CSE 544 Principles of Database Management Systems

Lectures 6: Datalog (2)

Reminders

- This Friday: project proposals due (turnin using git)
- Monday: paper review due (12h before lecture)
- Next Friday: brief meetings to discuss your project
- Next Friday: hw2 due

Suggested Readings for Datalog

- Joe Hellerstein, "The Declarative Imperative," SIGMOD Record 2010
- R&G Chapter 24
- Phokion Kolaitis' tutorial on database theory at Simon's https://simons.berkeley.edu/sites/default/files/docs/5241/simons16-21.pdf
- Daniel Zinn, Todd J. Green, Bertram Ludäscher: Winmove is coordination-free (sometimes). ICDT 2012

Review

- What is datalog?
- What is the naïve evaluation algorithm?
- What is the seminaive algorithm?

Outline

- Semi-joins
- Semi-join reduction
- Acyclic queries
- Magic sets

- Suppose |R| = |S| = n
- What is the cost of a join R ⋈ S?

$$q(x,y,z) = R(x,y), S(y,z)$$

Algorithms (discuss in class):

- Suppose |R| = |S| = n
- What is the cost of a join R ⋈ S?

$$q(x,y,z) = R(x,y), S(y,z)$$

- Algorithms (discuss in class):
 - Nested loop join
 - Hash join
 - Merge join

- Suppose |R| = |S| = n
- What is the cost of a join R ⋈ S?

$$q(x,y,z) = R(x,y), S(y,z)$$

Algorithms (discuss in class):

Nested loop join
 O(n²)

- Hash join $O(n) \dots O(n^2)$

- Merge join $O(n \log n) \dots O(n^2)$

Key / foreign-key join

General case

- Suppose |R| = |S| = |T| = |K| = n
- What is the complexity of computing these queries?

$$Q1(x,y,z) = R(x,y), S(y,z)$$

$$O(n^2)$$

- Suppose |R| = |S| = |T| = |K| = n
- What is the complexity of computing these queries?

$$Q1(x,y,z) = R(x,y), S(y,z)$$

$$O(n^2)$$

$$Q2(x,y,z,u) = R(x,y),S(y,z),T(z,u)$$

- Suppose |R| = |S| = |T| = |K| = n
- What is the complexity of computing these queries?

$$Q1(x,y,z) = R(x,y), S(y,z)$$

$$O(n^2)$$

$$Q2(x,y,z,u) = R(x,y),S(y,z),T(z,u)$$

$$O(n^3)$$

- Suppose |R| = |S| = |T| = |K| = n
- What is the complexity of computing these queries?

$$Q1(x,y,z) = R(x,y), S(y,z)$$

$$O(n^2)$$

$$Q2(x,y,z,u) = R(x,y),S(y,z),T(z,u)$$
 O(n³)

$$Q3(x,y,z,u,v) = R(x,y),S(y,z),T(z,u),K(u,v)$$

- Suppose |R| = |S| = |T| = |K| = n
- What is the complexity of computing these queries?

$$Q1(x,y,z) = R(x,y), S(y,z)$$

$$O(n^2)$$

$$Q2(x,y,z,u) = R(x,y),S(y,z),T(z,u)$$

$$O(n^3)$$

$$Q3(x,y,z,u,v) = R(x,y),S(y,z),T(z,u),K(u,v)$$
 $O(n^4)$

- Suppose |R| = |S| = |T| = |K| = n
- What is the complexity of computing these queries?

$$Q1(x,y,z) = R(x,y), S(y,z)$$

$$O(n^2)$$

$$Q2(x,y,z,u) = R(x,y),S(y,z),T(z,u)$$
 O(n³)

Q3(x,y,z,u,v) = R(x,y),S(y,z),T(z,u),K(u,v) O(
$$n^4$$
)

Ideally cost: O(|Input| + |Output|)

- Naïve computation often exceeds this bound
- Q(x,y,z,u) = R('a', y), S(y,z), T(z,u), K(u,'b')

- Naïve computation often exceeds this bound
- Q(x,y,z,u) = R('a', y), S(y,z), T(z,u), K(u,'b')

R =
$$\{'a'\}\times\{1,...,n/2\}$$

S = $\{1,...,n/2\}\times\{'a'\}\cup\{n/2+1,...,n\}\times\{'b'\}$
T = $\{'a'\}\times\{1,...,n/2\}\cup\{'b'\}\times\{n/2+1,...,n\}$
K = $\{n/2+1,...,n\}\times\{'b'\}$

The Semijoin Operator

Definition: the semi-join operation is $R \ltimes S = \Pi_{Attr(R)}(R \bowtie S)$

