
CSE 544
Principles of Database Management

Systems
Lectures 6: Datalog (2)

CSE 544 - Winter 2018 1

Reminders

•  This Friday: project proposals due (turnin using git)

•  Monday: paper review due (12h before lecture)

•  Next Friday: brief meetings to discuss your project

•  Next Friday: hw2 due

CSE 544 - Winter 2018 2

Suggested Readings for Datalog

•  Joe Hellerstein, “The Declarative Imperative,”
SIGMOD Record 2010

•  R&G Chapter 24

•  Phokion Kolaitis’ tutorial on database theory at Simon’s
https://simons.berkeley.edu/sites/default/files/docs/5241/
simons16-21.pdf

•  Daniel Zinn, Todd J. Green, Bertram Ludäscher: Win-
move is coordination-free (sometimes). ICDT 2012

Review

•  What is datalog?

•  What is the naïve evaluation algorithm?

•  What is the seminaive algorithm?

Outline

•  Semi-joins

•  Semi-join reduction

•  Acyclic queries

•  Magic sets

CSE 544 - Winter 2018 5

Cost of Computing a Query

•  Suppose |R| = |S| = n

•  What is the cost of a join R ⨝ S?

 q(x,y,z) = R(x,y), S(y,z)

•  Algorithms (discuss in class):

Cost of Computing a Query

•  Suppose |R| = |S| = n

•  What is the cost of a join R ⨝ S?

 q(x,y,z) = R(x,y), S(y,z)

•  Algorithms (discuss in class):

–  Nested loop join
–  Hash join
–  Merge join

Cost of Computing a Query

•  Suppose |R| = |S| = n

•  What is the cost of a join R ⨝ S?

 q(x,y,z) = R(x,y), S(y,z)

•  Algorithms (discuss in class):

–  Nested loop join O(n2)
–  Hash join O(n) ... O(n2)
–  Merge join O(n log n) ... O(n2)

Key / foreign-key
join General case

Cost of Computing a Query

•  Suppose |R| = |S| = |T| = |K| = n

•  What is the complexity of computing these queries?

Q1(x,y,z) = R(x,y), S(y,z) O(n2)

9

Cost of Computing a Query

•  Suppose |R| = |S| = |T| = |K| = n

•  What is the complexity of computing these queries?

Q1(x,y,z) = R(x,y), S(y,z) O(n2)

Q2(x,y,z,u) = R(x,y),S(y,z),T(z,u)

10

Cost of Computing a Query

•  Suppose |R| = |S| = |T| = |K| = n

•  What is the complexity of computing these queries?

Q1(x,y,z) = R(x,y), S(y,z) O(n2)

Q2(x,y,z,u) = R(x,y),S(y,z),T(z,u) O(n3)

11

Cost of Computing a Query

•  Suppose |R| = |S| = |T| = |K| = n

•  What is the complexity of computing these queries?

Q1(x,y,z) = R(x,y), S(y,z) O(n2)

Q2(x,y,z,u) = R(x,y),S(y,z),T(z,u) O(n3)

Q3(x,y,z,u,v) = R(x,y),S(y,z),T(z,u),K(u,v)

12

Cost of Computing a Query

•  Suppose |R| = |S| = |T| = |K| = n

•  What is the complexity of computing these queries?

Q1(x,y,z) = R(x,y), S(y,z) O(n2)

Q2(x,y,z,u) = R(x,y),S(y,z),T(z,u) O(n3)

Q3(x,y,z,u,v) = R(x,y),S(y,z),T(z,u),K(u,v) O(n4)

13

Cost of Computing a Query

•  Suppose |R| = |S| = |T| = |K| = n

•  What is the complexity of computing these queries?

Q1(x,y,z) = R(x,y), S(y,z) O(n2)

Q2(x,y,z,u) = R(x,y),S(y,z),T(z,u) O(n3)

Q3(x,y,z,u,v) = R(x,y),S(y,z),T(z,u),K(u,v) O(n4)

14
Ideally cost: O(|Input| + |Output|)

Cost of Computing a Query

•  Naïve computation often exceeds this bound
•  Q(x,y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

⨝

T

R

⨝

K ⨝

S

σx=‘a’

σx=‘b’

Cost of Computing a Query

•  Naïve computation often exceeds this bound
•  Q(x,y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

R = {‘a’}×{1,...,n/2}
S = {1,...,n/2}×{‘a’}∪{n/2+1,...,n}×{‘b’}
T = {‘a’}×{1,...,n/2}∪{‘b’}×{n/2+1,...,n}
K = {n/2+1,...,n}×{‘b’} ⨝

T

R

⨝

K ⨝

S

σx=‘a’

σx=‘b’

1
2
...
...

n/2
n/2+1

...

