
CSE 544
Principles of Database
Management Systems

Lecture 2 – Relational Algebra and SQL

CSE 544 - Winter 2018 1

Announcements

• Lecture on Wed. Jan 17 – CANCELED
Makeup: Tue. Jan 16, 10am-11:20am, CSE 305

• Reading assignments are posted: first due on Jan 16

• Project milestones posted: first due this Friday

• Homework 1 due next Friday

• Discussion board is up: say “hello” there!

CSE 544 - Winter 2018 2

CSE 544 - Winter 2018

Outline

Two topics today

• Crash course in SQL

• Relational algebra

3

CSE 544 - Winter 2018

Structured Query Language: SQL

• Influenced by relational calculus (= First Order Logic)

• SQL is a declarative query language
– We say what we want to get
– We don’t say how we should get it

• SQL has many parts
– Data definition language (DDL)
– Data manipulation language (DML)
– ...

4

CSE 544 - Winter 2018

Outline

• You study independently SQL DDL
– Data Definition Language
– CREATE TABLE, DROP TABLE, CREATE INDEX,

CLUSTER, ALTER TABLE, …
– E.g. google for the postgres manual, or type this in psql:

\h create
\h create table
\h cluster

• Today: crash course in SQL DML
– Data Manipulation Language
– SELECT-FROM-WHERE-GROUPBY
– Study independently: INSERT/DELETE/MODIFY

5

CSE 544 - Winter 2018

SQL Query

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

Basic form:

6

CSE 544 - Winter 2018

Simple SQL Query

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

SELECT PName, Price, Manufacturer
FROM Product
WHERE Price > 100

Product

PName Price Manufacturer

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi
“selection” and

“projection”
7

CSE 544 - Winter 2018

Eliminating Duplicates

SELECT DISTINCT category
FROM Product

Compare to:

SELECT category
FROM Product

Category

Gadgets

Gadgets

Photography

Household

Category

Gadgets

Photography

Household

8

CSE 544 - Winter 2018

Ordering the Results

SELECT pname, price, manufacturer
FROM Product
WHERE category=‘gizmo’ AND price > 50
ORDER BY price, pname

Ascending, unless you specify the DESC keyword.
Can also request only top-k with LIMIT clause

9

SELECT pname, price, manufacturer
FROM Product
WHERE category=‘gizmo’ AND price > 50
ORDER BY price, pname
LIMIT 10

CSE 544 - Winter 2018

Joins

Product (pname, price, category, manufacturer)

Company (cname, stockPrice, country)

Find all products under $200 manufactured in Japan;

return their names and prices.

SELECT P.pname, P.price

FROM Product P, Company C

WHERE P.manufacturer=C.cname AND C.country=‘Japan’

AND P.price <= 200

SELECT P.pname, P.price

FROM Product P JOIN Company C ON P.manufacturer=C.cname

WHERE C.country=‘Japan’ AND P.price <= 200

10

CSE 544 - Winter 2018

Joins

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all countries that manufacture products in both the
gadget category and in the photography category

[in class, or at home]

11

Semantics of SQL Queries

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..
for xn in Rn do

if Conditions
then Answer = Answer È {(a1,…,ak)}

return Answer

CSE 544 - Winter 2018 12

CSE 544 - Winter 2018

Aggregation

SELECT count(*)
FROM Product
WHERE year > 1995

Except count, all aggregations apply to a single attribute

SELECT avg(price)
FROM Product
WHERE maker=‘Toyota’

SQL supports several aggregation operations:

sum, count, min, max, avg

13

Grouping and Aggregation

Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Let’s see what this means…

Find total quantities for all sales over $1, by product.

CSE 544 - Winter 2018 14

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause:
grouped attributes and aggregates.

