CSE 544

Principles of Database
Management Systems

Fall 2016
Lecture 6 — Datalog (2)

CSE 544 - Fall 2016

Announcements

Homework 2 posted, due Friday, Nov. 4th
« SimpleDB

CSE 544 - Fall 2016

References

* Reading:
Joe Hellerstein, “The Declarative Imperative,”
SIGMOD Record 2010

« R&G Chapter 24

« Phokion Kolaitis’ tutorial on database theory at Simon’s
https:.//simons.berkeley.edu/sites/default/files/docs/5241/s
Imons16-21.pdf

 Daniel Zinn, Todd J. Green, Bertram Ludascher: Win-
move is coordination-free (sometimes). ICDT 2012

Review

« What is datalog?

* What is the naive evaluation algorithm?

« What is the seminaive algorithm?

Outline

« Magic sets

« Extending datalog with negation and aggregates

CSE 544 - Fall 2016

Magic Sets

* Problem: datalog programs compute a /ot,
but sometimes we need only very little

* Prolog computes top-down and retrieves very little
datalog computes bottom up retrieves a /ot

* (Prolog has other issues: left recursive prolog never
terminates!)

« Magic sets transform a datalog program P into a new
program P’, such that bottom-up(P’) = top-down(P)

CSE 544 - Fall 2016

Example 1

encodes a grap

T(va) - E(X’y)
T(Xay) - T(X’Z)’E(Z’y)

Qy) - T(3,y)

Bottom-up evaluation
very inefficient

CSE 544 - Fall 2016 7

Example 1

encodes a grap

e T(va) - E(X’y)
T(Xay) - T(X’Z)’E(Z’y)
Qy) - T(3,y)

Manual optimization:
Q(y) - E(3.y)
Q(y) - Q(x),E(x,y) Bottom-up evaluation

very inefficient

CSE 544 - Fall 2016 8

Example 2

encodes a grap

Same generation

SG(X,X) - V(X)
SG(x,y) - Up(x,u),SG(u,v),Dn(u,y)
Q(y) - SG(1,y)

Manual optimization???

If we define
Up(a,b) = E(b,a)
Dn(a,b) = E(a,b)
then SG = “same generation”

CSE 544 - Fall 2016 9

Magic Set Rewriting (simplified)

For each IDB predicate create “adorned” versions, with
binding patters

For each adorned IDB P, create a predicate Magicp

For each rule, create several rules, one for each possible
adornment of the head:

— Allow information to flow left-to-right (“sideways information
passing”), and this defines the required adornments of the IDB’s
in the body

— If there are k IDB’s in the body, create k+1 supplementary
relations Supp;, which guard the set of bound variables passed
on to the i'th IDB

New rules defining Magicp: one for the query, and one for

each Supp, preceding an occurrence of P in a body |

Adorned predicate

 b=bound, f=free

« TPbi(x,y) means:
— The values of x are known
— The values of y are not known (need to be retrieved)

 Need to create all combinations: TPf, Tt

« Side-ways information passing means that we adorn
rules allowing information to flow left-to-right

- E.g. T(x,y) - E(x,u),T(u,v),E(v,w),T(w,z),E(z,y)

— Adorned: T°(x,y) :- E(x,u),T°(u,v),E(v,w),T?(w,z),E(z,y)

Supplementary Relations

« Given adornment Tf(x,y), a new predicate Supp(x)
contains the (small!) set of values x for which we want to

compute Tb(x,y)
« E.g. be(xy) - E(x,u), To(u,v),E(v,w), T?(w,z),E(z,y)

=L

CSE 544 - Fall 2016 12

Supp Rules

« E.g. T°(x,y) - E(x,u),T®(u,v),E(v,w),T°(w,z),E(z,y)

_ =l

* Suppy(X) - Magicrye(X) [* next slide ... */

* Supp4(X,u) - Suppy(x), E(x,u)
* Supp,(x,w) - Supp.(x,u), T*(u,v),E(v,w)

° Supp3(x,y) .~ SuppZ(X’W)’ be(W’Z)’E(Z’y) Supp, and Supps
o be(X,Y) - SUppg(X,Y) o 0 O are redundant

Adding the Magic Predicate

 E.Q. be(xy E(xu)beuv (v,w), T (w,z),E(z,y)

