
CSE 544
Principles of Database
Management Systems

Fall 2016
Lecture 15 and 16 –

Transactions: Concurrency Control

CSE 544 - Fall 2016

References

•  Concurrency control and recovery.
 Michael J. Franklin. The handbook of computer science
and engineering. A. Tucker ed. 1997
 REVIEW Due on Tuesday, Dec. 6

•  Database management systems.

 Ramakrishnan and Gehrke.
 Third Ed. Chapters 16 and 17.

2

CSE 544 - Fall 2016

Outline

•  Transactions motivation, definition, properties

•  Concurrency control and locking

•  Optimistic concurrency control

3

CSE 544 - Fall 2016

Motivating Example

UPDATE Budget

SET money=money-100
WHERE pid = 1

UPDATE Budget

SET money=money+60

WHERE pid = 2

UPDATE Budget

SET money=money+40

WHERE pid = 3

SELECT sum(money)
FROM Budget

Would like to treat
each group of

instructions as a unit

4

CSE 544 - Fall 2016

Definition

•  A transaction = one or more operations, single real-
world transition

•  Examples
–  Transfer money between accounts
–  Purchase a group of products
–  Register for a class (either waitlist or allocated)
–  What else?

5

CSE 544 - Fall 2016

Transactions

•  Major component of database systems
•  Critical for most applications; arguably more so than SQL

•  Fact: Turing awards to database researchers:
–  Charles Bachman 1973 for CODASYL
–  Edgar Codd 1981 for inventing relational dbms
–  Jim Gray 1998 for inventing transactions
–  Michael Stonebraker 2015 for postgres

6

CSE 544 - Fall 2016

Transaction Example

START TRANSACTION

UPDATE Budget SET money = money - 100

WHERE pid = 1

UPDATE Budget SET money = money + 60

WHERE pid = 2

UPDATE Budget SET money = money + 40

WHERE pid = 3

COMMIT

7

CSE 544 - Fall 2016

ROLLBACK

•  If the application gets to a place where it can’t complete
the transaction successfully, it can execute ROLLBACK

•  This causes the system to “abort” the transaction

•  Database returns to a state without any of the changes
made by the transaction

8

CSE 544 - Fall 2016

Reasons for Rollback

•  User changes their mind (“ctl-C”/cancel)

•  Explicit in program, when app program finds a problem
–  e.g., when qty on hand < qty being sold

•  System-initiated abort
–  System crash
–  Housekeeping, e.g., due to timeouts, admission control, etc

9

CSE 544 - Fall 2016

ACID Properties

•  Atomicity: Either all changes performed by transaction
occur or none occurs

•  Consistency: A transaction as a whole does not violate
integrity constraints

•  Isolation: Transactions appear to execute one after the
other in sequence

•  Durability: If a transaction commits, its changes will survive
failures

10

CSE 544 - Fall 2016

What Could Go Wrong?

•  Why is it hard to provide ACID properties?

•  Concurrent operations
–  Isolation problems
–  We saw one example earlier

•  Failures can occur at any time
–  Atomicity and durability problems
–  Next week

•  Transaction may need to abort
11

CSE 544 - Fall 2016

In a World Without Transactions
Client 1: INSERT INTO SmallProduct(name, price)

 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE Product
 WHERE price <=0.99

Client 2: SELECT count(*)

 FROM Product

 SELECT count(*)
 FROM SmallProduct

What could go wrong ? Inconsistent reads
12

CSE 544 - Fall 2016

Different Types of Problems

Client 1:
 UPDATE Product
 SET Price = Price – 1.99
 WHERE pname = ‘Gizmo’

Client 2:

 UPDATE Product
 SET Price = Price*0.5
 WHERE pname=‘Gizmo’

Lost update What could go wrong ?

