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Announcements

Homework 2 posted, due Friday, Nov. 4th

• SimpleDB
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• Phokion Kolaitis’ tutorial on database theory at Simon’s 
https://simons.berkeley.edu/sites/default/files/docs/5241/s
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Review

• What is datalog?

• What is the naïve evaluation algorithm?

• What is the seminaive algorithm?



Outline

• Magic sets

• Extending datalog with negation and aggregates
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Magic Sets

• Problem: datalog programs compute a lot,
but sometimes we need only very little

• Prolog computes top-down and retrieves very little
datalog computes bottom up retrieves a lot

• (Prolog has other issues: left recursive prolog never 
terminates!)

• Magic sets transform a datalog program P into a new 
program P’, such that bottom-up(P’) = top-down(P)
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Example 1
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T(x,y) :- E(x,y)
T(x,y) :- T(x,z),E(z,y)
Q(y)   :- T(3,y)

a constant

1

2

4

3

5
R encodes a graph

Bottom-up evaluation
very inefficient



Example 1
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T(x,y) :- E(x,y)
T(x,y) :- T(x,z),E(z,y)
Q(y)   :- T(3,y)

a constant

1

2

4

3

5
R encodes a graph

Bottom-up evaluation
very inefficient

Manual optimization:

Q(y) :- E(3,y)
Q(y) :- Q(x),E(x,y)



Example 2
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SG(x,x) :- V(x)
SG(x,y) :- Up(x,u),SG(u,v),Dn(u,y)
Q(y) :- SG(1,y)

If we define
Up(a,b) = E(b,a)
Dn(a,b) = E(a,b)
then SG = “same generation”

1

2

4

3

5
R encodes a graph

Same generation

Manual optimization???



Magic Set Rewriting (simplified)

• For each IDB predicate create “adorned” versions, with 
binding patters

• For each adorned IDB P, create a predicate MagicP

• For each rule, create several rules, one for each possible 
adornment of the head:
– Allow information to flow left-to-right (“sideways information 

passing”), and this defines the required adornments of the IDB’s 
in the body

– If there are k IDB’s in the body, create k+1 supplementary 
relations Suppi, which guard the set of bound variables passed 
on to the i’th IDB

• New rules defining MagicP: one for the query, and one for 
each Suppi preceding an occurrence of P in a body 10



Adorned predicate

• b=bound, f=free
• Tbf(x,y) means:

– The values of x are known
– The values of y are not known (need to be retrieved)

• Need to create all combinations: Tbf, Tfb

• Side-ways information passing means that we adorn 
rules allowing information to flow left-to-right

– E.g. T(x,y) :- E(x,u),T(u,v),E(v,w),T(w,z),E(z,y)

– Adorned: Tbf(x,y) :- E(x,u),Tbf(u,v),E(v,w),Tbf(w,z),E(z,y)



Supplementary Relations

• Given adornment Tbf(x,y),  a new predicate Supp(x) 
contains the (small!) set of values x for which we want to 
compute Tbf(x,y)

• E.g. Tbf(x,y) :- E(x,u),Tbf(u,v),E(v,w),Tbf(w,z),E(z,y)
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Supp0(x)
Supp1(x,u)

Supp2(x,w)
Supp3(x,y)



Supp Rules

• E.g. Tbf(x,y) :- E(x,u),Tbf(u,v),E(v,w),Tbf(w,z),E(z,y)

Becomes:
• Supp0(x) :- MagicTbf(x) /* next slide … */
• Supp1(x,u) :- Supp0(x), E(x,u)
• Supp2(x,w) :- Supp1(x,u), Tbf(u,v),E(v,w)
• Supp3(x,y) :- Supp2(x,w), Tbf(w,z),E(z,y)
• Tbf(x,y) :- Supp3(x,y)

Supp0(x)
Supp1(x,u)

Supp2(x,w)
Supp3(x,y)

Supp0 and Supp3
are redundant



Adding the Magic Predicate

• E.g. Tbf(x,y) :- E(x,u),Tbf(u,v),E(v,w),Tbf(w,z),E(z,y)

• MagicTbf(x) = the set of bounded values of x for which we 
need to compute Tbf(x,y)

• E.g.
– MagicTbf(3) :- /* if the query is Q(y) :- T(3,y)  */
– MagicTbf(u) :- Supp1(x,u) /* need to compute Tbf(u,v) */
– MagicTbf(w) :- Supp2(x,w) /* need to compute Tbf(w,z) */