* Magicqr,«(Xx) = the set of bounded values of x for which we
need to compute Tb(x,y)
- Eg.
— Magic(3) :- [* if the query is Q(y) :- T(3,y) */
— Magicqp(u) :- Supp4(x,u) /* need to compute T (u,v) */
— Magic,(w) :- Supps(x,w) /* need to compute T°(w,z) */

encodes a grap

Original:
T(X’y) .~ E(X1y)

T(X’y) .~ T(X’Z)1E(Z7y)
Q(y) :-T(3y)

Adorned:

Example

CSE 544 - Fall 2016

1

Magic Sets

15

Example 1

e

Nncodes a grap

Magic Sets

Original:

T(X’y) - E(X1y)
T(X’y) - T(X’Z)1E(Z7y)
Q(y) - T(3,y)

Adorned:

To(x,y) - E(x,y)
-(gb(f)(/))(,y:)_::r;l;zg(’);)Z)’E(z’y) CSE 544 - Fall 2016

Example 1

encodes a grap

Magic Sets

Suppy(X) :- Magicry(X)
SUPp1(X,y) - SUppo(X),E(X,y)
TP(x,y) - Supp+(x,y)

Original:

_ Supp’o(X) :- Magicry(x)

T(xy) :- E(x,y) Supp’1(x,z) :- Supp’(X), T?(x,z)
T(x,y) - T(x,2),E(z,y) Supp’s(x,y) :- Supp’+(x,z), E(z,y)
Q(y) :-T(3y) Tf(x,y) - Supp’s(X,y)

Adorned: Magicry{(3) :-
To(xy) - E(x.y) Magicr,(X) - Supp’y(Xx) /* redundant */

of _ Tf
'(I'Q()(;)(,y:)_.T;I;(B(’);,)Z),E(Z,y) CSE 544 - Fall 2016 17

Example 1

encodes a grap

Magic Sets

Suppy(X) :- Magicry(X)
SUPp1(X,y) - SUppo(X),E(X,y)
TP(x,y) - Supp+(x,y)

Original:

_ Supp’o(X) :- Magicry(x)

T(xy) :- E(x,y) Supp’1(x,z) :- Supp’(X), T?(x,z)
T(x,y) - T(x,2),E(z,y) Supp’s(x,y) :- Supp’+(x,y), E(z,y)
Q(y) - T(3.y)

Magicrpi(3) :-
Adorned: MagiCryi(X) :- Supp’s(x) /* redundant */
be(X,y) - E(X’y)
Tof(x,y) :- T*(x,2),E(z,y) Show computation
/ CSE 544 - Fall 2016 _
Q(y) - T*(3,y) on white board

Adding Negation: Datalog~

CSE 544 - Fall 2016

19

Adding Negation: Datalog~

Example: compute the complement of the transitive closure

T(X’y) .- R(X!y)
T(X!y) .- T(X,Z), R(Z’y)
CT(x,y) :- Node(x), Node(y), not T(x,y)

What does this mean??

20

Recursion and Negation
Don’t Like Each Other

EDB: | ={R(a)} S(x) - R(x), not T(x)
T(x) - R(x), not S(x)

What are the possible outcomes of S and T?

21

Recursion and Negation
Don’t Like Each Other

EDB: | ={R(a)} S(x) - R(x), not T(x)
T(x) - R(x), not S(x)

What are the possible outcomes of S and T?

Ji=1{} b={5@); Jy={T(@) Jy=1{S(a), T(a)}

22

Adding Negation: datalog~

Solution 1: Stratified Datalog™
— Rules must be partitioned into strata

— IDB predicates defined in strata < k may be negated in strata = k+1

Solution 2: Inflationary-fixpoint Datalog™
— Fire rules and always add facts (never retract)
— Stop when nothing new is added
— Always terminates (why ?)

Solution 3: Partial-fixpoint Datalog—

— Fire rules, adding/retracting facts as needed
— Stop when reaching a fixpoint
— May not terminate

Solution 4: Well-founded semantics

What semantics does the paper use?

23

Discussion in Class

The Declarative Imperative paper:

« What are the extensions to datalog in Dedalus?

« What is the main usage of Dedalus described in the
paper?

« What limitations of datalog does the paper describe?

Semantics of a Datalog Program

Three different, equivalent semantics:
* Minimal model semantics
» Least fixpoint semantics

* Proof-theoretic semantics (will not discuss)

Minimal Model Semantics

To eachrule r: | P(xq...X¢) - R4(...),Ra(...), ...