...
n

‘a’

‘b’

‘a’

1
2
...
...

n/2
n/2+1

...

...
n

‘b’

R
S T K

Cost of Computing a Query

•  Naïve computation often exceeds this bound
•  Q(x,y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

R = {‘a’}×{1,...,n/2}
S = {1,...,n/2}×{‘a’}∪{n/2+1,...,n}×{‘b’}
T = {‘a’}×{1,...,n/2}∪{‘b’}×{n/2+1,...,n}
K = {n/2+1,...,n}×{‘b’} ⨝

T

R

⨝

K ⨝

S

σx=‘a’

σx=‘b’

1
2
...
...

n/2
n/2+1

...

...
n

‘a’

‘b’

‘a’

1
2
...
...

n/2
n/2+1

...

...
n

‘b’

R
S T K

Size = O(n2)
“dangling tuples”

Size = 0

Cost ≠ O(|Input| + |Output|)

The Semijoin Operator

CSE 544 - Winter 2018 18

Definition: the semi-join operation is
 R ⋉ S = ΠAttr(R)(R ⨝ S)

Properties of Semijoins

•  R(A,B) ⋉ S(B,C) same as Q(A,B) :- R(A,B),S(B,C)

•  Cost: O(|R| + |S|) (ignoring log-factors)

•  Cost is independent on the join output

•  The law of semijoins is:

R ⨝ S = (R ⋉ S) ⨝ S

Consequence: we can perform a semi-join before a join

Outline

•  Semi-joins

•  Semi-join reduction

•  Acyclic queries

•  Magic sets

CSE 544 - Winter 2018 20

Semijoin Optimizations

•  In parallel databases: often combined with Bloom Filters
(pp. 747 in the textbook)

•  Magic sets for datalog were invented after semi-join
reductions, and the connection became clear only later

•  Some complex semi-join reductions for non-recursive
SQL optimizations are sometimes called “magic sets”

CSE 544 - Winter 2018 21

22

Semijoin Reducer

•  Given a query:

•  A semijoin reducer for Q is

such that the query is equivalent to:

•  A full reducer is such that no dangling tuples remain

Q = Rk1 ⨝ Rk2 ⨝ . . . ⨝ Rkn

Ri1 = Ri1 ⋉ Rj1
Ri2 = Ri2 ⋉ Rj2

.
Rip = Rip ⋉ Rjp

CSE 544 - Winter 2018

Q = R1 ⨝ R2 ⨝ . . . ⨝ Rn

23

Example

•  Example:

•  A semijoin reducer is:

•  The rewritten query is:

Q = R(A,B) ⨝ S(B,C)

R1(A,B) = R(A,B) ⋉ S(B,C)

Q = R1(A,B) ⨝ S(B,C)

24

Semijoin Reducer

•  More complex example:

•  Find a full reducer
Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

25

Semijoin Reducer

•  More complex example:

•  Find a full reducer
Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

K(u,’b’)

T(z,u)

S(y,z)

R(‘a’, y)

26

Semijoin Reducer

•  More complex example:

•  Find a full reducer
Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

S’(y,z) :- S(y,z) ⋉ R(‘a’, y)
T’(z,u) :- T(z,u) ⋉ S’(y,z)
K’(u) :- K(u,’b’) ⋉ T’(z,u)
T’’(z,u) :- T’(z,u) ⋉ K’(u)
S’’(y,z) :- S’(y,z) ⋉ T’’(z,u)
R’’(y) :- R(‘a’,y) ⋉ S’’(y,z)

K(u,’b’)

T(z,u)

S(y,z)

R(‘a’, y)

27

Semijoin Reducer

•  More complex example:

•  Find a full reducer

•  Finally, compute:

Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

S’(y,z) :- S(y,z) ⋉ R(‘a’, y)
T’(z,u) :- T(z,u) ⋉ S’(y,z)
K’(u) :- K(u,’b’) ⋉ T’(z,u)
T’’(z,u) :- T’(z,u) ⋉ K’(u)
S’’(y,z) :- S’(y,z) ⋉ T’’(z,u)
R’’(y) :- R(‘a’,y) ⋉ S’’(y,z)

Q(y,z,u) = R’’(y), S’’(y,z), T’’(z,u), K’’(u)

K(u,’b’)

T(z,u)

S(y,z)

R(‘a’, y)

Practice at Home...