Supp0(x)
Supp1(x,u)

Supp2(x,w)
Supp3(x,y)



Example 1
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T(x,y) :- E(x,y)
T(x,y) :- T(x,z),E(z,y)
Q(y)   :- T(3,y)

1

2

4

3

5
R encodes a graph

Magic Sets

Original:

Adorned:
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T(x,y) :- E(x,y)
T(x,y) :- T(x,z),E(z,y)
Q(y)   :- T(3,y)

1

2

4

3

5
R encodes a graph

Magic Sets

Tbf(x,y) :- E(x,y)
Tbf(x,y) :- Tbf(x,z),E(z,y)
Q(y)   :- Tbf(3,y)

Original:

Adorned:



Example 1
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T(x,y) :- E(x,y)
T(x,y) :- T(x,z),E(z,y)
Q(y)   :- T(3,y)

1

2

4

3

5
R encodes a graph

Magic Sets

Supp0(x) :- MagicTbf(x)
Supp1(x,y) :- Supp0(x),E(x,y)
Tbf(x,y) :- Supp1(x,y)

Supp’0(x) :- MagicTbf(x)
Supp’1(x,z) :- Supp’0(x), Tbf(x,z)
Supp’2(x,y) :- Supp’1(x,z), E(z,y)
Tbf(x,y) :- Supp’2(x,y)

MagicTbf(3) :-
MagicTbf(x) :- Supp’0(x) /* redundant */Tbf(x,y) :- E(x,y)

Tbf(x,y) :- Tbf(x,z),E(z,y)
Q(y)   :- Tbf(3,y)

Original:

Adorned:



Example 1
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T(x,y) :- E(x,y)
T(x,y) :- T(x,z),E(z,y)
Q(y)   :- T(3,y)

1

2

4

3

5
R encodes a graph

Magic Sets

Supp0(x) :- MagicTbf(x)
Supp1(x,y) :- Supp0(x),E(x,y)
Tbf(x,y) :- Supp1(x,y)

Supp’0(x) :- MagicTbf(x)
Supp’1(x,z) :- Supp’0(x), Tbf(x,z)
Supp’2(x,y) :- Supp’1(x,y), E(z,y)

MagicTbf(3) :-
MagicTbf(x) :- Supp’0(x) /* redundant */

Tbf(x,y) :- E(x,y)
Tbf(x,y) :- Tbf(x,z),E(z,y)
Q(y)   :- Tbf(3,y)

Original:

Adorned:

Show computation
on white board



Adding Negation:  Datalog¬
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Adding Negation:  Datalog¬

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
CT(x,y) :- Node(x), Node(y), not T(x,y)

Example: compute the complement of the transitive closure

What does this mean??



Recursion and Negation
Don’t Like Each Other

21

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

EDB:    I  = { R(a) }

What are the possible outcomes of S and T?



Recursion and Negation
Don’t Like Each Other

22

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

EDB:    I  = { R(a) }

What are the possible outcomes of S and T?

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) }



Adding Negation:  datalog¬

• Solution 1: Stratified Datalog¬

– Rules must be partitioned into strata
– IDB predicates defined in strata ≤ k may be negated in strata ≥ k+1

• Solution 2: Inflationary-fixpoint Datalog¬

– Fire rules and always add facts (never retract)
– Stop when nothing new is added
– Always terminates (why ?)

• Solution 3: Partial-fixpoint Datalog¬,*

– Fire rules, adding/retracting facts as needed
– Stop when reaching a fixpoint
– May not terminate

• Solution 4: Well-founded semantics

23What semantics does the paper use? 



Discussion in Class

The Declarative Imperative paper:

• What are the extensions to datalog in Dedalus?

• What is the main usage of Dedalus described in the 
paper?

• What limitations of datalog does the paper describe?



