CSE 544
Principles of Database

Management Systems
Lectures 5: Datalog (1)

CSE 544 - Winter 2018

Announcement

* Deadline for HW1 has passed...
* Project M2 due on Friday

« HW2 released (datalog / Souffle)

CSE 544 - Winter 2018

Where We Are

Relational query languages:
« SQL
* Relational Algebra

» Relational Calculus (haven’t discussed,
but you may look it up)

The can express the same class of
qgueries called relational queries

CSE 544 - Winter 2018

Which are Relational Queries?
Which are not? And Why?

Friend(X,Y)

* Find all people X
whose number of
friends is a prime
number

Which are Relational Queries?
Which are not? And Why?

Friend(X,Y) No higher math
In datab
* Find all people X 1 EarEhast

whose number of
friends is a prime
number

Which are Relational Queries?
Which are not? And Why?

Friend(X,Y)

* Find all people X
whose number of
friends is a prime
number

* Find all people who
are friends with

everyone who is not
a friend of Bob

Which are Relational Queries?
Which are not? And Why?

Friend(X,Y)

* Find all people X
whose number of
friends is a prime

number
are friends with

everyone who is not
a friend of Bob

Which are Relational Queries?
Which are not? And Why?

Friend(X,Y) Partition all people
» Find all people X into three sets
whose number of P1(X),P2(X),P3(X)
friends is a prime s.t. any two friends
number are in different
partitions

* Find all people who
are friends with
everyone who is not
a friend of Bob

Which are Relational Queries?
Which are not? And Why?

Friend(X,Y) Partition all people
» Find all people X into three sets
whose number of P1(X),P2(X),P3(X)
friends is a prime s.t. any two friends
number are in different
partitions

* Find all people who
are friends with
everyone who is not
a friend of Bob

No! NP-complete

Which are Relational Queries?
Which are not? And Why?

Friend(X,Y) Partition all people

» Find all people X into three sets
whose number of P1(X),P2(X),P3(X)
friends is a prime s.t. any two friends
number are in different

+ Find all people who ~ Partitions
are friends with » Find all people who
everyone who is not are direct or indirect

a friend of Bob friends with Alice

10

Which are Relational Queries?
Which are not? And Why?

Friend(X,Y) Partition all people
» Find all people X into three sets
whose number of P1(X),P2(X),P3(X)
friends is a prime s.t. any two friends
number are in different
partitions

* Find all people who

are friends with » Find all people who
everyone who is no are direct or indirect

lends with Alice

“Recursive query”; PTIME,

yet not expressible in RA i

Recursive Queries

 “Find all direct or indirect friends of
Alice”

 Computable in PTIME, yet not
expressible in RA

« Datalog: extends RA with recursive
gueries

CSE 544 - Winter 2018 12

Datalog

Designed in the 80’s
Simple, concise, elegant

Today is a hot topic, beyond databases:
network protocols, static program
analysis, DB+ML

Very few open source implementations,
and hard to find

In HW2 we will use Souffle

13

USE AdventureWorks29€8R2;
GO
WITH DirectReports (ManagerlD, EmployeelD, Title, DeptlD, Level)
AS
(
-- Anchor member definition
SELECT e.ManagerlID, e.EmployeelD, e.Title, edh.DepartmentID,
© AS Level
FROM dbo.MyEmployees AS e
INNER JOIN HumanResources.EmployeeDepartmentHistory AS edh . . .
ON e.EmployeelD = edh.BusinesstEntityID AND edh.EndDate IS NULL DIreCtReportS(eld’ 0) -
WHERE ManagerID IS NULL Employee(eid),

UNION ALL tM id
-- Recursive member definition no anager(e')

SELECT e.ManagerlID, e.EmployeelD, e.Title, edh.DepartmentID,

Manager(eid) :- Manages(_, eid)

o et e DirectReports(eid, level+1) :-

0.MyEmployees e _ _

INNER JOIN HumanResources.EmployeeDepartmentHistory AS edh DirectReports(mid, level),
ON e.EmployeelD = edh.BusinessentityID AND edh.EndDate IS NULL Manages(mid, eid)

INNER JOIN DirectReports AS d
ON e.ManagerlID = d.EmployeelD

)
-- Statement that executes the CTE
SELECT ManagerlD, EmployeelD, Title, DeptID, Level
FROM DirectReports
INNER JOIN HumanResources.Department AS dp

ON DirectReports.DeptlD = dp.DepartmentID
WHERE dp.GroupName = N'Szles and Marketing' OR Level = @;
GO

SQL Query vs Datalog
(which would you rather write?)
(any Java fans out there?)

Outline

« Datalog rules

* Recursion

* Negation, aggregates, stratification
* Semantics

* Naive and Semi-naive Evaluation
* Connection to RA — on your own

CSE 544 - Winter 2018

Actor(id, fname, Iname)

Casts(pid, mid) — Schema
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

CSE 544 - Winter 2018

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

CSE 544 - Winter 2018

17

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

CSE 544 - Winter 2018 18

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

Find Movies made in 1940

CSE 544 - Winter 2018 19

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).

