CSE 544 Principles of Database Management Systems

Lecture 1 - Introduction and the Relational Model

Outline

- Introduction
- Class overview
- Why database management systems (DBMS)?
- The relational model

Course Staff

- Instructor: Dan Suciu
 - Office hours: Wednesday 3:30pm-4:20pm (or by appointment)
 - Location: CSE 662
- TA: Qingda Wen
 - 5th Year Master's student
 - Office hours and location: Fridays 1:30-2:20, CSE 218

About Me

- PhD from UPenn
- Bell Labs / AT&T Labs
- @UW (since 2000)
- I like to combine theory with database systems:
 - Probabilistic databases, causality in data
 - Novel/optimal query processing
 - Data pricing

Goals of the Class/Class Content

Relational Data Model

- Data models, data independence, declarative query language.
- Relational Database Systems
 - Storage, query execution and optimization, transactions
 - Parallel data processing, column-oriented db etc.
- Transactions
 - Optimistic/pessimistic concurrency control
 - ARIES recovery system
- Provenance

A Note for Non-Majors

- For the Data Science option: take 414
- For the Advanced Data Science option: take 544
- 544 is an <u>advanced</u> class, intended as an introduction to data management research
- Does not cover fundamentals systematically, yet there is an exam testing those fundamentals
- Unsure? Look at the short quiz on the website.

Class Format

- Two lectures per week: Monday, Wednesday 1:30-2:50
- Mostly lecture, some discussions

Readings and Notes

Background readings from the following book

 Database Management Systems. Third Ed. Ramakrishnan and Gehrke. McGraw-Hill. [recommended]

Readings are based on papers

- Mix of old seminal papers and new papers
- Papers will be available on class website
- Lecture notes (the slides)
 - Posted on class website after each lecture

Database Managemen

Class Resources

Website: lectures, assignments

http://www.cs.washington.edu/544

Project and paper review info to be added

- Mailing list on course website
- Discussion board: discuss assignments, papers, etc

Evaluation

- Assignments 30%
- Exam 30%
- Project 30%
- Paper reviews + class participation 10%

Assignments – 30%

- HW1: Use a DBMS
- HW2: Datalog
- HW2: Build a simple DBMS
- HW3: Data analysis in the cloud
- See course calendar for deadlines
- We will accept late assignments with <u>very</u> valid excuse

Exam - 30%

• March 12, 2:30-4:20

Project - 30%

Topic

- Choose from a list of mini-research topics
- Or come up with your own
- Can be related to your ongoing research
- Can be related to a project in another course
- Must be related to databases / data management
- Must involve either research or significant engineering
- Open ended

Final deliverables

- Short conference-style paper (6 pages)
- Conference-style presentation or posters depending on groups

Project – 30%

- Dates will be posted on course website
 - M1: form groups
 - M2: Project proposal
 - M3: Milestone report
 - M4: Poster presentation
 - M5: Project paper
- More details will be on the website, including ideas & examples
- We will provide feedback throughout the quarter

Paper reviews – 10%

- Between 1/2 page and 1 page in length
 - Summary of the main points of the paper
 - Critical discussion of the paper
 - Guidelines on course website
- Reading questions
 - For some papers, we will post reading questions
 - Address these questions in your reviews
- Grading: credit/no-credit
 - Must submit review 12 HOURS BEFORE lecture
 - Individual assignments (but feel free to discuss paper with others)

Class Participation

Because

- We want you to read & think about papers throughout quarter
- Important to learn to discuss papers

Expectations

- Ask questions, raise issues, think critically
- Learn to express your opinion
- Respect other people's opinions
- Most students get full credit for class participation, but I may penalize students who miss lectures or just don't participate

Now onward to the world of databases!

Let's get started

- What is a database?
 - A collection of files storing related data
- Give examples of databases
 - Accounts database; payroll database; UW's students database;
 Amazon's products database; airline reservation database
 - Your ORCA card transactions, Facebook friends graph, past tweets, etc

Data Management

- Entities: employees, positions (ceo, manager, cashier), stores, products, sells, customers.
- Relationships: employee positions, staff of each store, inventory of each store.
- What operations do we want to perform on this data?
- What functionality do we need to manage this data?