13

CSE 544 - Fall 2016

Different Types of Problems

Client 1: UPDATE SET Account.amount = 1000000
 WHERE Account.number = 1001

Client 2: SELECT Account.amount

 FROM Account
 WHERE Account.number = 1001

What could go wrong ? Dirty reads

Aborted by
system

14

CSE 544 - Fall 2016

Types of Problems: Summary

•  Concurrent execution problems
–  Write-read conflict: dirty read (includes inconsistent read)

•  A transaction reads a value written by another transaction that has
not yet committed

–  Read-write conflict: unrepeatable read
•  A transaction reads the value of the same object twice. Another

transaction modifies that value in between the two reads
–  Write-write conflict: lost update

•  Two transactions update the value of the same object. The second
one to write the value overwrite the first change

•  Failure problems
–  DBMS can crash in the middle of a series of updates
–  Can leave the database in an inconsistent state

15

CSE 544 - Fall 2016

Outline

•  Transactions motivation, definition, properties

•  Concurrency control and locking

•  Optimistic concurrency control

16

Schedules

•  Given multiple transactions

•  A schedule is a sequence of interleaved actions from all
transactions

CSE 544 - Fall 2016 17

Example Schedule

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

CSE 544 - Fall 2016 18

A Serial Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

CSE 544 - Fall 2016 19

Time

Serializable Schedule

•  A schedule is serializable if it is equivalent to a serial
schedule

CSE 544 - Fall 2016 20

A Serializable Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

Notice:
This is NOT a serial schedule

CSE 544 - Fall 2016 21

A Non-Serializable Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

CSE 544 - Fall 2016 22

Notation

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

CSE 544 - Fall 2016 23

CSE 544 - Fall 2016

Serializable Execution

•  Serializability: interleaved execution has same effect as
some serial execution

•  Schedule of two transactions (Figure 1)
r0[A] → w0[A] → r1[A] → r1[B] → c1→
→ r0[B] → w0[B] → c0

•  Serializable schedule: equiv. to serial schedule
r0[A] → w0[A] → r1[A] → r0[B] →
→ w0[B] → c0 → r1[B] → c1

24

Ignoring Details

•  Sometimes transactions’ actions can commute
accidentally because of specific updates
–  Fact: Serializability is undecidable !

•  Scheduler should not look at transaction details

•  Assume worst case updates
–  Only care about reads r(A) and writes w(A)
–  Not the actual values involved

CSE 544 - Fall 2016 25

Conflict Serializability

Conflicts: (aka bad things happen if swapped)

ri(X); wi(Y) Two actions by same transaction Ti:

wi(X); wj(X) Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
CSE 544 - Fall 2016 26

Conflict Serializability

•  A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

CSE 544 - Fall 2016 27

The Precedence Graph Test

Is a schedule conflict-serializable ?
Simple test:
•  Build a graph of all transactions Ti

•  Edge from Ti to Tj if Ti makes an action that conflicts with
one of Tj and comes first

•  Fact: if the graph has no cycles, then it is conflict
serializable !

CSE 544 - Fall 2016 28

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

A B

CSE 544 - Fall 2016 29

Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

This schedule is NOT conflict-serializable

A
B

B

CSE 544 - Fall 2016 30

View Equivalence

•  A serializable schedule need not be conflict serializable,
even under the “worst case update” assumption

CSEP544 - Fall 2015 31

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ?

View Equivalence

•  A serializable schedule need not be conflict serializable,
even under the “worst case update” assumption

CSEP544 - Fall 2015 32

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ? No…

View Equivalence

•  A serializable schedule need not be conflict serializable,
even under the “worst case update” assumption

CSEP544 - Fall 2015 33

w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Lost write

Equivalent, but not conflict-equivalent

View Equivalence

CSEP544 - Fall 2015 34

T1 T2 T3
W1(X)

W2(X)
W2(Y)
CO2

W1(Y)
CO1

W3(Y)
CO3

T1 T2 T3
W1(X)
W1(Y)
CO1

W2(X)
W2(Y)
CO2

W3(Y)
CO3

Lost

Serializable, but not conflict serializable

Scheduler

•  The scheduler is the module that schedules the
transaction’s actions, ensuring serializability

•  How? We discuss three techniques in class:
–  Locks
–  Timestamps
–  Validation

CSE 544 - Fall 2016 35

CSE 544 - Fall 2016

Outline

•  Transactions motivation, definition, properties

•  Concurrency control and locking

•  Optimistic concurrency control

36

Locking Scheduler

Simple idea:
•  Each element has a unique lock
•  Each transaction must first acquire the lock before

reading/writing that element
•  If lock is taken by another transaction, then wait
•  The transaction must release the lock(s)

CSE 544 - Fall 2016 37

Notation

li(A) = transaction Ti acquires lock for element A

ui(A) = transaction Ti releases lock for element A

CSE 544 - Fall 2016 38

Example
T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

Scheduler has ensured a conflict-serializable schedule 39

Is this enough?
T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

Locks did not enforce conflict-serializability !!! 40

Two Phase Locking (2PL)

The 2PL rule:

•  In every transaction, all lock requests must preceed all
unlock requests

•  This ensures conflict serializability ! (why?)