Q1(y) :- Movie(x,y,z), z=1940’.

Movie(7909, ‘A Night in Armour’, 1910). | | Q2(f, 1) :- Actor(z,f,1), Casts(z,x),
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Movie(x,y,’1940°).

CSE 544 - Winter 2018 20

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).

Q1(y) :- Movie(x,y,z), z=1940’.

Movie(7909, ‘A Night in Armour’, 1910). | | Q2(f, 1) :- Actor(z,f,1), Casts(z,x),
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Movie(x,y,’1940°).

Find Actors who acted in Movies made in 1940

CSE 544 - Winter 2018 21

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).

Q1(y) :- Movie(x,y,z), z=1940’.

Movie(7909, ‘A Night in Armour’, 1910). | | Q2(f, 1) :- Actor(z,f,1), Casts(z,x),
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Movie(x,y,’1940°).

Q3(f,l) :- Actor(z,f,I), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

CSE 544 - Winter 2018 22

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).

Q1(y) :- Movie(x,y,z), z=1940’.

Movie(7909, ‘A Night in Armour’, 1910). | | Q2(f, 1) :- Actor(z,f,1), Casts(z,x),
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Movie(x,y,’1940°).

Q3(f,l) :- Actor(z,f,I), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Find Actors who acted in a Movie in 1940 and in one in 1910

CSE 544 - Winter 2018 23

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).

Q1(y) :- Movie(x,y,z), z=1940’.

Movie(7909, ‘A Night in Armour’, 1910). | | Q2(f, 1) :- Actor(z,f,1), Casts(z,x),
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Movie(x,y,’1940°).

Q3(f,l) :- Actor(z,f,I), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Extensional Database Predicates = EDB = Actor, Casts, Movie

Intensional Database Predicates = IDB = Q1, Q2, Q3
CSE 544 - Winter 2018 24

Datalog: Terminology

head body
/\ A
- N
atom atom atom (aka subgoal)

M/\

Q2(f, 1) :- Actor(zf,l), Casts(z,x), Movie(x,y,'1940").

f, | = head variables
X,y,Zz = existential variables

CSE 544 - Winter 2018 25

More Datalog Terminology

Q(args) :- R1(args), R2(args),

« R(args;) called an atom, or a relational predicate

* R(args;) evaluates to true when relation R; contains
the tuple described by args;.
— Example: Actor(344759, ‘Douglas’, ‘Fowley’) is true

* |n addition we can also have arithmetic predicates
— Example: z > “1940’.

« Some systems use <- | Q(args) <- R1(args), R2(args), I

« Some use AND Q(args) :- R1(args) AND R2(args)

Actor(id, fname, Iname)
Casts(pld mid)

" "S&tantics of a Single Rule

« Meaning of a datalog rule = a logical statement !

Q1(y) :-

Movie(x,y,z), z=1940’".

CSE 544 - Winter 2018

27

Actor(id, fname, Iname)
Casts(pld mid)

" "S&tantics of a Single Rule

« Meaning of a datalog rule = a logical statement !

Q1(y) :-

Movie(x,y,z), z=1940’".

 Forallx,y, z:if (x,y,z) € Movies and z = ‘1940’
then yisin Q1 (i.e. is part of the answer)

CSE 544 - Winter 2018

28

Actor(id, fname, Iname)
Casts(pld mid)

" "S&tantics of a Single Rule

« Meaning of a datalog rule = a logical statement !

Q1(y) :-

Movie(x,y,z), z=1940’".

 Forallx,y, z:if (x,y,z) € Movies and z = ‘1940’
then yisin Q1 (i.e. is part of the answer)

* VXVyVz [(Movie(x,y,z) and z=1940’) = Q1(y)]

CSE 544 - Winter 2018

29

Actor(id, fname, Iname)
Casts(pld mid)

" "S&tantics of a Single Rule

« Meaning of a datalog rule = a logical statement !

Q1(y) :-

Movie(x,y,z), z=1940’".

 Forallx,y, z:if (x,y,z) € Movies and z = ‘1940’
then yisin Q1 (i.e. is part of the answer)

* VXVyVz [(Movie(x,y,z) and z=1940’) = Q1(y)]

* Logically equivalent:
vy [(3x3z Movie(x,y,z) and z=1940’) = Q1(y)]

CSE 544 - Winter 2018

30

Actor(id, fname, Iname)
Casts(pld mid)

" "S&tantics of a Single Rule

« Meaning of a datalog rule = a logical statement !

Q1(y) :-

Movie(x,y,z), z=1940’".

 Forallx,y, z:if (x,y,z) € Movies and z = ‘1940’
then yisin Q1 (i.e. is part of the answer)

« VXVyVz [(Movie(x,y,z) and z=1940") = Q1(y)]

* Logically equivalent:
vy [(3x3z Movie(x,y,z) and z=1940’) = Q1(y)]

 Thus, non-head variables are called "existential
variables”

CSE 544 - Winter 2018

31

Actor(id, fname, Iname)
Casts(pld mid)

" "S&tantics of a Single Rule

Meaning of a datalog rule = a logical statement !