Database Management System

- A DBMS is a software system designed to provide data management services
- Examples of DBMS
 - Oracle, DB2 (IBM), SQL Server (Microsoft),
 - PostgreSQL, MySQL,...

Typical System Architecture

"Two tier system" or "client-server"

Why should *you* care?

- Most of CS and Science today is data driven
- Your research will involve some data component need to know how to use a DBMS
- Your research may involve some innovative data management solution – need to be up to date with what is known, beyond a DBMS

Main DBMS Features

- Data independence
 - Data model
 - Data definition language
 - Data manipulation language
- Efficient data access
- Data integrity and security
- Data administration
- Concurrency control
- Crash recovery

When not to use a DBMS?

- Main reason: because you didn't take a good DB class!
- Other reasons:
 - DBMS is optimized for a certain workload
 - Some applications may need different data model, or different operations, or a few time-critical operations
 - Example: highly optimized scientific simulations

Outline

- Introductions
- Class overview
- Why database management systems (DBMS)?
- The relational model

Data Model

An abstract mathematical concepts that defines the data

Data models:

- Relational (this course)
- Semistructured (XML, JSon, Protobuf)
- Graph data model
- Object-Relational data model

Relation Definition

- Database is collection of relations
- Relation is a table with rows & columns
 - SQL uses the term "table" to refer to a relation
- Relation R is subset of S₁ x S₂ x ... x S_n
 - Where S_i is the domain of attribute i
 - n is number of attributes of the relation

Example

Relation schema

Supplier(sno: integer, sname: string, scity: string, sstate: string)

Relation instance

sno	sname	scity	sstate
1	s1	city 1	WA
2	s2	city 1	WA
3	s3	city 2	MA
4	s4	city 2	MA

sno is called a key (what does it mean?)

Discussion of the Relational Model

- Relations are <u>flat</u> = called 1st Normal Form
- A relation may have a key, but no other FD's = either 3rd Normal form, or Boyce Codd Normal Form (BCNF) depending on some subtle details

[discuss on the white board]

Other Models: Semistructured

E.g. you will encounter this in HW1:

Integrity Constraints

- Condition specified on a database schema
- Restricts data that can be stored in db instance
- DBMS enforces integrity constraints
- E.g. domain constraint, key, foreign key

Constraints are part of the data model

Key Constraints

 Key constraint: "certain minimal subset of fields is a unique identifier for a tuple"

Candidate key

- Minimal set of fields
- That uniquely identify each tuple in a relation

Primary key

One candidate key can be selected as primary key

Foreign Key Constraints

- Field that refers to tuples in another relation
- Typically, this field refers to the primary key of other relation
- Can pick another field as well (but check documentation)

```
CREATE TABLE Part (
  pno integer,
  pname varchar(20),
  psize integer,
  pcolor varchar(20),
  PRIMARY KEY (pno)
);
```

```
CREATE TABLE Supply(
    sno integer,
    pno integer,
    qty integer,
    price integer
);
```

```
CREATE TABLE Supply(
    sno integer,
    pno integer,
    qty integer,
    price integer,
    PRIMARY KEY (sno,pno)
);
```

```
CREATE TABLE Supply(
    sno integer,
    pno integer,
    qty integer,
    price integer,
    PRIMARY KEY (sno,pno),
    FOREIGN KEY (sno) REFERENCES Supplier,
    FOREIGN KEY (pno) REFERENCES Part
);
```

```
CREATE TABLE Supply (
  sno integer,
  pno integer,
  qty integer,
  price integer,
  PRIMARY KEY (sno, pno),
  FOREIGN KEY (sno) REFERENCES Supplier
                         ON DELETE NO ACTION,
  FOREIGN KEY (pno) REFERENCES Part
                         ON DELETE CASCADE
```

General Constraints

 Table constraints serve to express complex constraints over a single table

```
CREATE TABLE Part (
  pno integer,
  pname varchar(20),
  psize integer,
  pcolor varchar(20),
  PRIMARY KEY (pno),
  CHECK ( psize > 0 )
);
```

• It is also possible to create constraints over many tables