Semantics of a Datalog Program

Three different, equivalent semantics:

• Minimal model semantics

• Least fixpoint semantics

• Proof-theoretic semantics (will not discuss)



Minimal Model Semantics
To each rule r: P(x1…xk) :- R1(…),R2(…), …



Minimal Model Semantics
To each rule r: P(x1…xk) :- R1(…),R2(…), …

Associate the logical sentence Σr: ∀z1…∀zn. [(R1(…)∧R2(…)∧…) è P(…)]

All variables in the rule



Minimal Model Semantics
To each rule r: P(x1…xk) :- R1(…),R2(…), …

Associate the logical sentence Σr: ∀z1…∀zn. [(R1(…)∧R2(…)∧…) è P(…)]

Same as: ∀x1…∀xk. [∃y1…∃ym.(R1(…)∧R2(…)∧…) è P(…)]

All variables in the rule

Head variables Existential variables



Minimal Model Semantics
To each rule r: P(x1…xk) :- R1(…),R2(…), …

Associate the logical sentence Σr: ∀z1…∀zn. [(R1(…)∧R2(…)∧…) è P(…)]

Same as: ∀x1…∀xk. [∃y1…∃ym.(R1(…)∧R2(…)∧…) è P(…)]

All variables in the rule

Head variables Existential variables

Definition. If P is a datalog program, 
ΣP is the set of all logical sentences associated to its rules.



Minimal Model Semantics
To each rule r: P(x1…xk) :- R1(…),R2(…), …

Associate the logical sentence Σr: ∀z1…∀zn. [(R1(…)∧R2(…)∧…) è P(…)]

Same as: ∀x1…∀xk. [∃y1…∃ym.(R1(…)∧R2(…)∧…) è P(…)]

All variables in the rule

Head variables Existential variables

Example.  Rule: T(x,y) :- R(x,z), T(z,y) Sentence: ∀x.∀y.∀z.(R(x,z)∧T(z,y)àT(x,y))
≡ ∀x.∀y.(∃z.R(x,z)∧T(z,y)àT(x,y))

Definition. If P is a datalog program, 
ΣP is the set of all logical sentences associated to its rules.



Minimal Model Semantics

Definition. Given an EDB database instance I and a datalog program P,
the minimal model, denoted J = P(I) is a minimal database instance J s.t. (I,J) ⊨ ΣP

Definition.  A pair (I,J) where I is an EDB and J is an IDB
is a model for P, if (I,J) ⊨ ΣP

Theorem. The minimal model always exists, and is unique.



Minimal Model Semantics

Definition. Given an EDB database instance I and a datalog program P,
the minimal model, denoted J = P(I) is a minimal database instance J s.t. (I,J) ⊨ ΣP

Definition.  A pair (I,J) where I is an EDB and J is an IDB
is a model for P, if (I,J) ⊨ ΣP

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Which of these IDBs are models?
Which are minimal models?

T=

R= 1 2

2 3

3 4

4 5

1 2

2 3

3 4

4 5

1 3

2 4

3 5

Theorem. The minimal model always exists, and is unique.

1 2 43 5

Example: ΣP: ∀x ∀y (R(x,y) à T(x,y))
∀x ∀y (R(x,z)∧T(z,y)àT(x,y))



Minimal Model Semantics

Definition. Given an EDB database instance I and a datalog program P,
the minimal model, denoted J = P(I) is a minimal database instance J s.t. (I,J) ⊨ ΣP

Definition.  A pair (I,J) where I is an EDB and J is an IDB
is a model for P, if (I,J) ⊨ ΣP

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Which of these IDBs are models?
Which are minimal models?

T=

R= 1 2

2 3

3 4

4 5

T=

Theorem. The minimal model always exists, and is unique.

1 2 43 5

Example:
1 2

2 3

3 4

4 5

1 3

2 4

3 5

1 4

2 5

1 5

1 2

2 3

3 4

4 5

1 3

2 4

3 5

ΣP: ∀x ∀y (R(x,y) à T(x,y))
∀x ∀y (R(x,z)∧T(z,y)àT(x,y))



Minimal Model Semantics

Definition. Given an EDB database instance I and a datalog program P,
the minimal model, denoted J = P(I) is a minimal database instance J s.t. (I,J) ⊨ ΣP

Definition.  A pair (I,J) where I is an EDB and J is an IDB
is a model for P, if (I,J) ⊨ ΣP

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Which of these IDBs are models?
Which are minimal models?

T=

R= 1 2

2 3

3 4

4 5

T=

Theorem. The minimal model always exists, and is unique.