Q1(y) :-

Movie(x,y,z), z=1940’".

For all x, vy, z: if (X,y,z) € Movies and z = ‘1940’
then yisin Q1 (i.e. is part of the answer)

vxvyvz [(Movie(x,y,z) and z=1940’) = Q1(y)]

Logically equivalent:
vy [(3x3z Movie(x,y,z) and z=1940’) = Q1(y)]

Thus, non-head variables are called "existential
variables”

We want the smallest set Q1 with this property (why?)

CSE 544 - Winter 2018 32

+ Datalog rules

Outline

« Recursion

« Semantics

* Negation, aggregates, stratification
* Naive and Semi-naive Evaluation
* Connection to RA — on your own

CSE 544 - Winter 2018

33

Datalog program

A datalog program consists of several
rules

Importantly, rules may be recursive!

Usually there is one distinguished
predicate that's the output

We will show an example first, then give
the general semantics.

CSE 544 - Winter 2018 34

62 I S S o e LY

Example

R encodes a graph

What does
it compute?

62 I S S o e LY

Example

R encodes a graph

What does
it compute?

R= Initially:

T is empty.

62 I S S o e LY

Example

R encodes a graph

What does
it compute?

First iteration:
R= Initially: T =
1 2 T is empty.
2 1 1| 2 \
2 | 1
2 3 2 | 3
1 4 1 | a > First rule generates this
3 | 4
3 4 51
u > Second rule

generates nothing
(because T is empty)

Example

R encodes a graph

What does
it compute?

Second iteration:

_ First iteration: T=
R= Initially: T = ; f
1 2 T is empty. > 3
First rule generates this

2 1 1| 2 1] 4

2 |1 3| 4

2 3 2 |3 4 | 5

1 4 1| 4 1 1

3| 4 2 | 2

3 4 4 | 5 1] 3
4 5 o | a Second rule generates this

L 1 5

Example

R encodes a graph

What does
it compute?

Third iteration:

Second iteration: T=
R=) First iteration: T= — 1| 2 } Both rules
Initially: T= 2 | 1
2 1
1 2 T is empty. ST 2 |3 "
1 4
1 2 1 4 i
2 1 5 | 4 | » Firstrule
2 1 3 4 . -
2 3 2 3 4 5))
1 4 1 1
1 4 > 1 5
3 4 2 2
1 3
4 5 5 4 2 4 Second
1 5 rule
1 5
3 5
3 5
2 5

Example

R encodes a graph

What does
it compute?

Third iteration:

Second iteration: T=
R= First iteration: T= — 1| 2 Fourth
- Initially: T= T 2 | 1 iteration
1 2 T is empty. > | 3 2|3 =
114 same
2 1 1] 2 1| 4 — [\(j)
> 3 2 | 1 3 | 4 s 0]
2 | 3 4 5 1 1 new
1 4 1 1
1 N T T 2 | 2 | | facts.
3 4 s P ' 1 ° 11 DONE
4 5 2 | 4 i
1 5
1 5
3 5
3 5
2 5

Three Equivalent Programs

R encodes a grap

T(xy) - R(xy) Right linear
T(X’y) .~ R(X’Z)’ T(Z’y)

T(X’y) - R(X’y)

Left li
R= T(xy) = T(x2). Rzy) |
1 2
e | T(x,y) - R(x,y) Nor.f
on-linear
— T(xy) - T(x,2), T(Z.y)
3 4
4 5 Question: which terminates in fewest iterations?

CSE 544 - Winter 2018 42

Outline

Datalog rules
Recursion

Semantics

Negation, aggregates, stratification
Naive and Semi-naive Evaluation
Connection to RA — on your own

CSE 544 - Winter 2018

43

1. Fixpoint Semantics

» Start: IDB, = empty relations; t=20
Repeat:
IDB,,, = Compute Rules(EDB, IDB;)
t=t+1
Until IDB, = IDB,,

« Remark: since rules are monotone:
@ = IDB, cIDB, <€ IDB, c ...

» A datalog program w/o functions (+, *, ...)
always terminates. (In what time?)