CSE 544 - Fall 2016 41

Example: 2PL transactions
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Now it is conflict-serializable 42

Example with Multiple Transactions

Equivalent to each transaction executing entirely the
moment it enters shrinking phase

CSE 544 - Fall 2016 43

T1 T2 T3 T4

Growing
phase

Shrinking
phase

Unlocks first
Was not waiting
for anyone

Unlocks second so
perhaps was waiting
for T3

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Two Phase Locking (2PL)

46

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:

Two Phase Locking (2PL)

47

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

Two Phase Locking (2PL)

48

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

Two Phase Locking (2PL)

49

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A) Contradiction

What about Aborts?

•  2PL enforces conflict-serializable schedules

•  But what if a transaction releases its locks and then
aborts?

CSE 544 - Fall 2016 50

Example with Abort
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Abort Commit 51

Strict 2PL

•  Strict 2PL: All locks held by a transaction are
released when the transaction is completed;
release happens at the time of COMMIT or
ROLLBACK
–  Aka long-duration lock

•  Schedule is recoverable
•  Schedule avoids cascading aborts
•  Schedule is strict: read book

CSEP544 - Fall 2015 52

Strict 2PL
T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); DENIED…
L1(B); READ(B)
B :=B+100
WRITE(B);
U1(A),U1(B); Rollback

…GRANTED; READ(A)
A := A*2
WRITE(A);
L2(B); READ(B)
B := B*2
WRITE(B);
U2(A); U2(B); Commit 53

Deadlock

•  Transaction T1 waits for a lock held by T2;
•  But T2 waits for a lock held by T3;
•  While T3 waits for
•  . . .
•  . . .and T73 waits for a lock held by T1 !!

•  A deadlock is when two or more transactions are waiting
for each other to complete

CSE 544 - Fall 2016 54

55

Handling Deadlock

•  Deadlock avoidance
–  Acquire locks in pre-defined order
–  Acquire all locks at once before starting

•  Deadlock detection
–  Timeouts (but hard to pick the right threshold)
–  Wait-for graph; this is what commercial systems use (they check

graph periodically)

CSE 544 - Fall 2016

Lock Modes

•  S = shared lock (for READ)
•  X = exclusive lock (for WRITE)

None S X
None OK OK OK

S OK OK Conflict
X OK Conflict Conflict

Lock compatibility matrix:

Others:
U = update lock: Initially like S, later may be upgraded to X
 I = increment lock (for A := A + something): Increment operations commute

CSE 544 - Fall 2016

Lock Granularity

•  Fine granularity locking (e.g., tuples)
–  High concurrency
–  High overhead in managing locks

•  Coarse grain locking (e.g., tables)
–  Many false conflicts
–  Less overhead in managing locks

•  Alternative techniques
–  Hierarchical locking (and intentional locks) [commercial DBMSs]
–  Lock escalation

57

CSE 544 - Fall 2016

The Tree Protocol

•  An alternative to 2PL, for tree structures
•  E.g. B+ trees (the indexes of choice in databases)

•  Because
–  Indexes are hot spots!
–  2PL would lead to great lock contention

–  Also, unlike data, the index is not directly visible to transactions
–  So only need to guarantee that index returns correct values

58

CSE 544 - Fall 2016

The Tree Protocol

Rules:
•  A lock on a node A may only be acquired if the transaction holds a

lock on its parent B
•  Nodes can be unlocked in any order (no 2PL necessary)
•  Cannot relock a node for which already released a lock
•  “Crabbing”

–  First lock parent then lock child
–  Keep parent locked only if may need to update it
–  Release lock on parent if child is not full

•  The tree protocol is NOT 2PL, yet ensures conflict-serializability !
•  (More in the textbook)

59

Lock Performance

CSEP544 - Fall 2015 60

Th
ro

ug
hp

ut

Active Transactions

thrashing

Why ?

Phantom Problem

•  So far we have assumed the database to be a static
collection of elements (=tuples)

•  If tuples are inserted/deleted then the phantom problem
appears

CSEP544 - Fall 2015 61

Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem

63

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem

64

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

This is conflict serializable ! What’s wrong ??

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem

65

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

Not serializable due to phantoms

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem

•  A “phantom” is a tuple that is
invisible during part of a transaction execution but not
invisible during the entire execution

•  In our example:
–  T1: reads list of products
–  T2: inserts a new product
–  T1: re-reads: a new product appears !