1 2 43 5

Example:
1 2

2 3

3 4

4 5

1 3

2 4

3 5

1 4

2 5

1 5

1 2

2 3

3 4

4 5

1 3

2 4

3 5

ΣP: ∀x ∀y (R(x,y) à T(x,y))
∀x ∀y (R(x,z)∧T(z,y)àT(x,y))

… …

i j

T=

∀i<j



Grounding

• A grounding of an atom is obtained by substituting its 
variables with constants from the active domain

• Examples:
– T(5,2) is a grounding of T(x,y)
– T(5,5) is a grounding of T(x,y)
– T(5,5) is a grounding of T(x,x)
– T(5,2) is not a grounding of T(x,x)

• A grounding of a rule is obtained by substituting its 
variables with constants from the active domain

• Examples:
– (T(5,2) ß R(5,7),T(7,2)) is a grounding of (T(x,y) :- R(x,z),T(z,y))
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Minimal Fixpoint Semantics
Definition.  Fix an EDB I, and a datalog program P.
The immediate consequence operator TP is defined as follows.
For any IDB J:

TP(J) = all IDB facts that are immediate consequences from I and J:
= {H | (H ß B1, …, Bm) ∈ ground(P), J ⊨ B1, …, Bm}

Fact. For any datalog program P, the immediate consequence operator
is monotone. In other words, if J1⊆ J2 then TP(J1) ⊆ TP(J2).



Minimal Fixpoint Semantics

Fact. For any datalog program P, the immediate consequence operator
is monotone. In other words, if J1⊆ J2 then TP(J1) ⊆ TP(J2).

Theorem. The immediate consequence operator has a unique, minimal fixpoint J:
fix(TP) = J, where J is the minimal instance with the property TP(J) = J.

Proof: using Knaster-Tarski’s theorem for monotone functions.
The fixpoint is given by:

fix (TP) = J0∪ J1 ∪ J2∪…   where  J0 = ∅ ,   Jk+1 = TP(Jk) 

Definition.  Fix an EDB I, and a datalog program P.
The immediate consequence operator TP is defined as follows.
For any IDB J:

TP(J) = all IDB facts that are immediate consequences from I and J:
= {H | (H ß B1, …, Bm) ∈ ground(P), J ⊨ B1, …, Bm}
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Minimal Fixpoint Semantics

CSE544 - Spring, 2013

1 2 43

1 2

2 3

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T =

5

J0 = ∅ J1 = TP(J0) J2 = TP(J1) J3 = TP(J2) J4 = TP(J3) 
1 2

2 3

3 4

4 5

1 2

2 3

3 4

4 5

1 3

2 4

3 5

1 2

2 3

3 4

4 5

1 3

2 4

3 5

1 4

2 5

1 2

2 3

3 4

4 5

1 3

2 4

3 5

1 4

2 5

1 5
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Proof Theoretic Semantics

CSE544 - Spring, 2013

1 2 43

1 2

2 3

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

5

Every fact in the IDB has a derivation tree, or proof tree justifying its existence.

Derivation tree
of T(1,4) T(1,4)

R(1,2) T(2,4)

R(2,3) T(3,4)

R(3,4)
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Adding Negation:  Datalog¬

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
CT(x,y) :- Node(x), Node(y), not T(x,y)

Example: compute the complement of the transitive closure

What does this mean??



Recursion and Negation
Don’t Like Each Other
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S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

EDB:    I  = { R(a) }

Which IDBs are models of P?

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) }



Recursion and Negation
Don’t Like Each Other

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

EDB:    I  = { R(a) }

Which IDBs are models of P?

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) }

Yes: the facts in J2 are
R(a), S(a), ¬T(a)

and both rules are true.

Yes Yes

There is no minimal model!

No: both
rules fail



Recursion and Negation
Don’t Like Each Other

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

EDB:    I  = { R(a) }

Which IDBs are models of P?

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) }

Yes: the facts in J2 are
R(a), S(a), ¬T(a)

and both rules are true.

Yes Yes

There is no minimal model!

No: both
rules fail

There is no minimal fixpoint!
(Why does Knaster-Tarski’s
theorem fail?)



Adding Negation:  datalog¬

• Solution 1: Stratified Datalog¬

– Rules must be partitioned into strata
– IDB predicates defined in strata ≤ k may be negated in strata ≥ k+1

• Solution 2: Inflationary-fixpoint Datalog¬

– Fire rules and always add facts (never retract)
– Stop when nothing new is added
– Always terminates (why ?)

• Solution 3: Partial-fixpoint Datalog¬,*

– Fire rules, adding/retracting facts as needed
– Stop when reaching a fixpoint
– May not terminate

• Solution 4: Well-founded semantics
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Stratified datalog¬

P1 :- body1
P2 :- body2

….

….

Pj :- bodyj

….
….