•  Find semi-join reducer for
R(x,y),S(y,z),T(z,u),K(u,v),L(v,w)

CSE 544 - Winter 2018 28

29

Not All Queries Have Full Reducers

•  Example:

•  Can write many different semi-join reducers

•  But no full reducer of length O(1) exists

Q = R(A,B) ⨝ S(B,C) ⨝ T(A,C)

Outline

•  Semi-joins

•  Semi-join reduction

•  Acyclic queries

•  Magic sets

CSE 544 - Winter 2018 30

Acyclic Queries

•  Fix a Conjunctive Query without self-joins

•  Q is acyclic if its atoms can be organized in a tree
such that for every variable the set of nodes that
contain that variable form a connected component

CSE 544 - Winter 2018 31

R(x,y)

S(y,z,u)

T(y,z,w)

K(z,v)

L(v,m)

R(x,y)

S(y,z)
T(z,x)

Acyclic R(x,y),S(y,z),T(z,x)
is cyclic

Yannakakis Algorithm

•  Given: acyclic query Q
•  Compute Q on any database in time O(|Input|+|Output|)

•  Step 1: semi-join reduction
–  Pick any root node x in the tree decomposition of Q
–  Do a semi-join reduction sweep from the leaves to x
–  Do a semi-join reduction sweep from x to the leaves

•  Step 2: compute the joins bottom up, with early
projections

CSE 544 - Winter 2018 32

Examples in Class

•  Boolean query: Q() :- ...

•  Non-boolean: Q(x,m) :- ...

•  With aggregate: Q(x,sum(m)) :- ...

•  And also: Q(x,count(*)) :- ...

R(x,y)

S(y,z,u)

T(y,z,w)

K(z,v)

L(v,m)

In all cases: runtime = O(|R|+|S|+...+|L| + |Output|)

Testing if Q is Acyclic

•  An ear of Q is an atom R(X) with the following property:
–  Let X’ ⊆ X be the set of join variables (meaning: they occur in at

least one other atom)
–  There exists some other atom S(Y) such that X’ ⊆ Y

•  The GYO algorithm (Graham,Yu,Özsoyoğlu) for testing if
Q is acyclic:
–  While Q has an ear R(X), remove the atom R(X) from the query
–  If all atoms were removed, then Q is acyclic
–  If atoms remain but there is no ear, then Q is cyclic

•  Show example in class
CSE 544 - Winter 2018 34

Outline

•  Semi-joins

•  Semi-join reduction

•  Acyclic queries

•  Magic sets

CSE 544 - Winter 2018 35

Magic Sets

•  Problem: datalog programs compute a lot,
but sometimes we need only very little

•  Prolog computes top-down and retrieves very little
datalog computes bottom up retrieves a lot

•  (Prolog has other issues: left recursive prolog never
terminates!)

•  Magic sets transform a datalog program P into a new
program P’, such that bottom-up(P’) = top-down(P)

CSE 544 - Winter 2018 36

Example 1

CSE 544 - Winter 2018 37

T(x,y) :- E(x,y)
T(x,y) :- T(x,z),E(z,y)
Q(y) :- T(3,y)

a constant

1

2

4

3

5
R encodes a graph

Bottom-up evaluation
very inefficient

Example 1

CSE 544 - Winter 2018 38

T(x,y) :- E(x,y)
T(x,y) :- T(x,z),E(z,y)
Q(y) :- T(3,y)

a constant

1

2

4

3

5
R encodes a graph

Bottom-up evaluation
very inefficient

Manual optimization:

Q(y) :- E(3,y)
Q(y) :- Q(x),E(x,y)

Example 2

CSE 544 - Winter 2018 39

SG(x,x) :- V(x)
SG(x,y) :- Up(x,u),SG(u,v),Dn(u,y)
Q(y) :- SG(1,y)

If we define
Up(a,b) = E(b,a)
Dn(a,b) = E(a,b)
then SG = “same generation”

1

2

4

3

5
R encodes a graph

Same generation

Manual optimization???