Minimal Model Semantics

All variables in the rule

To each rule r:

Associate the logical sentence 2. | Vz4...Vz,. [(R1(...)ARx(...)A ...) = P(..

Minimal Model Semantics

All variables in the rule

To each rule r:

Associate the logical sentence 2. | Vz4...Vz,. [(R1(...)ARx(...)A ...) = P(..

Same as: VX4... VXk. [3Y1... Ym-(R1(..)AR(..IA ...) = P(...)]

Head variables Existential variables

Minimal Model Semantics

All variables in the rule

To each rule r:

Associate the logical sentence 2. | Vz4...Vz,. [(R1(...)ARx(...)A ...) = P(..

Same as: VX4... VXk. [3Y1... Ym-(R1(..)AR(..IA ...) = P(...)]

Head variables Existential variables

Definition. If P is a datalog program,
2p is the set of all logical sentences associated to its rules.

Minimal Model Semantics

All variables in the rule

To each rule r:

Associate the logical sentence 2. | Vz4...Vz,. [(R1(...)ARx(...)A ...) = P(..

Same as: VX4... VXk. [3Y1... Ym-(R1(..)AR(..IA ...) = P(...)]

Head variables Existential variables

Definition. If P is a datalog program,
2p is the set of all logical sentences associated to its rules.

Example. Rule: [T*xY)-RKx2) T(zy) Sentence: Vx.Vy.Vz.(R(x,z) \T(z,y)2>T(x,y))
= VX.VY.(3z.R(x,2) \T(z,y)>T(X,y))

Minimal Model Semantics

Definition. A pair (I,J) where | is an EDB and J is an IDB
is a model for P, if (1,J) = 2p

Definition. Given an EDB database instance | and a datalog program P,
the minimal model, denoted J = P(l) is a minimal database instance J s.t. (I,J) = Zp

Theorem. The minimal model always exists, and is unique.

Minimal Model Semantics

Definition. A pair (I,J) where | is an EDB and J is an IDB
is a model for P, if (1,J) = 2p

Definition. Given an EDB database instance | and a datalog program P,
the minimal model, denoted J = P(l) is a minimal database instance J s.t. (I,J) = Zp

Theorem. The minimal model always exists, and is unique.

Example: (X y) - (y) p: Vx Yy (R(x,y) 2 T(x,y))

@ @ @ @ @ T(x,y) - R(x,2), T(z,)y) VX Vy (R(x,2)AT(z,y)>T(x,y)

Which of these IDBs are models?
Which are minimal models?

WIN|I_~ DRI WWIN] -
Al |jlwlOa|dr|]wW]IDN

AW IN]| -~
Al |]wW]IDN

Minimal Model Semantics

Definition. A pair (I,J) where | is an EDB and J is an IDB
is a model for P, if (1,J) = 2p

Definition. Given an EDB database instance | and a datalog program P,
the minimal model, denoted J = P(l) is a minimal database instance J s.t. (I,J) = Zp

Theorem. The minimal model always exists, and is unique.

p: Vx Vy (R(xy) 2 T(x,y))

Exam le: Vx Vy (R(X,2)AT(z,y)>T(x,y)

@@@@@

Which of these IDBs are models?
Which are minimal models?

WIN|~2 DWW IDN]|~
Al jlwjlOa||]WIDN

AW IN]| -~
Al |]wW]IDN

SO B NOT R IYOCTN I OO I NG IYOCTN I OR[N
ala|lr|la|lr|lw|lolsr]lw]|d

Minimal Model Semantics

Definition. A pair (I,J) where | is an EDB and J is an IDB
is a model for P, if (1,J) = 2p

Definition. Given an EDB database instance | and a datalog program P,
the minimal model, denoted J = P(l) is a minimal database instance J s.t. (I,J) = Zp

Theorem. The minimal model always exists, and is unique.

p: Vx Vy (R(xy) 2 T(x,y))

Exam le: Vx Vy (R(X,2)AT(z,y)>T(x,y)

@@@@@

Which of these IDBs are models?
Which are minimal models?