CSEP544 - Fall 2015 66

Phantom Problem

•  In a static database:
–  Conflict serializability implies serializability

•  In a dynamic database, this may fail due to
phantoms

•  Strict 2PL guarantees conflict serializability, but not
serializability

67

Dealing With Phantoms

•  Lock the entire table, or
•  Lock the index entry for ‘blue’

–  If index is available

•  Or use predicate locks
–  A lock on an arbitrary predicate

Dealing with phantoms is expensive !

CSE 544 - Fall 2016

Degrees of Isolation

•  Isolation level “serializable” (i.e. ACID)
–  Golden standard
–  Requires strict 2PL and predicate locking
–  But often too inefficient
–  Imagine there are only a few update operations and many long

read operations

•  Weaker isolation levels
–  Sacrifice correctness for efficiency
–  Often used in practice (often default)
–  Sometimes are hard to understand

69

Isolation Levels in SQL

1.  “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2.  “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3.  “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4.  Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSEP544 - Fall 2015 70

ACID

1. Isolation Level: Dirty Reads

•  “Long duration” WRITE locks
–  Strict 2PL

•  No READ locks
–  Read-only transactions are never delayed

CSEP544 - Fall 2015 71

Possible pbs: dirty and inconsistent reads

2. Isolation Level: Read Committed

•  “Long duration” WRITE locks
–  Strict 2PL

•  “Short duration” READ locks
–  Only acquire lock while reading (not 2PL)

CSEP544 - Fall 2015 72

Unrepeatable reads
When reading same element twice,
may get two different values

3. Isolation Level: Repeatable Read

•  “Long duration” WRITE locks
–  Strict 2PL

•  “Long duration” READ locks
–  Strict 2PL

CSEP544 - Fall 2015 73

This is not serializable yet !!! Why ?

4. Isolation Level Serializable

•  “Long duration” WRITE locks
–  Strict 2PL

•  “Long duration” READ locks
–  Strict 2PL

•  Deals with phantoms too

CSEP544 - Fall 2015 74

CSE 544 - Fall 2016

Outline

•  Transactions motivation, definition, properties

•  Concurrency control and locking

•  Optimistic concurrency control

75

Locking vs Optimistic

•  Locking prevents unserializable behavior from occurring:
it causes transactions to wait for locks

•  Optimistic methods assume no unserializable behavior
will occur: they abort transactions if it does

•  Locking typically better in case of high levels of
contention; optimistic better otherwise

CSE 544 - Fall 2016 76

CSE 544 - Fall 2016

Optimistic Concurrency Control

Timestamp-based technique
•  Each object, O, has read and write timestamps: RTS(O) and WTS(O)
•  Each transaction, T, has a timestamp TS(T)
•  INVARIANT: Timestamp order defines serialization order

Transaction wants to read object O
–  If TS(T) < WTS(O) abort
–  Else read and update RTS(O) to larger of TS(T) or RTS(O)

Transaction wants to write object O
–  If TS(T) < RTS(O) abort
–  If TS(T) < WTS(O) ignore my write and continue (Thomas Write Rule)
–  Otherwise, write O and update WTS(O) to TS(T)

77

Optimistic Concurrency Control

Timestamp-based technique
•  What about aborts? Need to add a commit bit C to each element
•  Read dirty data:

–  T wants to read X, and WT(X) < TS(T)
–  If C(X)= false, T needs to wait for it to become true in case previous writer aborts

•  Write dirty data:
–  T wants to write X, and WT(X) > TS(T)
–  If C(X)= false, T needs to wait for it to become true in case of abort

•  Bottom line: When T requests r(X) or w(X), scheduler examines
RT(X), WT(X), C(X), and decides one of:
–  To grant the request, or
–  To rollback T (and restart with later timestamp)
–  To delay T until C(X) = true

CSE 544 - Fall 2016 78

CSE 544 - Fall 2016

Optimistic Concurrency Control

Multiversion-based technique

•  Object timestamps: RTS(O) & WTS(O); transaction timestamps TS(T)

•  Transaction can read most recent version that precedes TS(T)
–  When reading object, update RTS(O) to larger of TS(T) or RTS(O)

•  Transaction wants to write object O
–  If TS(T) < RTS(O) abort
–  Otherwise, create a new version of O with WTS(O) = TS(T)