CSE 544 - Winter 2018 15

1&2. FROM-WHERE-GROUPBY

CSE 544 - Winter 2018

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10
WHERE price > 1

16

3. SELECT

Product TotalSales

Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

CSE 544 - Winter 2018

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

What can go in SELECT clause?
Will return ONE TUPLE per group

17

HAVING Clause

SELECT product, sum(price*quantity)
FROM Purchase
WHERE price > 1
GROUP BY product
HAVING Sum(quantity) > 30

Same query as earlier, except that we consider only products
that had at least 30 sales.

HAVING clause contains conditions on aggregates.

CSE 544 - Winter 2018 18

WHERE vs HAVING

• WHERE condition is applied to individual rows
– The rows may or may not contribute to the aggregate
– No aggregates allowed here

• HAVING condition is applied to the entire group
– Entire group is returned, or not al all
– May use aggregate functions in the group

CSE 544 - Winter 2018 19

General form of Grouping
and Aggregation

S = may contain attributes a1,…,ak and/or any
aggregates but NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn
C2 = is any condition on aggregate expressions

and on attributes a1,…,ak

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

CSE 544 - Winter 2018 20

Semantics of SQL With Group-By

Evaluation steps:

1. Evaluate FROM-WHERE using Nested Loop Semantics

2. Group by the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)

4. Compute aggregates in S and return the result

SELECT S

FROM R1,…,Rn

WHERE C1

GROUP BY a1,…,ak

HAVING C2

CSE 544 - Winter 2018
21

Subqueries

• A subquery is a SQL query nested inside a larger query
• Such inner-outer queries are called nested queries
• A subquery may occur in:

– A SELECT clause
– A FROM clause
– A WHERE clause

• Rule of thumb: avoid writing nested queries when
possible; keep in mind that sometimes it’s impossible

CSE 544 - Winter 2018 22

Subqueries in WHERE

CSE 544 - Winter 2018

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid and P.price < 200)

Existential quantifiers

Using EXISTS:

Product (pname, price, cid)
Company(cid, cname, city)

23

Subqueries in WHERE

CSE 544 - Winter 2018

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 200)

Existential quantifiers

Using IN

Product (pname, price, cid)
Company(cid, cname, city)

24

Subqueries in WHERE

CSE 544 - Winter 2018

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Existential quantifiers

Using ANY:

Product (pname, price, cid)
Company(cid, cname, city)

25

Subqueries in WHERE

CSE 544 - Winter 2018

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid= P.cid and P.price < 200

Existential quantifiers are easy ! J

Existential quantifiers

Now let’s unnest it:

Product (pname, price, cid)
Company(cid, cname, city)

26

Subqueries in WHERE

CSE 544 - Winter 2018

Find all companies whose products all have price < 200

Universal quantifiers are hard ! L

Find all companies that make only products with price < 200

same as:

Universal quantifiersProduct (pname, price, cid)
Company(cid, cname, city)

27

Subqueries in WHERE

CSE 544 - Winter 2018

2. Find all companies s.t. all their products have price < 200

1. Find the other companies: i.e. s.t. some product ³ 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

28

Subqueries in WHERE

CSE 544 - Winter 2018 29

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *

FROM Product P
WHERE P.cid = C.cid and P.price >= 200)

Universal quantifiers

Using EXISTS:

Find all companies that make only products with price < 200

Product (pname, price, cid)
Company(cid, cname, city)

Subqueries in WHERE

CSE 544 - Winter 2018

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ALL:

Universal quantifiers

Find all companies that make only products with price < 200

Product (pname, price, cid)
Company(cid, cname, city)

30

Can we unnest the universal
quantifier query ?

