now let’s unnest it:

Product (pname, price, cid)
Company(cid, cname, city)

36

Subqueries in WHERE

CSE 544 - Fall 2016

Find all companies whose products all have price < 200

Universal quantifiers are hard ! L

Find all companies that make only products with price < 200

same as:

Universal quantifiersProduct (pname, price, cid)
Company(cid, cname, city)

37

Subqueries in WHERE

CSE 544 - Fall 2016

2. Find all companies s.t. all their products have price < 200

1. Find the other companies: i.e. s.t. some product ³ 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

38

Subqueries in WHERE

CSE 544 - Fall 2016

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *

FROM Product P
WHERE P.cid = C.cid and P.price >= 200)

Universal quantifiers

Using EXISTS:

Find all companies that make only products with price < 200

Product (pname, price, cid)
Company(cid, cname, city)

39

Subqueries in WHERE

CSE 544 - Fall 2016

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ALL:

Universal quantifiers

Find all companies that make only products with price < 200

Product (pname, price, cid)
Company(cid, cname, city)

40

Can we unnest the universal
quantifier query ?

• A query Q is monotone if:
– Whenever we add tuples to one or more of the tables…
– … the answer to the query cannot contain fewer tuples

• Fact: all unnested queries are monotone
– Proof: using the “nested for loops” semantics

• Fact: Query with universal quantifier is not monotone

• Consequence: we cannot unnest a query with a
universal quantifier

CSE 544 - Fall 2016 41