….
Pn :- bodyn

P:

A datalog¬ program is stratified if its rules can be partitioned into k strata, such that:
• If an IDB predicate P appears negated in a rule in stratum i,

then it can only appear in the head of a rule in strata 1, 2, …, i-1

S
t
r
a
t
u
m 
i

Note: a datalog¬ program
either is stratified or it ain’t!

Which programs are stratified?

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
CT(x,y) :- Node(x), Node(y), not T(x,y)



Stratified datalog¬

• Evaluation algorithm for stratified datalog¬:

• For each stratum i = 1, 2, …, do:
– Treat all IDB’s defined in prior strata as EBS
– Evaluate the IDB’s defined in stratum i, using either the naïve or 

the semi-naïve algorithm

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)

CT(x,y) :- Node(x), Node(y), not T(x,y)

Does this compute a
minimal model?



Stratified datalog¬

• Evaluation algorithm for stratified datalog¬:

• For each stratum i = 1, 2, …, do:
– Treat all IDB’s defined in prior strata as EBS
– Evaluate the IDB’s defined in stratum i, using either the naïve or 

the semi-naïve algorithm

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)

CT(x,y) :- Node(x), Node(y), not T(x,y)

Does this compute a
minimal model?

NO: 
J1 = { T = transitive closure, CT = its complement}
J2 = { T = all pairs of nodes, CT = empty}



Inflationary-fixpoint datalog¬

Definition. The inflationary fixpoint semantics of P is J = Jn
where n is such that Jn+1 = Jn

Why does there always exists an n
such that Jn = F(Jn)?

Find the inflationary semantics for:

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
CT(x,y) :- Node(x), Node(y), not T(x,y)

Let P be any datalog¬ program, and I an EDB.
Let TP(J) be the immediate consequence operator.
Let F(J) = J ∪TP(J) be the inflationary immediate consequence operator.

Define the sequence: J0 = ∅, Jn+1 = F(Jn), for n ≥ 0.



Inflationary-fixpoint datalog¬

• Evaluation for Inflationary-fixpoint datalog¬

• Use the naïve, of the semi-naïve algorithm

• Inhibit any optimization that rely on monotonicity (e.g. out 
of order execution)



Well-Founded Semantics

• The lecture follows:
Daniel Zinn, Todd J. Green, Bertram Ludäscher: Win-
move is coordination-free (sometimes). ICDT 2012
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Example: Win-Move Game
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Win(X) :- Move(X,Y), ¬Win(Y)
1

2

4

3

5 6 7

8 9

Which nodes
are winning?



Example: Win-Move Game

CSE 544 - Fall 2016 52

Win(X) :- Move(X,Y), ¬Win(Y)
1

2

4

3

5 6 7

8 9

Which nodes
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Example: Win-Move Game
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Example: Win-Move Game
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Example: Win-Move Game
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Win(X) :- Move(X,Y), ¬Win(Y)
1

2

4

3

5 6 7

8 9

Which nodes
are winning?

Win(1), Win(3), Win(4), Win(5)
¬Win(2), ¬Win(6), ¬Win(7),¬Win(8),¬Win(9)



Example: Win-Move Game
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Win(X) :- Move(X,Y), ¬Win(Y)
1

2

4

3

5 6 7

8 9

Which nodes
are winning?

Win(1), Win(3), Win(4), Win(5)
¬Win(2), ¬Win(6), ¬Win(7),¬Win(8),¬Win(9)

a b c

What about these?

a b c d



Example: Win-Move Game
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Win(X) :- Move(X,Y), ¬Win(Y)
1

2

4

3

5 6 7

8 9

Which nodes
are winning?

Win(1), Win(3), Win(4), Win(5)
¬Win(2), ¬Win(6), ¬Win(7),¬Win(8),¬Win(9)

a b c

What about these?

a b c d
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Win(X) :- Move(X,Y), ¬Win(Y)
1

2

4

3

5 6 7

8 9

Which nodes
are winning?

Win(1), Win(3), Win(4), Win(5)
¬Win(2), ¬Win(6), ¬Win(7),¬Win(8),¬Win(9)

a b c

What about these?

a b c d

Win(c), ¬Win(d)
a and b are neither winning nor losing



Well-founded Semantics

Definition. The well-founded semantics is defined on ground facts A as:
WP(A)  = true if A ∈ lfp(ΓP2)
WP(A)  = false if A ∉ gfp(ΓP2)
WP(A)  = undefined if A ∈ gfp(ΓP2) - lfp(ΓP2)

Let P be any datalog¬ program
Let I be instances of both EDB and IDB   (note: was only EDB before)
Let TP,I(J) be the immediate consequence operator defined as follows:

TP,I(J) = {H | (H :- B1, …, Bm,¬C1,…,¬Cn) ∈ ground(P),
J ⊨ B1, …, Bm,  I ⊨ ¬C1,…,¬Cn }

Note that TP,I(J) is monotone in J, hence has a Least Fix Point (lfp).

