
CSE 544 
Principles of Database Management 

Systems 
Lectures 6: Datalog (2) 
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Reminders 

•  This Friday: project proposals due (turnin using git) 

•  Monday: paper review due (12h before lecture) 

•  Next Friday: brief meetings to discuss your project 

•  Next Friday: hw2 due 
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Suggested Readings for Datalog 

•  Joe Hellerstein, “The Declarative Imperative,” 
SIGMOD Record 2010 

•  R&G Chapter 24 

•  Phokion Kolaitis’ tutorial on database theory at Simon’s 
https://simons.berkeley.edu/sites/default/files/docs/5241/
simons16-21.pdf  

•  Daniel Zinn, Todd J. Green, Bertram Ludäscher: Win-
move is coordination-free (sometimes). ICDT 2012 



Review 

•  What is datalog? 

•  What is the naïve evaluation algorithm? 

•  What is the seminaive algorithm? 



Outline 

•  Semi-joins 

•  Semi-join reduction 

•  Acyclic queries 

•  Magic sets 
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Cost of Computing a Query 

•  Suppose |R| = |S| = n 

•  What is the cost of a join R ⨝ S? 
 

  q(x,y,z) = R(x,y), S(y,z) 
 
•  Algorithms (discuss in class): 
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•  What is the cost of a join R ⨝ S? 
 

  q(x,y,z) = R(x,y), S(y,z) 
 
•  Algorithms (discuss in class): 

–  Nested loop join 
–  Hash join 
–  Merge join 



Cost of Computing a Query 

•  Suppose |R| = |S| = n 

•  What is the cost of a join R ⨝ S? 
 

  q(x,y,z) = R(x,y), S(y,z) 
 
•  Algorithms (discuss in class): 

–  Nested loop join    O(n2) 
–  Hash join    O(n) ... O(n2) 
–  Merge join    O(n log n) ... O(n2) 

Key / foreign-key 
join General case 
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Cost of Computing a Query 

•  Suppose |R| = |S| = |T| = |K| = n 

•  What is the complexity of computing these queries? 
 
Q1(x,y,z) = R(x,y), S(y,z)     O(n2) 
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Cost of Computing a Query 

•  Naïve computation often exceeds this bound 
•  Q(x,y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)  
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•  Naïve computation often exceeds this bound 
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Size = O(n2) 
“dangling tuples” 

Size = 0 

Cost ≠ O(|Input|  + |Output|) 



The Semijoin Operator 
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Definition: the semi-join operation is 
 R ⋉ S  = ΠAttr(R)(R  ⨝  S) 



Properties of Semijoins 

•  R(A,B) ⋉ S(B,C)  same as Q(A,B) :- R(A,B),S(B,C) 

•  Cost: O(|R| + |S|)  (ignoring log-factors) 

•  Cost is independent on the join output 

•  The law of semijoins is: 

R  ⨝  S = (R ⋉ S)  ⨝  S 

Consequence: we can perform a semi-join before a join 



Outline 

•  Semi-joins 

•  Semi-join reduction 

•  Acyclic queries 

•  Magic sets 
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Semijoin Optimizations 

•  In parallel databases: often combined with Bloom Filters 
(pp. 747 in the textbook) 

•  Magic sets for datalog were invented after semi-join 
reductions, and the connection became clear only later 

•  Some complex semi-join reductions for non-recursive 
SQL optimizations are sometimes called “magic sets” 
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Semijoin Reducer 

•  Given a query: 

•  A semijoin reducer for Q is  
 
 
 
such that the query is equivalent to: 

•  A full reducer is such that no dangling tuples remain 

Q =  Rk1  ⨝ Rk2 ⨝ . . . ⨝ Rkn  

Ri1  = Ri1 ⋉  Rj1 
Ri2  = Ri2 ⋉  Rj2 

. . . . . 
Rip  = Rip ⋉  Rjp 
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Q =  R1  ⨝ R2 ⨝ . . . ⨝ Rn 



23 

Example 

•  Example: 

•  A semijoin reducer is: 

•  The rewritten query is: 

Q = R(A,B) ⨝ S(B,C) 

R1(A,B) = R(A,B) ⋉ S(B,C) 

Q = R1(A,B) ⨝ S(B,C) 
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Semijoin Reducer 

•  More complex example: 

•  Find a full reducer 
Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)  
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Semijoin Reducer 

•  More complex example: 

•  Find a full reducer 
Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)  

K(u,’b’) 

T(z,u) 

S(y,z) 

R(‘a’, y) 
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Semijoin Reducer 

•  More complex example: 

•  Find a full reducer 
Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)  

S’(y,z) :- S(y,z) ⋉ R(‘a’, y) 
T’(z,u) :- T(z,u) ⋉ S’(y,z) 
K’(u) :-  K(u,’b’) ⋉ T’(z,u) 
T’’(z,u) :- T’(z,u) ⋉ K’(u) 
S’’(y,z) :- S’(y,z) ⋉ T’’(z,u) 
R’’(y) :- R(‘a’,y) ⋉ S’’(y,z) 

K(u,’b’) 