• Definition: A query Q is monotone if:
– Whenever we add tuples to one or more of the tables…
– … the answer to the query cannot contain fewer tuples

• Fact: all unnested queries are monotone
– Proof: using the “nested for loops” semantics

• Fact: Query with universal quantifier is not monotone

• Consequence: we cannot unnest a query with a
universal quantifier

CSE 544 - Winter 2018 31

More SQL

Things you need to learn on your own (e.g. read the slides
from CSE344):

• Three valued logic of SQL: false, unknown, true

• Aggregating over empty groups using left outer join

• How to express argmax in SQL

CSE 544 - Winter 2018 32

CSE 544 - Winter 2018

Outline

Two topics today

• Crash course in SQL

• Relational algebra

33

CSE 544 - Winter 2018

Relational Algebra

• Simple algebra over relations:
selection, projection, join, union, difference

• Unlike SQL, RA specifies in which order to perform
operations; used to compile and optimize SQL

• Declarative? Mostly yes, because we still don’t specify
(yet) how each RA operator is to be executed

34

CSE 544 - Winter 2018

Relational Operators

• Selection: scondition(S)
• Projection: plist-of-attributes(S)
• Union (È)
• Set difference (–),
• Cross-product or cartesian product (´)
• Join: R ⋈q S = sq(R ´ S)
• Intersection (Ç)
• Division: R/S
• Rename r(R(F),E)

35Note: both set and bag semantics!

CSE 544 - Winter 2018

Selection & Projection Examples

no name zip disease
1 p1 98125 flu
2 p2 98125 heart
3 p3 98120 lung
4 p4 98120 heart

Patient

sdisease=‘heart’(Patient)
no name zip disease
2 p2 98125 heart
4 p4 98120 heart

zip disease
98125 flu
98125 heart
98120 lung
98120 heart

pzip,disease(Patient)

pzip (sdisease=‘heart’(Patient))
zip
98120
98125

36

CSE 544 - Winter 2018

Cross-Product Example

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P.age P.zip disease
54 98125 heart
54 98125 heart
20 98120 flu
20 98120 flu

name V.age V.zip
p1 54 98125
p2 20 98120
p1 54 98125
p2 20 98120

P � V

name age zip
p1 54 98125
p2 20 98120

37

CSE 544 - Winter 2018

Join Galore

• Theta-join: R ⋈q S = sq(R � S)
– Join of R and S with a join condition q
– Cross-product followed by selection q

• Equijoin: R ⋈q S = sq(R � S)
– Theta-join where q consists only of equalities

• Natural join: R ⋈ S = pA (sq(R � S))
– Equijoin on attributes with the same name
– Followed by removal (projection) of duplicate attributes

38

CSE 544 - Winter 2018

Equijoin Example

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P ⋈P.age=V.age V

name age zip
p1 54 98125
p2 20 98120
p3 20 98123

39

P.age P.zip P.disease V.name V.age V.zip
54 98125 heart p1 54 98125
20 98120 flu p2 20 98120
20 98120 flu p3 20 98123

CSE 544 - Winter 2018

Theta-Join Example

age zip disease
50 98125 heart

19 98120 flu

AnonPatient P Voters V

P.age P.zip P.disease V.name V.age V.zip
19 98120 flu p2 20 98120

P ⋈P.zip = V.zip and P.age <= V.age + 1 and P.age >= V.age - 1 V

name age zip
p1 54 98125

p2 20 98120

40

CSE 544 - Winter 2018

Natural Join Example

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P ⋈ V

name age zip
p1 54 98125
p2 20 98120

age zip disease name

54 98125 heart p1

20 98120 flu p2

41

Natural Join

• Given schemas R(A, B, C, D), S(A, C, E), what is the
schema of R ⨝ S ?

• Given R(A, B, C), S(D, E), what is R ⨝ S?

• Given R(A, B), S(A, B), what is R ⨝ S?