Vi<

WIN|~2 DWW IDN]|~
Al jlwjlOa||]WIDN

AW IN]| -~
Al |]wW]IDN

ajla|lblO|R|lOlO|M|IW]IDN

SO VNH P SO IR I NG IPCRN I ORI I

Grounding

* A grounding of an atom is obtained by substituting its
variables with constants from the active domain

« Examples:
— T(5,2) is a grounding of T(x,y)
— T(5,5) is a grounding of T(x,y)
— T(5,5) is a grounding of T(x,x)
— T(5,2) is not a grounding of T(x,x)
* A grounding of a rule is obtained by substituting its
variables with constants from the active domain

« Examples:
— (T(5,2) € R(5,7),T(7,2)) is a grounding of (T(x,y) :- R(x,z),T(z,y))

CSE 544 - Fall 2016 35

Minimal Fixpoint Semantics

Definition. Fix an EDB |, and a datalog program P. I
The immediate consequence operator Tp is defined as follows.
For any IDB J:

Tp(J) = all IDB facts that are immediate consequences from | and J:
={H|(H € B4, ..., By) € ground(P), J = By, ..., By}

Fact. For any datalog program P, the immediate consequence operator
is monotone. In other words, if J1 © J, then Tp(J4) S Tp(J>).

Minimal Fixpoint Semantics

Definition. Fix an EDB |, and a datalog program P. I
The immediate consequence operator Tp is defined as follows.
For any IDB J:

Tp(J) = all IDB facts that are immediate consequences from | and J:
={H|(H € B4, ..., By) € ground(P), J = By, ..., By}

Fact. For any datalog program P, the immediate consequence operator
is monotone. In other words, if J1 © J, then Tp(J4) S Tp(J>).

Theorem. The immediate consequence operator has a unique, minimal fixpoint J:
fix(Tp) = J, where J is the minimal instance with the property Tp(J) = J.

Proof: using Knaster-Tarski’s theorem for monotone functions.
The fixpoint is given by:
fix (Tp)=Jo U Jy U JU... where Jg=2, Jx+1=Tp(Jk)

Minimal Fixpoint Semantics

—T Jo=9 J1=Tp(Jo) Jo=Tp(J1) J3=Tp(J2) Ja = Tp(J3)
> | 3 T= 1| 2 1| 2 1] 2 1| 2
s | 2 2 | 3 2 | 3 2 | 3 > | 3
2 | s 3 | 4 3 | 4 3 | 4 3 | 4
4 5 4 5 4 5 4 5
N N I
2 4 2 4 2 4
3 | 5 3 | 5 3 | 5
1| 4 1| 4
2 5 2 5
1 5

CSES544 - Spring, 2013 38

Proof Theoretic Semantics

Every fact in the IDB has a derivation tree, or proof tree justifying its existence.

O @ 6 ©® 6 T(xy) - R(x,Y)

T(X’y) = R(X’Z)’ T(Z’y)

R= Derivation tree
BE of T(1,4)
2 3
3 4
4 | s

CSE544 - Spring, 2013 R(3,4) 39

Adding Negation: Datalog~

Example: compute the complement of the transitive closure

T(X’y) .- R(X!y)
T(X!y) .- T(X,Z), R(Z’y)
CT(x,y) :- Node(x), Node(y), not T(x,y)

What does this mean??

40

Recursion and Negation
Don’t Like Each Other

EDB: | ={R(a)} S(x) - R(x), not T(x)
T(x) - R(x), not S(x)

Which IDBs are models of P?

Ji=1{} b={5@); Jy={T(@) Jy=1{S(a), T(a)}

CSES544 - Spring, 2013 41

Recursion and Negation
Don’t Like Each Other

EDB: | ={R(a)} S(x) - R(x), not T(x)
T(x) - R(x), not S(x)

Which IDBs are models of P?
={} ={S(a)} ={T(a)} ={S(a), T(a) }

Js
No: both Yes: the facts inJ, are ' b
rules fail R(a)), 7T(a)
and both rules are true.

There is no minimal model!

Recursion and Negation
Don’t Like Each Other

EDB: | ={R(a)} S(x) - R(x), not T(x)
T(x) - R(x), not S(x)

Which IDBs are models of P?
={} J, = {S(a)} ={T(a)} ={S(a), T(a) }

J
No: both ' b
rules fail

. . There is no minimal fixpoint!
There is no minimal model! (Why does Knaster-Tarski’s

theorem fail?)

Yes: the facts in J, are
R(a), S(a), 7T(a)
and both rules are frue.