2. Minimal Model Semantics:

 Return the IDB that

1) For every rule,
vvars [(Body(EDB,IDB) = Head(IDB)]

2) Is the smallest IDB satisfying (1)

 Theorem: there exists a smallest IDB
satisfying (1)

CSE 544 - Winter 2018

45

Example

T(X’y) - R(X’y)
T(X’y) .~ R(X’Z)’ T(Z,Y)

1. Fixpoint semantics:
e Start: T;=0;t=0
Repeat:
Tia(Xy) = R(x,y) U T (R(x,2) > Ti(z,y))
t=t+1
Until T, =T,

2. Minimal model semantics: smallest T s..

o VxVy [(R(X,y) = T(x,y)]A
vxvyvz [(R(x,2) AT(z,y)) = T(x,y)]

Datalog Semantics

* The fixpoint semantics tells us how to
compute a datalog query

e The minimal model semantics is more
declarative: only says what we get

* The two semantics are equivalent
meaning: you get the same thing

47

Outline

Datalog rules
Recursion
Semantics

Negation, aggregates, stratification

Naive and Semi-naive Evaluation
Connection to RA — on your own

CSE 544 - Winter 2018

48

Extensions

* Aggregates, negation

« Stratified datalog

CSE 544 - Winter 2018

49

Aggregates

 No commonly agreed syntax

« Each implementation uses it's own

CSE 544 - Winter 2018

50

Aggregates in Souffle

General syntax in Logicblox:

Q(x,y,z,v) :- Body1(x,y,z), v=sum(w) : { Body2(x,y,z,w) }

Meaning (in SQL)

select x,y,z, sum(w) as v
from R1, R2, ...

where ...
group by x,y,z

CSE 544 - Winter 2018

51

ParentChild(p,c)

Example

For each person, compute the total number of descendants

/* We use Souffle syntax (as in the homework) */
[* for each person, compute his/her descendants */

CSE 544 - Winter 2018 52

ParentChild(p,c)

Example

For each person, compute the total number of descendants

/* We use Souffle syntax (as in the homework) */

[* for each person, compute his/her descendants */
D(x,y) :- ParentChild(x,y).

D(x,z) :- D(x,y), ParentChild(y,z).

CSE 544 - Winter 2018 53

ParentChild(p,c)

Example

For each person, compute the total number of descendants

/* We use Souffle syntax (as in the homework) */

[* for each person, compute his/her descendants */
D(x,y) :- ParentChild(x,y).

D(x,z) :- D(x,y), ParentChild(y,z).

[* For each person, count the number of descendants */

CSE 544 - Winter 2018 o4

ParentChild(p,c)

Example

For each person, compute the total number of descendants

/* We use Souffle syntax (as in the homework) */

[* for each person, compute his/her descendants */
D(x,y) :- ParentChild(x,y).

D(x,z) :- D(x,y), ParentChild(y,z).

[* For each person, count the number of descendants */
N(x,m) :- D(x,), m=sum(1) : { D(x,y) }.

CSE 544 - Winter 2018 55

ParentChild(p,c)

Example

For each person, compute the total number of descendants

/* We use Souffle syntax (as in the homework) */

[* for each person, compute his/her descendants */
D(x,y) :- ParentChild(x,y).

D(x,z) :- D(x,y), ParentChild(y,z).

[* For each person, count the number of descendants */
N(x,m) :- D(x,), m=sum(1) : { D(x,y) }.

/* Find the number of descendants of Alice */

CSE 544 - Winter 2018 56

ParentChild(p,c)

Example

For each person, compute the total number of descendants

/* We use Souffle syntax (as in the homework) */

[* for each person, compute his/her descendants */
D(x,y) :- ParentChild(x,y).

D(x,z) :- D(x,y), ParentChild(y,z).

[* For each person, count the number of descendants */
N(x,m) :- D(x,), m=sum(1) : { D(x,y) }.

/* Find the number of descendants of Alice */

Q(d) :- N(“Alice”,d).

CSE 544 - Winter 2018 S7

ParentChild(p,c)

Negation: use “I"

Find all descendants of Alice,
who are not descendants of Bob

[* for each person, compute his/her descendants */
D(x,y) :- ParentChild(x,y).

D(x,z) :- D(x,y), ParentChild(y,z).

[* Compute the answer: notice the negation */

Q(x) :- D("Alice”,x), ID(“Bob”,x).

CSE 544 - Winter 2018

58

ParentChild(p,c)

Safe Datalog Rules

Here are unsafe datalog rules. What's “unsafe” about them ?

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

U2(x) :- ParentChild("Alice”,x), !ParentChild(x,y)

59

ParentChild(p,c)

Safe Datalog Rules

Here are unsafe datalog rules. What's “unsafe” about them ?

Holds for every
y other than “Bob”
U1 = infinite!

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

U2(x) :- ParentChild("Alice”,x), !ParentChild(x,y)

60

ParentChild(p,c)

Safe Datalog Rules

Here are unsafe datalog rules. What's “unsafe” about them ?

Holds for every
y other than “Bob”
U1 = infinite!

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

U2(x) :- ParentChild("Alice”,x), !ParentChild(x,y)

Want Alice’s childless children,
but we get all children x (because
there exists some y that x is not
parent of y)

61

ParentChild(p,c)

Safe Datalog Rules

Here are unsafe datalog rules. What's “unsafe” about them ?

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

U2(x) :- ParentChild("Alice”,x), !ParentChild(x,y)

Want Alice’s childless children,
but we get all children x (because
there exists some y that x is not

parent of y)

Holds for every
y other than “Bob”
U1 = infinite!