CSE 544 - Winter 2018 42

CSE 544 - Winter 2018

More Joins

• Outer join
– Include tuples with no matches in the output
– Use NULL values for missing attributes

• Variants
– Left outer join
– Right outer join
– Full outer join

43

CSE 544 - Winter 2018

Outer Join Example

age zip disease
54 98125 heart
20 98120 flu
33 98120 lung

AnonPatient P Voters V

P V

name age zip
p1 54 98125
p2 20 98120

age zip disease name

54 98125 heart p1

20 98120 flu p2

33 98120 lung null

44

CSE 544 - Winter 2018

Example of Algebra Queries

Q1: Names of patients who have heart disease
pname(Voter ⋈ (sdisease=‘heart’ (AnonPatient))

45

CSE 544 - Winter 2018

More Examples

Relations
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Q2: Name of supplier of parts with size greater than 10
psname(Supplier ⋈ Supply ⋈ (spsize>10 (Part))

Q3: Name of supplier of red parts or parts with size greater than 10
psname(Supplier ⋈ Supply ⋈ (spsize>10 (Part) È spcolor=‘red’ (Part)))

(Many more examples in the R&G)

46

Logical Query Plans

An RA expression but represented as a tree

CSE 544 - Winter 2018 47

Supplier Supply

pno=pno

Part

Π sname

σ psize > 10
sno=sno

More Joins

• Semi-join = the subset of R that joins with S

R⋉S = ΠAttr(R)(R ⋈ S)

• Anti-semi join = the subset of R that doesn’t join with S

R – (R⋉S)

CSE 544 - Winter 2018 48

CSE 544 - Winter 2018

Extended Operators
of Relational Algebra

• Duplicate elimination (d)
– Since commercial DBMSs operate on multisets/bags not sets

• Grouping and aggregate operators (g)
– Partitions tuples of a relation into “groups”
– Aggregates can then be applied to groups
– Min, max, sum, average, count

• Sort operator (t)

49

From SQL to RA

• Every SQL query can (and is) translated to RA

CSE 544 - Winter 2018 50

Translating SQL to RA

CSE 344 - 2017au 51

SELECT city, sum(quantity)
FROM sales
GROUP BY city
HAVING count(*) > 100

T1, T2 = temporary tables sales(product, city, quantity)

g city, sum(quantity)→q, count(*) → c

s c > 100

P city, q

Answer

T1(city,q,c)

T2(city,q,c)

How about Subqueries?

CSE 344 - 2017au 52

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Find all supplies in Washington who sell only products ≤ $100

How about Subqueries?

CSE 344 - 2017au 53

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

Find all supplies in Washington who sell only products ≤ $100

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

How about Subqueries?

CSE 344 - 2017au 54

Correlation !

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Find all supplies in Washington who sell only products ≤ $100

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

How about Subqueries?

CSE 344 - 2017au 55

De-Correlation

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Find all supplies in Washington who sell only products ≤ $100

SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA’

and Q.sno not in

(SELECT P.sno

FROM Supply P

WHERE P.price > 100)

How about Subqueries?

CSE 344 - 2017au 56

(SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA’)

EXCEPT

(SELECT P.sno

FROM Supply P

WHERE P.price > 100)

EXCEPT = set difference

Un-nesting

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,price)

Find all supplies in Washington who sell only products ≤ $100

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno

FROM Supply P
WHERE P.price > 100)

How about Subqueries?

CSE 344 - 2017au 57

Supply

σsstate=‘WA’

Supplier

σPrice > 100

−
Finally…

πsnoπsno

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Find all supplies in Washington who sell only products ≤ $100

Relational Calculus

RC = First Order Logic (�,�,¬, ∀, ∃)
A query is {expr | FOL-predicate}
Two variants
• Tuple relational calculus query; uses tuple variables
• Domain relational calculus
E.g. names of suppliers that sell only products > $100

58

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

{ s.name | s ∈ Supplier � ∀ p (p ∈ Supply à p.price > 100)}

{ n | ∃s,c,t (Supplier(s,n,c,t) �∀p,q,p(Supply(s,p,q,pr) à pr > 100)}

Example

• Set division: R(A,B)/S(B)
– Defined as the largest set T(A) such that T � S ⊆ R

– Equivalently: the set of A’s s.t. they occur with all B’s

– Example:
Takes(student, courseName), Course(courseName)
Takes/Course = the students who took all courses.

• In class, or at home:
– Define set division in RC

– Convert to RA

CSE 544 - Winter 2018 59