Adding Negation: datalog~

Solution 1: Stratified Datalog™
— Rules must be partitioned into strata
— IDB predicates defined in strata < k may be negated in strata = k+1
Solution 2: Inflationary-fixpoint Datalog™
— Fire rules and always add facts (never retract)
— Stop when nothing new is added
— Always terminates (why ?)
Solution 3: Partial-fixpoint Datalog—
— Fire rules, adding/retracting facts as needed
— Stop when reaching a fixpoint
— May not terminate

Solution 4: Well-founded semantics

CSES544 - Spring, 2013 44

Stratified datalog™

A datalog— program is stratified if its rules can be partitioned into k strata, such that:
» |If an IDB predicate P appears negated in a rule in stratum i,
then it can only appear in the head of a rule in strata 1, 2, ..., i-1

Note: a datalog— program
either is stratified or it ain’t!

Which programs are stratified?

T(X’y) - R(X,y)
T(X’y) = T(X’Z)’ R(Z’y)
CT(x,y) :- Node(x), Node(y), not T(x,y)

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

Stratified datalog™

« Evaluation algorithm for stratified datalog:

* Foreachstratumi=1, 2, ..., do:
— Treat all IDB’s defined in prior strata as EBS
— Evaluate the IDB’s defined in stratum i, using either the naive or

the semi-naive algorithm

Does this compute a
minimal model?

T(X7y) - R(X’y)
T(X’y) - T(X’Z)’ R(Z’y)

CT(x,y) :- Node(x), Node(y), not T(x,y)

Stratified datalog™

« Evaluation algorithm for stratified datalog:

« Foreachstratumi=1,2, ..., do:
— Treat all IDB’s defined in prior strata as EBS

— Evaluate the IDB’s defined in stratum i, using either the naive or
the semi-naive algorithm

Does this compute a
minimal model? T(xy) :- R(xy)

T(X’y) - T(X’Z)’ R(Z’y)

NO:
J, ={ T = transitive closure, CT = its complement} CT(x,y) :- Node(x), Node(y), not T(x,y)
J, ={ T = all pairs of nodes, CT = empty}

Inflationary-fixpoint datalog™

Let P be any datalog— program, and | an EDB.

Let Tp(J) be the immediate consequence operator.

Let F(J) =J UTp(J) be the inflationary immediate consequence operator.

Define the sequence: Jg =9, J+1 = F(J,), forn =2 0.

Definition. The inflationary fixpoint semantics of P is J = J,

where n is such that J,+1 = J,

Why does there always exists an n
such that J, = F(J,)?

Find the inflationary semantics for:

T(X’y) .- R(X,y)
T(X’y) = T(X’Z)’ R(Z’y)
CT(x,y) :- Node(x), Node(y), not T(x,y)

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

Inflationary-fixpoint datalog™

« Evaluation for Inflationary-fixpoint datalog~
« Use the naive, of the semi-naive algorithm

 Inhibit any optimization that rely on monotonicity (e.g. out
of order execution)

Well-Founded Semantics

 The lecture follows:
Daniel Zinn, Todd J. Green, Bertram Ludascher: Win-
move is coordination-free (sometimes). ICDT 2012

CSE 544 - Fall 2016 50

Example: Win-Move Game

Which nodes

Win(X) :- Move(X,Y), “Win(Y) are winning?

CSE 544 - Fall 2016 51

Example: Win-Move Game

Which nodes

Win(X) :- Move(X,Y), “Win(Y) are winning?

CSE 544 - Fall 2016 52

Example: Win-Move Game

Which nodes

Win(X) :- Move(X,Y), “Win(Y) are winning?

CSE 544 - Fall 2016 53

Example: Win-Move Game

Which nodes

Win(X) :- Move(X,Y), “Win(Y) are winning?

CSE 544 - Fall 2016 o4

Example: Win-Move Game

Which nodes

Win(X) :- Move(X,Y), “Win(Y) are winning?

Win(1), Win(3), Win(4), Win(5)
“Win(2), “Win(6), “Win(7),~Win(8),~Win(9)

CSE 544 - Fall 2016 95

Example: Win-Move Game

Which nodes
are winning?

Win(X) :- Move(X,Y), "Win(Y)

What about these?

5
O‘G (¢) (d) \-/'V\/i\;]i(r:(é)y\f\r;\(/?n)@v)\,/i2&/4\1/?}12/;/;?-('%n(8),-'Win(9)

CSE 544 - Fall 2016 56

Example: Win-Move Game

Which nodes
are winning?