Properties of Semijoins

- R(A,B) × S(B,C) same as Q(A,B) :- R(A,B),S(B,C)
- Cost: O(|R| + |S|) (ignoring log-factors)
- Cost is independent on the join output
- The law of semijoins is:

$$R \bowtie S = (R \bowtie S) \bowtie S$$

Consequence: we can perform a semi-join before a join

Outline

- Semi-joins
- Semi-join reduction
- Acyclic queries
- Magic sets

Semijoin Optimizations

- In parallel databases: often combined with Bloom Filters (pp. 747 in the textbook)
- Magic sets for datalog were invented after semi-join reductions, and the connection became clear only later
- Some complex semi-join reductions for non-recursive SQL optimizations are sometimes called "magic sets"

Given a query:

$$Q = R_1 \bowtie R_2 \bowtie \ldots \bowtie R_n$$

A <u>semijoin reducer</u> for Q is

$$R_{i1} = R_{i1} \ltimes R_{j1}$$

$$R_{i2} = R_{i2} \ltimes R_{j2}$$

$$\dots$$

$$R_{in} = R_{in} \ltimes R_{in}$$

such that the query is equivalent to:

$$Q = R_{k1} \bowtie R_{k2} \bowtie \ldots \bowtie R_{kn}$$

A <u>full reducer</u> is such that no dangling tuples remain

Example

Example:

$$Q = R(A,B) \bowtie S(B,C)$$

A semijoin reducer is:

$$R_1(A,B) = R(A,B) \times S(B,C)$$

The rewritten query is:

$$Q = R_1(A,B) \bowtie S(B,C)$$

More complex example:
 Q(y,z,u) = R('a', y), S(y,z), T(z,u), K(u,'b')

Find a full reducer

More complex example:

$$Q(y,z,u) = R('a', y), S(y,z), T(z,u), K(u,'b')$$

Find a full reducer

More complex example:

$$Q(y,z,u) = R('a', y), S(y,z), T(z,u), K(u,'b')$$

Find a full reducer

$$S'(y,z) := S(y,z) \ltimes R('a', y)$$

 $T'(z,u) := T(z,u) \ltimes S'(y,z)$
 $K'(u) := K(u,'b') \ltimes T'(z,u)$
 $T''(z,u) := T'(z,u) \ltimes K'(u)$
 $S''(y,z) := S'(y,z) \ltimes T''(z,u)$
 $R''(y) := R('a',y) \ltimes S''(y,z)$

More complex example:

$$Q(y,z,u) = R('a', y), S(y,z), T(z,u), K(u,'b')$$

Find a full reducer

$$S'(y,z) := S(y,z) \ltimes R('a', y)$$

 $T'(z,u) := T(z,u) \ltimes S'(y,z)$
 $K'(u) := K(u,'b') \ltimes T'(z,u)$
 $T''(z,u) := T'(z,u) \ltimes K'(u)$
 $S''(y,z) := S'(y,z) \ltimes T''(z,u)$
 $R''(y) := R('a',y) \ltimes S''(y,z)$

Finally, compute:

Q(y,z,u) = R''(y), S''(y,z), T''(z,u), K''(u)

K(u, b')

Practice at Home...

 Find semi-join reducer for R(x,y),S(y,z),T(z,u),K(u,v),L(v,w)

Not All Queries Have Full Reducers

Example:

$$Q = R(A,B) \bowtie S(B,C) \bowtie T(A,C)$$

- Can write many different semi-join reducers
- But no full reducer of length O(1) exists

Outline

- Semi-joins
- Semi-join reduction
- Acyclic queries
- Magic sets

Acyclic Queries

- Fix a Conjunctive Query without self-joins
- Q is <u>acyclic</u> if its atoms can be organized in a tree such that for every variable the set of nodes that contain that variable form a connected component

Yannakakis Algorithm

- Given: acyclic query Q
- Compute Q on any database in time O(|Input|+|Output|)
- Step 1: semi-join reduction
 - Pick any root node x in the tree decomposition of Q
 - Do a semi-join reduction sweep from the leaves to x
 - Do a semi-join reduction sweep from x to the leaves
- Step 2: compute the joins bottom up, with early projections

Examples in Class

- Boolean query: Q():-...
- Non-boolean: Q(x,m):-...
- With aggregate: Q(x,sum(m)):-...
- And also: Q(x,count(*)) :- ...