•  Common variant (used in commercial systems)
–  To write object O only check for conflicting writes not reads
–  Use locks for writes to avoid aborting in case conflicting transaction aborts

79

Optimistic Concurrency Control

Validation-based technique

•  Phase 1: Read

–  Transaction reads from database and writes to a private workspace
–  Each transaction keeps track of its read set RS(T) and write set WS(T)

•  Phase 2: Validate
–  At commit time, system performs validation using read/write sets
–  Validation checks if transaction could have conflicted with others

•  Each transaction gets a timestamp = validation time
•  Check if timestamp order is equivalent to a serial order

–  If there is a potential conflict: abort

•  Phase 3: Write
–  If no conflict, transaction changes are copied into database

CSE 544 - Fall 2016 80

Snapshot Isolation

•  A type of multiversion concurrency control algorithm
•  Provides yet another level of isolation

•  Very efficient, and very popular
–  Oracle, PostgreSQL, SQL Server 2005

•  Prevents many classical anomalies BUT…
•  Not serializable (!), yet ORACLE and PostgreSQL use(d)

it even for SERIALIZABLE transactions!
–  “Serializable snapshot isolation” now in PostgreSQL

CSE 544 - Fall 2016 81

Snapshot Isolation Rules

•  Each transactions receives a timestamp TS(T)

•  Transaction T sees snapshot at time TS(T) of the
database

•  When T commits, updated pages are written to disk

•  Write/write conflicts resolved by “first committer wins” rule
–  Loser gets aborted

•  Read/write conflicts are ignored

CSE 544 - Fall 2016 82

Snapshot Isolation (Details)

•  Multiversion concurrency control:
–  Versions of X: Xt1, Xt2, Xt3, . . .

•  When T reads X, return XTS(T).

•  When T writes X: if other transaction updated X, abort
–  Not faithful to “first committer” rule, because the other transaction

U might have committed after T. But once we abort T, U
becomes the first committer J

83 CSE 544 - Fall 2016

What Works and What Not

•  No dirty reads (Why ?)
•  No inconsistent reads (Why ?)

–  A: Each transaction reads a consistent snapshot

•  No lost updates (“first committer wins”)

•  Moreover: no reads are ever delayed

•  However: read-write conflicts not caught ! “Write skew”

84 CSE 544 - Fall 2016

Write Skew

CSE 544 - Fall 2016 85

T1:
 READ(X);
 if X >= 50
 then Y = -50; WRITE(Y)
 COMMIT

T2:
 READ(Y);
 if Y >= 50
 then X = -50; WRITE(X)
 COMMIT

In our notation:

R1(X), R2(Y), W1(Y), W2(X), C1,C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

Invariant: X + Y ≥ 0

Write Skews Can Be Serious

•  ACIDicland had two viceroys, Delta and Rho
•  Budget had two registers: taXes, and spendYng
•  They had high taxes and low spending…

86

Delta:
 READ(taXes);
 if taXes = ‘High’
 then { spendYng = ‘Raise’;
 WRITE(spendYng) }
 COMMIT

Rho:
 READ(spendYng);
 if spendYng = ‘Low’
 then {taXes = ‘Cut’;
 WRITE(taXes) }
 COMMIT

… and they ran a deficit ever since.

Questions/Discussions

•  How does snapshot isolation (SI) compare to repeatable
reads and serializable?
–  A: SI avoids most but not all phantoms (e.g., write skew)

•  Note: Oracle & PostgreSQL implement it even for
isolation level SERIALIZABLE
–  But most recently: “serializable snapshot isolation”

•  How can we enforce serializability at the app level ?
–  A: Use dummy writes for all reads to create write-write conflicts…

but that is confusing for developers!!!

CSE 544 - Fall 2016 87

Commercial Systems

Always check documentation as DBMSs keep evolving and
thus changing! Just to get an idea:
•  DB2: Strict 2PL
•  SQL Server:

–  Strict 2PL for standard 4 levels of isolation
–  Multiversion concurrency control for snapshot isolation

•  PostgreSQL: Multiversion concurrency control
•  Oracle: Multiversion concurrency control

CSE 544 - Fall 2016 88

Important Lesson

•  ACID transactions/serializability make it easy to develop
applications

•  BUT they add overhead and slow things down

•  Lower levels of isolation reduce overhead
•  BUT they are hard to reason about for developers!

CSE 544 - Fall 2016 89