Win(X) :- Move(X,Y), "Win(Y)

What about these?

¢_5—e

Win(1), Win(3), Win(4), Win(5)
e G Q @ “Win(2), “Win(6), “Win(7),~Win(8),~Win(9)

CSE 544 - Fall 2016 57

Example: Win-Move Game

Which nodes
are winning?

Win(X) :- Move(X,Y), "Win(Y)

What about these?

¢_5—e

Win(1), Win(3), Win(4), Win(5)
a Q e “Win(2), “Win(6), “Win(7),~Win(8),~Win(9)

Win(c), "Win(d) CSE 544 - Fall 2016 58
a and b are neither winning nor losing

Well-founded Semantics

Let P be any datalog— program
Let | be instances of both EDB and IDB (note: was only EDB before)
Let Tp(J) be the immediate consequence operator defined as follows:

TeiJ)={H|(H:-By, ..., Bn,7Cy,...,7C,) & ground(P),
JFE B1, . Bm’ | = _'C1,...,_'Cn }

Note that Tp)(J) is monotone in J, hence has a Least Fix Point (Ifp).

Let I'e(1) = Ifp(Tey)

Note that I'p(l) is antimonotone in the IDB’s: | & I implies I'p(l) 2 I'p(I’)

[2(1) (:=Tp(p(1))) is monotone: has Least Fix Point (Ifp), Greatest Fix Point (gfp)

Definition. The well-founded semantics is defined on ground facts A as:
Wp(A) = true if A € Ifp(l'p?)
Wp(A) = false if A € gfp(['p2)
Wp(A) = undefined if A € gfp(I'p?) - Ifp(p2)

Well-founded Semantics

Note how we compute the Ifp and gfp of I'p2(1).
Apply I'p repeatedly:

« (Odd iterations increase - towards Ifp
» Even iterations decrease - towards gfp

Denoting Ik = Tp,|(Tp,|(Tp,|(... Tp,|(@)))) (k timeS)

o & |2 - |4 C |6 c ... C |fp(rp2(|)) - gfp(rpz(l)) c ... C |5 C |3 - |1 C Domaink

Example: Win-Move Game

Win(X) :- Move(X,Y), “Win(Y) e‘a e a

Tp,(J) says: “fix "Win according to I, and Win according to J”

Example: Win-Move Game

Win(X) :- Move(X,Y), “Win(Y) e‘a e a

Tp,(J) says: “fix "Win according to I, and Win according to J”

Start with I, =2 (= {7"Win(a), "Win(b), "Win(c), "Win(d)}
Iy =Tp(l) =Ifp(Tp)) =2 U Tp)(2) U Tp)(Tpy(2)) U Tpi(Tpi(Tpi(2))) U ...

Example: Win-Move Game

g
Win(X) :- Move(X,Y), “Win(Y) e G e Q

Tp,(J) says: “fix "Win according to I, and Win according to J”

Start with I, =2 (= {7"Win(a), "Win(b), "Win(c), "Win(d)}
ly=Tp(l) =lfp(Tpy) =2 U Tp(2) U Tpi(Tpi(9)) U Tp(Tei(Tri(2))) U ...
l, = {Win(a), Win(b), Win(c), "Win(d)}

Example: Win-Move Game

Win(X) :- Move(X,Y), “Win(Y) e‘a e Q

Tp,(J) says: “fix "Win according to I, and Win according to J”

Start with I, =2 (= {7"Win(a), "Win(b), "Win(c), "Win(d)}
ly=Tp(l) =lfp(Tpy) =2 U Tp(2) U Tpi(Tpi(9)) U Tp(Tei(Tri(2))) U ...
l, = {Win(a), Win(b), Win(c), "Win(d)}

L, =Tp(l)=lfp(Tp)) =2 U Tpi(2) U Tp(Tei(?)) U Tp(Tpi(Tpi(2))) U ...