A datalog rule is safe if every variable appears
In some positive relational atom

—/

62

Stratified Datalog

« Recursion does not cope well with aggregates or
negation

« Example: what does this mean?

A() :- 1B().
B() :- IA().

CSE 544 - Winter 2018

63

Stratified Datalog

Recursion does not cope well with aggregates or
negation

Example: what does this mean?

A() - 'B().

B() :- A().
A datalog program is stratified if it can be partitioned
into strata s.t., for all n, only IDB predicates defined in

strata 1, 2, ..., n may appear under ! or agg in stratum
n+1.

Souffle (and others) accepts only stratified datalog.

CSE 544 - Winter 2018 64

Stratified Datalog

D(x,y) :- ParentChild(x,y).
D(x,z) :- D(x,y), ParentChild(y,z).

Stratum 1

N[x] = m :- agg<<m = count()>> D(x,y).
Q(d) :- N[*Alice”]=d.

Stratum 2

May use D
in an agg because was
defined in previous
stratum

65

Stratified Datalog

D(x,y) :- ParentChild(x,y).
D(x,z) :- D(x,y), ParentChild(y,z).

Stratum 1

N(x,m) - D(x,), m=sum(1):{D(x,y) }.
Q(d) :- N(“Alice”, d).

Stratum 2

May use D
in an agg because was
defined in previous

D(x,y) :- ParentChild(x,y).
D(x,z) :- D(x,y), ParentChild(y,z).

Stratum 1

stratum

Q(x) :- D(“Alice”,x), ID("“Bob”,x). Stratum 2

66

Stratified Datalog

D(x,y) :- ParentChild(x,y).
D(x,z) :- D(x,y), ParentChild(y,z).

Stratum 1

N(x,m) - D(x,), m=sum(1):{D(x,y) }.
Q(d) :- N(“Alice”, d).

Stratum 2

May use D
in an agg because was
defined in previous

D(x,y) :- ParentChild(x,y).
D(x,z) :- D(x,y), ParentChild(y,z).

Stratum 1

stratum

Q(x) :- D(“Alice”,x), ID("“Bob”,x). Stratum 2

AQ - 18). §
B

() - 1A(). Non-stratified

67

Stratified Datalog

* |If we don’t use aggregates or negation,
then the datalog program is already
stratified

* |f we do use aggregates or negation, it
Is usually quite natural to write the
program in a stratified way

CSE 544 - Winter 2018

68

Outline

« Datalog rules
« Recursion
e Semantics

. Negat o5 siratificat

« Nalve and Semi-naive Evaluation

* Connection to RA — on your own

CSE 544 - Winter 2018

69

Datalog Evaluation Algorithms

* Needs to preserve the efficiency of
qguery optimizers, while extending them

to recursion
 Two general strategies:
— Nalve datalog evaluation
— Semi-naive datalog evaluation
« Some powerful optimizations:
— Magic sets (next lecture)

CSE 544 - Winter 2018 70

Naive Datalog Evaluation
Algorithm

Datalog program:

71

Naive Datalog Evaluation
Algorithm

Datalog program:

P,:- body,U body,,U ...
P, :- body,,U body,,U ...

IDB predicate

72

Naive Datalog Evaluation
Algorithm

Datalog program:

P, :- body,,U body,,U ... P,:- SPJU,
- P, :- body,,U body,,U ... - P,:- SPJU,

Group by Each rule is a
IDB predicate Select-Project-Join-Union query

73

Naive Datalog Evaluation
Algorithm

Datalog program:

P, :- body,,U body,,U ... P,:- SPJU,
- P, :- body,,U body,,U ... - P,:- SPJU,

Eachrule is a
Select-Project-Join-Union query

Group by
IDB predicate

Nalve datalog evaluation algorithm:

P,=P,=...=0
Loop
NewP, = SPJU,; NewP, = SPJU,; ...
if (NewP, = P, and NewP, =P, and ...)
then exit
P, = NewP,; P, = NewP,; ...
Endloop

74

Naive Datalog Evaluation
Algorithm

Datalog program:

P, :- body,,U body,,U ... P,:- SPJU,
- P, :- body,,U body,,U ... - P,:- SPJU,

Eachrule is a
Select-Project-Join-Union query

Group by
IDB predicate

Nalve datalog evaluation algorithm:
Example: | Txy) - Rxy)

Pi=P,=...=0 T(x,y) - R(x,2), T(z,y)
Loop
NewP, = SPJU,; NewP, = SPJU,; ...
if (NewP, = P, and NewP, =P, and ...)
then exit
P, = NewP,; P, = NewP,; ...
Endloop

75

Naive Datalog Evaluation
Algorithm

Datalog program:

P, :- body,,U body,,U ... P,:- SPJU,
- P, :- body,,U body,,U ... - P,:- SPJU,

Eachrule is a
Select-Project-Join-Union query

Group by
IDB predicate

Nalve datalog evaluation algorithm:
Example: | Txy) - Rxy)

Pi=P,=...=0 T(xy) - R(x,2), T(z.y)