Magic Set Rewriting (simplified)

•  For each IDB predicate create “adorned” versions, with
binding patters

•  For each adorned IDB P, create a predicate MagicP
•  For each rule, create several rules, one for each possible

adornment of the head:
–  Allow information to flow left-to-right (“sideways information

passing”), and this defines the required adornments of the IDB’s
in the body

–  If there are k IDB’s in the body, create k+1 supplementary
relations Suppi, which guard the set of bound variables passed
on to the i’th IDB

•  New rules defining MagicP: one for the query, and one for
each Suppi preceding an occurrence of P in a body 40

Adorned predicate

•  b=bound, f=free
•  Tbf(x,y) means:

–  The values of x are known
–  The values of y are not known (need to be retrieved)

•  Need to create all combinations: Tbf, Tfb

•  Side-ways information passing means that we adorn
rules allowing information to flow left-to-right

–  E.g. T(x,y) :- E(x,u),T(u,v),E(v,w),T(w,z),E(z,y)

–  Adorned: Tbf(x,y) :- E(x,u),Tbf(u,v),E(v,w),Tbf(w,z),E(z,y)

Supplementary Relations

•  Given adornment Tbf(x,y), a new predicate Supp(x)
contains the (small!) set of values x for which we want to
compute Tbf(x,y)

•  E.g. Tbf(x,y) :- E(x,u),Tbf(u,v),E(v,w),Tbf(w,z),E(z,y)

CSE 544 - Winter 2018 42

Supp0(x)
Supp1(x,u)

Supp2(x,w)
Supp3(x,y)

Supp Rules

•  E.g. Tbf(x,y) :- E(x,u),Tbf(u,v),E(v,w),Tbf(w,z),E(z,y)

Becomes:
•  Supp0(x) :- MagicTbf(x) /* next slide … */
•  Supp1(x,u) :- Supp0(x), E(x,u)
•  Supp2(x,w) :- Supp1(x,u), Tbf(u,v),E(v,w)
•  Supp3(x,y) :- Supp2(x,w), Tbf(w,z),E(z,y)
•  Tbf(x,y) :- Supp3(x,y)

Supp0(x)
Supp1(x,u)

Supp2(x,w)
Supp3(x,y)

Supp0 and Supp3
are redundant

Adding the Magic Predicate

•  E.g. Tbf(x,y) :- E(x,u),Tbf(u,v),E(v,w),Tbf(w,z),E(z,y)

•  MagicTbf(x) = the set of bounded values of x for which we
need to compute Tbf(x,y)

•  E.g.
–  MagicTbf(3) :- /* if the query is Q(y) :- T(3,y) */
–  MagicTbf(u) :- Supp1(x,u) /* need to compute Tbf(u,v) */
–  MagicTbf(w) :- Supp2(x,w) /* need to compute Tbf(w,z) */

Supp0(x)
Supp1(x,u)

Supp2(x,w)
Supp3(x,y)

Example 1

CSE 544 - Winter 2018 45

T(x,y) :- E(x,y)
T(x,y) :- T(x,z),E(z,y)
Q(y) :- T(3,y)

1

2

4

3

5
R encodes a graph

Magic Sets

Original:

Adorned:

Example 1

CSE 544 - Winter 2018 46

T(x,y) :- E(x,y)
T(x,y) :- T(x,z),E(z,y)
Q(y) :- T(3,y)

1

2

4

3

5
R encodes a graph

Magic Sets

Tbf(x,y) :- E(x,y)
Tbf(x,y) :- Tbf(x,z),E(z,y)
Q(y) :- Tbf(3,y)

Original:

Adorned:

Example 1

47

T(x,y) :- E(x,y)
T(x,y) :- T(x,z),E(z,y)
Q(y) :- T(3,y)

1

2

4

3

5
R encodes a graph

Magic Sets
/* T(x,y) :- E(x,y) */
Supp0(x) :- MagicTbf(x)
Supp1(x,y) :- Supp0(x),E(x,y)
Tbf(x,y) :- Supp1(x,y)

/* T(x,y) :- T(x,z),E(z,y) */
Supp’0(x) :- MagicTbf(x)
Supp’1(x,z) :- Supp’0(x), Tbf(x,z)
Supp’2(x,y) :- Supp’1(x,z), E(z,y)
Tbf(x,y) :- Supp’2(x,y)

/* Q(y) :- T(3,y) */
MagicTbf(3) :-
MagicTbf(x) :- Supp’0(x) /* redundant */

Tbf(x,y) :- E(x,y)
Tbf(x,y) :- Tbf(x,z),E(z,y)
Q(y) :- Tbf(3,y)

Original:

Adorned:

Practice at home

48

T(x,y) :- E(x,y)
T(x,y) :- T(x,z),E(z,y)
Q(y) :- T(3,y)

1

2

4

3

5
R encodes a graph

T(x,y) :- E(x,y)
T(x,y) :- E(x,z),T(z,y)
Q(y) :- T(3,y)

T(x,y) :- E(x,y)
T(x,y) :- T(x,z),T(z,y)
Q(y) :- T(3,y)

We saw this