T(z,u) 

S(y,z) 

R(‘a’, y) 
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Semijoin Reducer 

•  More complex example: 

•  Find a full reducer 

•  Finally, compute: 

Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)  

S’(y,z) :- S(y,z) ⋉ R(‘a’, y) 
T’(z,u) :- T(z,u) ⋉ S’(y,z) 
K’(u) :-  K(u,’b’) ⋉ T’(z,u) 
T’’(z,u) :- T’(z,u) ⋉ K’(u) 
S’’(y,z) :- S’(y,z) ⋉ T’’(z,u) 
R’’(y) :- R(‘a’,y) ⋉ S’’(y,z) 

Q(y,z,u) = R’’(y), S’’(y,z), T’’(z,u), K’’(u)  

K(u,’b’) 

T(z,u) 

S(y,z) 

R(‘a’, y) 



Practice at Home... 

•  Find semi-join reducer for 
R(x,y),S(y,z),T(z,u),K(u,v),L(v,w) 
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Not All Queries Have Full Reducers 

•  Example:  

•  Can write many different semi-join reducers 

•  But no full reducer of length O(1) exists 

Q = R(A,B) ⨝ S(B,C) ⨝ T(A,C) 



Outline 

•  Semi-joins 

•  Semi-join reduction 

•  Acyclic queries 

•  Magic sets 
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Acyclic Queries 

•  Fix a Conjunctive Query without self-joins 

•  Q is acyclic if its atoms can be organized in a tree 
such that for every variable the set of nodes that 
contain that variable form a connected component 
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R(x,y) 

S(y,z,u) 

T(y,z,w) 

K(z,v) 

L(v,m) 

R(x,y) 

S(y,z) 
T(z,x) 

Acyclic R(x,y),S(y,z),T(z,x) 
is cyclic 



Yannakakis Algorithm 

•  Given: acyclic query Q 
•  Compute Q on any database in time O(|Input|+|Output|) 

•  Step 1: semi-join reduction 
–  Pick any root node x in the tree decomposition of Q 
–  Do a semi-join reduction sweep from the leaves to x 
–  Do a semi-join reduction sweep from x to the leaves 

•  Step 2: compute the joins bottom up, with early 
projections 
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Examples in Class 

•  Boolean query: Q() :- ... 

•  Non-boolean: Q(x,m) :- ... 

•  With aggregate: Q(x,sum(m)) :- ... 

•  And also:  Q(x,count(*)) :- ... 

R(x,y) 

S(y,z,u) 

T(y,z,w) 

K(z,v) 

L(v,m) 

In all cases: runtime = O(|R|+|S|+...+|L| +  |Output|) 



Testing if Q is Acyclic 

•  An ear of Q is an atom R(X) with the following property: 
–  Let X’ ⊆ X  be the set of join variables (meaning: they occur in at 

least one other atom) 
–  There exists some other atom S(Y) such that X’ ⊆ Y 

•  The GYO algorithm (Graham,Yu,Özsoyoğlu) for testing if 
Q is acyclic: 
–  While Q has an ear R(X), remove the atom R(X) from the query 
–  If all atoms were removed, then Q is acyclic 
–  If atoms remain but there is no ear, then Q is cyclic 

•  Show example in class 
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Outline 

•  Semi-joins 

•  Semi-join reduction 

•  Acyclic queries 

•  Magic sets 
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Magic Sets 

•  Problem: datalog programs compute a lot, 
but sometimes we need only very little 

•  Prolog computes top-down and retrieves very little 
datalog computes bottom up retrieves a lot 

•  (Prolog has other issues: left recursive prolog never 
terminates!) 

•  Magic sets transform a datalog program P into a new 
program P’, such that bottom-up(P’) = top-down(P) 
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Example 1 
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T(x,y) :- E(x,y) 
T(x,y) :- T(x,z),E(z,y) 
Q(y)   :- T(3,y) 

a constant 

1 

2 

4 

3 

5 
R encodes a graph 

Bottom-up evaluation 
very inefficient 



Example 1 
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T(x,y) :- E(x,y) 
T(x,y) :- T(x,z),E(z,y) 
Q(y)   :- T(3,y) 

a constant 

1 

2 

4 

3 

5 
R encodes a graph 

Bottom-up evaluation 
very inefficient 

Manual optimization: 

Q(y) :- E(3,y) 
Q(y) :- Q(x),E(x,y) 



Example 2 
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SG(x,x) :- V(x) 
SG(x,y) :- Up(x,u),SG(u,v),Dn(u,y) 
Q(y) :- SG(1,y) 

If we define 
Up(a,b) = E(b,a) 
Dn(a,b) = E(a,b) 
then SG = “same generation” 

1 

2 

4 

3 

5 
R encodes a graph 

Same generation 

Manual optimization??? 