Loop
NewP, = SPJU,; NewP, = SPJU,; ...
if (NewP, = P, and NewP, =P, and ...)
then exit
P, = NewP,; P, = NewP,; ...
Endloop

= | T(x.y) - R(x,y) U M (R(x,2) @ T(z,y))

76

Naive Datalog Evaluation
Algorithm

Datalog program:

P1 - bOdy11U bOdy12U P1 -
9 P2 .- bOdy21U bOdy22U 9 P2 -

Eachrule is a
Select-Project-Join-U

Group by
IDB predicate

nion query

Nalve datalog evaluation algorithm:
Example: | Txy) - Rxy)

Pi=P,=...=0 T(xy) - R(x,2), T(z.y)
Loop
NewP, = SPJU,; NewP, = SPJU,; ... = [T(xY) - R(Y) U M(R(x,2) = T(z,y))
if (NewP, = P, and NewP, =P, and ...)
then exit LSt
Loop
P, = NewP,; P, = NewP,; ... NewT(x,y) = R(xy) U M(R(x,z) T(z,y))
Endloo if (NewT =T)
p then exit
T = NewT
Endloop

Discussion

* A naive datalog algorithm always
terminates (why?)

— Assuming no functions (+, *, ...)

* A datalog program always runs in
PTIME in the size of the database
(why?)

CSE 544 - Winter 2018

78

Problem with the Naive Algorithm

* The same facts are discovered over and
over again

The semi-naive algorithm tries to
reduce the number of facts discovered
multiple times

CSE 544 - Winter 2018 79

Background: Incremental View
Maintenace

Let V be a view computed by one datalog rule (no recursion)

V :- body '

If (some of) the relations are updated:
R, € R, UAR;, R; € R, UAR,, ...

Then the view is also modified as follows:
V &V UAV

Incremental view maintenance:
Compute AV without having to recompute V

80

Background: Incremental View

Maintenace
Example 1:

V(x,y) :- R(x,z),S(z,y) If R € R UAR then what is AV(x,y) ?

CSE 544 - Winter 2018 81

Background: Incremental View

Maintenace
Example 1:

V(x,y) :- R(x,z),S(z,y) If R € R UAR then what is AV(x,y) ?

AV(x,y) - AR(Xx,2),S(z,y)

CSE 544 - Winter 2018 82

Background: Incremental View

Maintenace
Example 2:

. fR € RUAR and S € S UAS
Vixy) - R(x.2),5(z.y) then what is AV(x,y) ?

CSE 544 - Winter 2018

83

Background: Incremental View

Maintenace
Example 2:

. fR € RUAR and S € S UAS
Vixy) - R(x.2),5(z.y) then what is AV(x,y) ?

AV(x,y) - AR(Xx,2),S(z,y)
AV(x,y) - R(x,z), AS(z,y)
AV(x,y) - AR(x,z), AS(z,y)

CSE 544 - Winter 2018

84

Background: Incremental View

Maintenace
Example 3:

_ If T < T UAT
V(x,y) :- T(x,2),T(z,y) then what is AV(x,y) ?

CSE 544 - Winter 2018

85

Background: Incremental View

Maintenace
Example 3:

_ If T < T UAT
V(x,y) :- T(x,2),T(z,y) then what is AV(x,y) ?

AV(x,y) - AT(x,2),T(z,y)
AV(x,y) - T(x,z), AT(z,)y)
AV(x,y) - AT(x,z), AT(z,y)

CSE 544 - Winter 2018

86

Semi-naive Evaluation Algorithm

Separate the Datalog program into the non-recursive, and the recursive part.
Each P, defined by non-recursive-SPJU, and (recursive-)SPJU..

P, = AP, = non-recursive-SPJU,, P, = AP, = non-recursive-SPJU,, ...
Loop

AP, =ASPJU, - P;; AP, =ASPJU, - P,; ...

if (AP, =@ and AP, =¢ and ...)

then break
P,=P,UAP; P,=P,UAP,; ...
Endloop —
Example: T=AT = ? (non-recursive rule)
Loop
AT(x,y) = ? (recursive A-rule)
if (AT = 9)
then break
T = TUAT

Endloop 87

Semi-naive Evaluation Algorithm

Separate the Datalog program into the non-recursive, and the recursive part.
Each P, defined by non-recursive-SPJU, and (recursive-)SPJU..

P, = AP, = non-recursive-SPJU,, P, = AP, = non-recursive-SPJU,, ...
Loop

AP, =ASPJU, - P;; AP, =ASPJU, - P,; ...

if (AP, =@ and AP, =¢ and ...)

then break
P,=P,UAP; P,=P,UAP,; ...
Endloop ——
Example: T(xy) = R(xy), AT(xy) = R(X.y)
Loop
AT(X,Y) = (R(X’Z) X AT(Z’y)) - R(X’y)
if (AT =)
then break
T = TUAT

Endloop 88

Semi-naive Evaluation Algorithm

Separate the Datalog program into the non-recursive, and the recursive part.
Each P, defined by non-recursive-SPJU, and (recursive-)SPJU..