Let ΓP(I) = lfp(TP,I)

Note that ΓP(I) is antimonotone in the IDB’s: I ⊆ I’ implies ΓP(I) ⊇ ΓP(I’) 

ΓP2(I) ( := ΓP(ΓP(I)) ) is monotone: has Least Fix Point (lfp), Greatest Fix Point (gfp)



Well-founded Semantics

Note how we compute the lfp and gfp of ΓP2(I).
Apply ΓP repeatedly:
• Odd iterations increase à towards lfp
• Even iterations decrease à towards gfp

Denoting Ik = TP,I(TP,I(TP,I(… TP,I(∅) … ))) (k times)

∅ ⊆ I2⊆ I4 ⊆ I6 ⊆…⊆ lfp(ΓP2(I)) ⊆ gfp(ΓP2(I)) ⊆…⊆ I5⊆ I3⊆ I1⊆ Domaink



Example: Win-Move Game

Win(X) :- Move(X,Y), ¬Win(Y) a b c d

TP,I(J) says: “fix ¬Win according to I, and Win according to J”
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Win(X) :- Move(X,Y), ¬Win(Y) a b c d

TP,I(J) says: “fix ¬Win according to I, and Win according to J”
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Example: Win-Move Game

Win(X) :- Move(X,Y), ¬Win(Y) a b c d

TP,I(J) says: “fix ¬Win according to I, and Win according to J”

Start with I0 = ∅ ( = {¬Win(a), ¬Win(b), ¬Win(c), ¬Win(d)}
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Example: Win-Move Game

Win(X) :- Move(X,Y), ¬Win(Y) a b c d

TP,I(J) says: “fix ¬Win according to I, and Win according to J”
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Win(X) :- Move(X,Y), ¬Win(Y) a b c d

TP,I(J) says: “fix ¬Win according to I, and Win according to J”

Start with I0 = ∅ ( = {¬Win(a), ¬Win(b), ¬Win(c), ¬Win(d)}
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Example: Win-Move Game

Win(X) :- Move(X,Y), ¬Win(Y) a b c d

TP,I(J) says: “fix ¬Win according to I, and Win according to J”

Start with I0 = ∅ ( = {¬Win(a), ¬Win(b), ¬Win(c), ¬Win(d)}
I1 = ΓP(I) = lfp(TP,I) = ∅ ∪ TP,I(∅) ∪ TP,I(TP,I(∅)) ∪ TP,I(TP,I(TP,I(∅))) ∪…
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Example: Win-Move Game

Win(X) :- Move(X,Y), ¬Win(Y) a b c d

TP,I(J) says: “fix ¬Win according to I, and Win according to J”

Start with I0 = ∅ ( = {¬Win(a), ¬Win(b), ¬Win(c), ¬Win(d)}
I1 = ΓP(I) = lfp(TP,I) = ∅ ∪ TP,I(∅) ∪ TP,I(TP,I(∅)) ∪ TP,I(TP,I(TP,I(∅))) ∪…
I1 =  {Win(a), Win(b), Win(c), ¬Win(d)}

I2 = ΓP(I) = lfp(TP,I) = ∅ ∪ TP,I(∅) ∪ TP,I(TP,I(∅)) ∪ TP,I(TP,I(TP,I(∅))) ∪…
I2 = {¬Win(a), ¬Win(b), Win(c), ¬Win(d)}

I3 = ΓP(I) = lfp(TP,I) = ∅ ∪ TP,I(∅) ∪ TP,I(TP,I(∅)) ∪ TP,I(TP,I(TP,I(∅))) ∪…
I3 = I1 = have reached the gfp
I4 = I2 = have reached the lfp

Well founded semantics:

true false
undefined



Discussion

• Which semantics does Daedalus adopt?



Discussion

Comparing datalog¬

• Compute the complement of the transitive closure in 
inflationary datalog¬

• Compare the expressive power of:
– Stratified datalog¬

– Inflationary fixpoint datalog¬

– Partial fixpoint datalog¬