Example: Win-Move Game

I
Win(X) :- Move(X,Y), “Win(Y) e G e Q

Tp,(J) says: “fix "Win according to I, and Win according to J”

Start with I, =2 (= {7"Win(a), "Win(b), "Win(c), "Win(d)}
ly=Tp(l) =lfp(Tpy) =2 U Tp(2) U Tpi(Tpi(9)) U Tp(Tei(Tri(2))) U ...
l, = {Win(a), Win(b), Win(c), "Win(d)}

I, =Tp(l) =Ifp(Tp)) =2 U Tp)(2) U Tp)(Tpy(2)) U Tpi(Tpi(Tpi(2))) U ...
l, = {"Win(a), "Win(b), Win(c), “Win(d)}

Example: Win-Move Game

Win(X) :- Move(X,Y), “Win(Y) e‘@ e Q

Tp,(J) says: “fix "Win according to I, and Win according to J”

Start with I, =2 (= {7"Win(a), "Win(b), "Win(c), "Win(d)}
ly=Tp(l) =lfp(Tpy) =2 U Tp(2) U Tpi(Tpi(9)) U Tp(Tei(Tri(2))) U ...
l, = {Win(a), Win(b), Win(c), "Win(d)}

I, =Tp(l) =Ifp(Tp)) =2 U Tp)(2) U Tp)(Tpy(2)) U Tpi(Tpi(Tpi(2))) U ...
l, = {"Win(a), "Win(b), Win(c), “Win(d)}

I3 =Tp(l) =lfp(Tpy) =2 U Tpi(2) U Tpi(Tei(?)) U Tp(Tpi(Tpi(2))) U ...

Example: Win-Move Game

I3
Win(X) :- Move(X,Y), “Win(Y) e G e Q

Tp,(J) says: “fix "Win according to I, and Win according to J”

Start with I, =2 (= {7"Win(a), "Win(b), "Win(c), "Win(d)}
ly=Tp(l) =lfp(Tpy) =2 U Tp(2) U Tpi(Tpi(9)) U Tp(Tei(Tri(2))) U ...
l, = {Win(a), Win(b), Win(c), "Win(d)}

I, =Tp(l) =Ifp(Tp)) =2 U Tp)(2) U Tp)(Tpy(2)) U Tpi(Tpi(Tpi(2))) U ...
l, = {"Win(a), "Win(b), Win(c), “Win(d)}

I3 = Tp(l) = Ifp(Tp)) =2 U Tp)(2) U Tpi(Tpy(2)) U Tpi(Tpi(Tpi(2))) U ...
l; = |, = have reached the gfp

Example: Win-Move Game

l,
Win(X) :- Move(X,Y), “Win(Y) e G e Q

Tp,(J) says: “fix "Win according to I, and Win according to J”

Start with I, =2 (= {7"Win(a), "Win(b), "Win(c), "Win(d)}
ly=Tp(l) =lfp(Tpy) =2 U Tp(2) U Tpi(Tpi(9)) U Tp(Tei(Tri(2))) U ...
l, = {Win(a), Win(b), Win(c), "Win(d)}

I, =Tp(l) =Ifp(Tp)) =2 U Tp)(2) U Tp)(Tpy(2)) U Tpi(Tpi(Tpi(2))) U ...
l, = {"Win(a), "Win(b), Win(c), “Win(d)}

I3 =Tp(l) =lfp(Tpy) =2 U Tp)(2) U Tpi(Tpi(2)) U Tpi(Tei(Tey(2))) U ...
l; = |, = have reached the gfp
|, =1, = have reached the Ifp

Example: Win-Move Game

Well founded semantics:

<& P—a
Start with |, =2 (= {"Win(a), "Win(b), "Win(c), "Win(d)}

ly =Tp(l) =Ifp(Tp)) =2 U Tp)(2) U Tp)(Tpy(2)) U Tpi(Tpi(Tp,(2))) U
l, = {Win(a), Win(b), Win(c), "Win(d)}

Win(X) :- Move(X,Y), "Win(Y)

Tp,(J) says: “fix "Win accordlng to I, and Win according to J”

|2 [e(l) =fp(Tp) =2 U Tpi(2) U Tpi(Tpy(2)) U Tpi(Tpi(Tp,(2))) U
= {"Win(a), "Win(b), Win(c), "Win(d)}

I3 = Tp(l) = Ifp(Tp)) =2 U Tp)(2) U Tpi(Tpy(2)) U Tpi(Tpi(Tp,(2))) U
l; = |, = have reached the gfp

|, =1, = have reached the Ifp

Discussion

* Which semantics does Daedalus adopt?

Discussion

Comparing datalog~

 Compute the complement of the transitive closure in
inflationary datalog—

« Compare the expressive power of:
— Stratified datalog~
— Inflationary fixpoint datalog~
— Partial fixpoint datalog-