P, = AP, = non-recursive-SPJU,, P, = AP, = non-recursive-SPJU,, ...
Loop

AP, =ASPJU, - P;; AP, =ASPJU, - P,; ...

if (AP, =@ and AP, =¢ and ...)

then break
P,=P,UAP; P,=P,UAP,; ...
Endloop ——
Example: T(xy) = Rxy), AT(xy) = R(x.y)
Loop
AT(X’y) = (R(X’Z) X AT(Z’y)) - R(X’y)
if (AT = @)

Note: fo_r any linear dgtalog programs, then break
the semi-naive algorithm has only T = TUAT
one A-rule for each rule! Endloop 89

Example

||~

CSE 544 - Winter 2018

90

Example

R= Initially:
1 5 AT= T=
1| 2 1| 2
1 4 1| 4 1| 4
2 1 2 | 1 2 | 1
2 | 3 2 | 3
2 3 3 | 4 3 | 4
3 4 4 | s 4 | 5
4 5

CSE 544 - Winter 2018

T(x,y) = R(x,y), AT(x,y) = R(x,y)
Loop
AT(xy) =
(R(x,z) » AT(z,)y)) — R(x,y)
if (AT = @) break
T =TUAT
Endloop

91

Example

First iteration:

T(x,y) = R(x,y), AT(x,y) = R(x,y)
Loop
AT(xy) =
(R(x,z) » AT(z,)y)) — R(x,y)
if (AT = @) break
T =TUAT
Endloop

R= Initially: 1=
1| 2

—T——] AT= T= e
1] 2 1| 2 AT= 2 | 1

1 4 | 4 4| pathsoff 2 |
2 1 2 1 2 1 |ength 3 4
2 | 3 2 | 3 4 | 5

2 3 3| 4 3| 4 1| 1 1| 1
3 4 4| 5 4 | 5 1] 3 1] 3
4 5 1| s 1| s
2 | 2 2 | 2

2 | 4 2 | 4

3 | s 3| s

92

Example

T(x,y) = R(x,y), AT(x,y) = R(x,y)
Loop
AT(xy) =
(R(x,z) » AT(z,)y)) — R(x,y)
if (AT = @) break
T =TUAT
Endloop

First iteration: Second iteration:

1=

R= Initially: T= BE
112 1| 4
1 2 AT= T= _ 1] 4 2 | 1
1 4 1| 2 1| 2 AT= 2 | 1 NAT= 2 | 3
2 |] fengm] PRns ol
5 3 2 | 3 2 | 3 J 4 | 5 Iength31 1
3| 4 3| 4 1| 1 1] 1 1| 2 1] 3
3 4 4 | 5 4 | 5 1] 3 1] 3 1| 4 1| s
4 5 115 T 15 2 | 1 2 | 2
2 | 2 2 | 2 2 | 3 2 | 4
Z || 5 2 | 4 2 | 5 3|5

3 5 3 5 2 5 93

Example

T(x,y) = R(x,y), AT(x,y) = R(x,y)
Loop
AT(xy) =
(R(x,z) » AT(z,)y)) — R(x,y)
if (AT = @) break

T = TUAT
Endloop
First iteration: Second iteration: Third iteration:
T= 1=
R= Initially: — 1| 2
1| 2 1| 4
1 2 AT= T= _ 1| 4 2 | 1
1 4 1| 2 1] 2 [XT:; 2 | 1 AT= 2 | 3 AT=
tpef pade] pathsolz s | oo of o [paths of
2 1 2 | 2| 1] length 2 2 | 4 BE
. 3 2 | 3 > | 3 ~ 15| length 3 length 4
3 4 3 4 1 1 1 1 1 2 1 3
3 4 4 | 5 4 | 5 1] 3 1] 3 1| 4 1] 5
4 5 1 5 1 5 2 1 2 2
2 | 2 2 | 2 2 | 3 2 | 4
2 4 2 4 2 5 3 5
3 5 3 5 2 5 94

Discussion of Semi-Naive
Algorithm

* Avoids re-computing some tuples, but not all
tuples

« Easy to implement, no disadvantage over naive

« Arule is called linear if its body contains only
one recursive |DB predicate:

— A linear rule always results in a single incremental
rule

— A non-linear rule may result in multiple
iIncremental rules

CSE 544 - Winter 2018 95

Outline

« Datalog rules

* Recursion

* Semantics

* Negation, aggregates, stratification
* Naive and Semi-naive Evaluation

* Connection to RA — on your own

CSE 544 - Winter 2018

96

Datalog v.s. RA (and SQL)

“Pure” datalog has recursion, but no
negation, aggregates: all queries are
monotone; impractical

Datalog without recursion, plus
negation and aggregates expresses the
same queries as RA: next slides

97

R(A,B,C)
S(D,E,F)

" RAto Datalog by Examples

Union:
R(A,B,C) u S(D,E,F)