Magic Set Rewriting (simplified) 

•  For each IDB predicate create “adorned” versions, with 
binding patters 

•  For each adorned IDB P, create a predicate MagicP 
•  For each rule, create several rules, one for each possible 

adornment of the head: 
–  Allow information to flow left-to-right (“sideways information 

passing”), and this defines the required adornments of the IDB’s 
in the body 

–  If there are k IDB’s in the body, create k+1 supplementary 
relations Suppi, which guard the set of bound variables passed 
on to the i’th IDB 

•  New rules defining MagicP: one for the query, and one for 
each Suppi preceding an occurrence of P in a body 40 



Adorned predicate 

•  b=bound, f=free 
•  Tbf(x,y) means: 

–  The values of x are known 
–  The values of y are not known (need to be retrieved) 

•  Need to create all combinations: Tbf, Tfb 

•  Side-ways information passing means that we adorn 
rules allowing information to flow left-to-right 

–  E.g.  T(x,y) :- E(x,u),T(u,v),E(v,w),T(w,z),E(z,y) 

–  Adorned: Tbf(x,y) :- E(x,u),Tbf(u,v),E(v,w),Tbf(w,z),E(z,y) 



Supplementary Relations 

•  Given adornment Tbf(x,y),  a new predicate Supp(x) 
contains the (small!) set of values x for which we want to 
compute Tbf(x,y) 

•  E.g. Tbf(x,y) :- E(x,u),Tbf(u,v),E(v,w),Tbf(w,z),E(z,y) 
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Supp0(x) 
Supp1(x,u) 

Supp2(x,w) 
Supp3(x,y) 



Supp Rules 

•  E.g. Tbf(x,y) :- E(x,u),Tbf(u,v),E(v,w),Tbf(w,z),E(z,y) 

Becomes: 
•  Supp0(x) :- MagicTbf(x)   /* next slide … */ 
•  Supp1(x,u) :- Supp0(x), E(x,u) 
•  Supp2(x,w) :- Supp1(x,u), Tbf(u,v),E(v,w) 
•  Supp3(x,y) :- Supp2(x,w), Tbf(w,z),E(z,y) 
•  Tbf(x,y) :- Supp3(x,y) 

Supp0(x) 
Supp1(x,u) 

Supp2(x,w) 
Supp3(x,y) 

Supp0 and Supp3 
are redundant 



Adding the Magic Predicate 

•  E.g. Tbf(x,y) :- E(x,u),Tbf(u,v),E(v,w),Tbf(w,z),E(z,y) 

•  MagicTbf(x) = the set of bounded values of x for which we 
need to compute Tbf(x,y) 

•  E.g. 
–  MagicTbf(3) :-   /* if the query is Q(y) :- T(3,y)  */ 
–  MagicTbf(u) :- Supp1(x,u)  /* need to compute Tbf(u,v) */ 
–  MagicTbf(w) :- Supp2(x,w)  /* need to compute Tbf(w,z) */ 

Supp0(x) 
Supp1(x,u) 

Supp2(x,w) 
Supp3(x,y) 



Example 1 
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T(x,y) :- E(x,y) 
T(x,y) :- T(x,z),E(z,y) 
Q(y)   :- T(3,y) 

1 

2 

4 

3 

5 
R encodes a graph 

Magic Sets 

Original: 

Adorned: 



Example 1 
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T(x,y) :- E(x,y) 
T(x,y) :- T(x,z),E(z,y) 
Q(y)   :- T(3,y) 

1 

2 

4 

3 

5 
R encodes a graph 

Magic Sets 

Tbf(x,y) :- E(x,y) 
Tbf(x,y) :- Tbf(x,z),E(z,y) 
Q(y)   :- Tbf(3,y) 

Original: 

Adorned: 



Example 1 
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T(x,y) :- E(x,y) 
T(x,y) :- T(x,z),E(z,y) 
Q(y)   :- T(3,y) 

1 

2 

4 

3 

5 
R encodes a graph 

Magic Sets 
/* T(x,y) :- E(x,y) */ 
Supp0(x) :- MagicTbf(x) 
Supp1(x,y) :- Supp0(x),E(x,y) 
Tbf(x,y) :- Supp1(x,y) 
 
/* T(x,y) :- T(x,z),E(z,y) */ 
Supp’0(x) :- MagicTbf(x) 
Supp’1(x,z) :- Supp’0(x), Tbf(x,z) 
Supp’2(x,y) :- Supp’1(x,z), E(z,y) 
Tbf(x,y) :- Supp’2(x,y) 
 
/* Q(y)   :- T(3,y) */ 
MagicTbf(3) :- 
MagicTbf(x) :- Supp’0(x)  /* redundant */ 

Tbf(x,y) :- E(x,y) 
Tbf(x,y) :- Tbf(x,z),E(z,y) 
Q(y)   :- Tbf(3,y) 

Original: 

Adorned: 



Practice at home 
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T(x,y) :- E(x,y) 
T(x,y) :- T(x,z),E(z,y) 
Q(y)   :- T(3,y) 

1 

2 

4 

3 

5 
R encodes a graph 

T(x,y) :- E(x,y) 
T(x,y) :- E(x,z),T(z,y) 
Q(y)   :- T(3,y) 

T(x,y) :- E(x,y) 
T(x,y) :- T(x,z),T(z,y) 
Q(y)   :- T(3,y) 

We saw this 