U(x,y,z) - R(X,y,z)
U(x,y,z) :- S(X,Y,z)

CSE 544 - Winter 2018

98

R(A,B,C)
S(D,E,F)

" RAto Datalog by Examples

Intersection:
R(A,B,C) N S(D,E,F)

l(X,y,2) :- R(X,y,z), S(X,Y,2)

CSE 544 - Winter 2018

99

R(A,B,C)
S(D,E,F)

" RAto Datalog by Examples

Selection: 6,.10g ang y=foo’ (R)
L(X,y,2) - R(X,y,z), x > 100, y=foo’

Selection: 6,.1gg or y=oo’ (R)

L(X,y,2) - R(X,y,z), x> 100
L(X,y,z) :- R(X,y,z), y="fo0’

CSE 544 - Winter 2018 100

R(A,B,C)
S(D,E,F)

" RAto Datalog by Examples

Equi-join: R D<Ig o=s.p and R.B=S.E O

J(X,y,Z,CI) . R(va’z)’ S(va’q)

CSE 544 - Winter 2018 101

R(A,B,C)
S(D,E,F)

" RAto Datalog by Examples
Projection: T[1,(R)

P(x) :- R(x,y,z)

CSE 544 - Winter 2018 102

R(A,B,C)
S(D,E,F)

" RAto Datalog by Examples

To express difference, we add negation
R-S

D(x,y,z) :- R(x,y,z), NOT S(x,y,z)

CSE 544 - Winter 2018 103

R(A,B,C)
S(D,E,F)
T(G,H)

Examples

Translate: I1,(ocg-3 (R))
A(a) - R(a,3,)

Underscore used to denote an "anonymous variable”
Each such variable is unique

CSE 544 - Winter 2018 104

R(A,B,C)
S(D,E,F)
T(G,H)

Examples

Translate: I1,(cg=3 (R) ™Rg a=sp O€=5 (S))

A(a) :- R(a,3,), S(a,5,)
N

These are different “ s

CSE 544 - Winter 2018 105

Friend(name1, name2)
Enemy(name1, name2)

More Examples w/o Recursion

Find Joe's friends, and Joe's friends of friends.

A(x) :- Friend('Joe’, x)
A(x) :- Friend('Joe', z), Friend(z, x)

CSE 544 - Winter 2018 106

Friend(name1, name2)
Enemy(name1, name2)

More Examples w/o Recursion

Find all of Joe's friends who do not have any
friends except for Joe:

JoeFriends(x) :- Friend('Joe',x)
NonAns(x) :- JoeFriends(x), Friend(x,y), y != ‘Joe€’
A(x) :- JoeFriends(x), NOT NonAns(x)

CSE 544 - Winter 2018 107

Friend(name1, name2)
Enemy(name1, name2)

More Examples w/o Recursion

Find all people such that all their enemies’
enemies are their friends

« Q:if someone doesn't have any enemies nor friends,
do we want them in the answer?

 A:Yes!
Everyone(x) :- Friend(x,y)
Everyone(x) :- Friend(y,x)
Everyone(x) :- Enemy(x,y)
Everyone(x) :- Enemy(y,x)
NonAns(x) :- Enemy(x,y),Enemy(y,z), NOT Friend(x,z)
A(x) :- Everyone(x), NOT NonAns(x) 108

Friend(name1, name2)
Enemy(name1, name2)

More Examples w/o Recursion

Find all persons x that have a friend all of whose
enemies are x's enemies.

Everyone(x) :- Friend(x,y)
NonAns(x) :- Friend(x,y) Enemy(y,z), NOT Enemy(x,z)
A(x) :- Everyone(x), NOT NonAns(x)

CSE 544 - Winter 2018 109

ParentChild(p,c)

More Examples w/ Recursion

* Two people are in the same generation
iIf they are siblings, or if they have
parents in the same generation

* Find all persons in the same generation
with Alice

CSE 544 - Winter 2018 110

ParentChild(p,c)

More Examples w/ Recursion

* Find all persons in the same generation
with Alice

» Let's compute SG(x,y) = “x,y are in the
same generation”

SG(x,y) :- ParentChild(p,x), ParentChild(p,y)
SG(x,y) :- ParentChild(p,x), ParentChild(q,y), SG(p,q)
Answer(x) :- SG(“Alice”, x)

CSE 544 - Winter 2018 111

Datalog Summary

EDB (base relations) and IDB (derived
relations)

Datalog program = set of rules
Datalog is recursive

Some reminders about semantics:
— Multiple atoms in a rule mean join (or intersection)
— Variables with the same name are join variables

— Multiple rules with same head mean union
CSE 544 - Winter 2018 112

Datalog and SQL

» Stratified data (w/ recursion, w/o +,*,...):
expresses precisely” queries in PTIME

— Cannot find a Hamiltonian cycle (why?)
 SQL has also been extended to express
recursive queries:

— Use a recursive “with” clause, also CTE
(Common Table Expression)

— Often with bizarre restrictions...
— ... Just use datalog

* need to use the < predicate