In all cases: runtime = O(|R|+|S|+...+|L| + |Output|)

Testing if Q is Acyclic

- An <u>ear</u> of Q is an atom R(X) with the following property:
 - Let X' ⊆ X be the set of join variables (meaning: they occur in at least one other atom)
 - There exists some other atom S(Y) such that $X' \subseteq Y$
- The GYO algorithm (Graham, Yu, Özsoyoğlu) for testing if Q is acyclic:
 - While Q has an ear R(X), remove the atom R(X) from the query
 - If all atoms were removed, then Q is acyclic
 - If atoms remain but there is no ear, then Q is cyclic
- Show example in class

Outline

- Semi-joins
- Semi-join reduction
- Acyclic queries
- Magic sets

Magic Sets

- Problem: datalog programs compute <u>a lot</u>, but sometimes we need only <u>very little</u>
- Prolog computes top-down and retrieves <u>very little</u> datalog computes bottom up retrieves <u>a lot</u>
- (Prolog has other issues: left recursive prolog never terminates!)
- Magic sets transform a datalog program P into a new program P', such that bottom-up(P') = top-down(P)

Bottom-up evaluation very inefficient

Manual optimization:

Q(y) := E(3,y)

Q(y) := Q(x), E(x,y)

Bottom-up evaluation very inefficient

R encodes a graph

1

4

5

Same generation

SG(x,x) := V(x)

SG(x,y) := Up(x,u),SG(u,v),Dn(u,y)

Q(y) :- SG(1,y)

Manual optimization???

Magic Set Rewriting (simplified)

- For each IDB predicate create "adorned" versions, with binding patters
- For each adorned IDB P, create a predicate Magic_P
- For each rule, create several rules, one for each possible adornment of the head:
 - Allow information to flow left-to-right ("sideways information passing"), and this defines the required adornments of the IDB's in the body
 - If there are k IDB's in the body, create k+1 supplementary relations Supp_i, which guard the set of bound variables passed on to the i'th IDB
- New rules defining Magic_P: one for the query, and one for each Supp_i preceding an occurrence of P in a body
 ₄₀

Adorned predicate

- b=bound, f=free
- T^{bf}(x,y) means:
 - The values of x are known
 - The values of y are not known (need to be retrieved)
- Need to create all combinations: T^{bf}, T^{fb}
- Side-ways information passing means that we adorn rules allowing information to flow left-to-right
 - E.g. T(x,y) := E(x,u), T(u,v), E(v,w), T(w,z), E(z,y)
 - Adorned: $T^{bf}(x,y) := E(x,u), T^{bf}(u,v), E(v,w), T^{bf}(w,z), E(z,y)$

Supplementary Relations

 Given adornment T^{bf}(x,y), a new predicate Supp(x) contains the (small!) set of values x for which we want to compute T^{bf}(x,y)

Supp Rules

• E.g. $T^{bf}(x,y) := E(x,u), T^{bf}(u,v), E(v,w), T^{bf}(w,z), E(z,y)$ $Supp_{0}(x)$ $Supp_{1}(x,u)$ $Supp_{2}(x,w)$ $Supp_{3}(x,y)$

Becomes:

- Supp₀(x):- Magic_{Tbf}(x) /* next slide ... */
- Supp₁(x,u) :- Supp₀(x), E(x,u)
- Supp₂(x,w) :- Supp₁(x,u), $T^{bf}(u,v)$, E(v,w)
- Supp₃(x,y) :- Supp₂(x,w), $T^{bf}(w,z)$, E(z,y)
- $T^{bf}(x,y) := Supp_3(x,y)$

Supp₀ and Supp₃ are redundant

Adding the Magic Predicate

• E.g. $T^{bf}(x,y) := E(x,u), T^{bf}(u,v), E(v,w), T^{bf}(w,z), E(z,y)$ $Supp_{0}(x)$ $Supp_{2}(x,w)$ $Supp_{3}(x,y)$

- Magic_{Tbf}(x) = the set of bounded values of x for which we need to compute T^{bf}(x,y)
- E.g.
 - Magic_{Thf}(3):- /* if the query is Q(y):- T(3,y) */
 - Magic_{Tbf}(u):- Supp₁(x,u) /* need to compute T^{bf}(u,v) */
 - Magic_{Tbf}(w) :- Supp₂(x,w) /* need to compute $T^{bf}(w,z)$ */

Magic Sets

Original:

T(x,y) := E(x,y)

 $\mathsf{T}(\mathsf{x},\mathsf{y}) \coloneq \mathsf{T}(\mathsf{x},\mathsf{z}),\mathsf{E}(\mathsf{z},\mathsf{y})$

Q(y) :- T(3,y)

Adorned:

Magic Sets

Original:

T(x,y) := E(x,y)

T(x,y) := T(x,z), E(z,y)

Q(y) :- T(3,y)

Adorned:

 $\mathsf{T}^{\mathsf{bf}}(\mathsf{x},\mathsf{y}) := \mathsf{E}(\mathsf{x},\mathsf{y})$

 $T^{bf}(x,y) := T^{bf}(x,z), E(z,y)$

 $Q(y) := T^{bf}(3,y)$

Original:

$$T(x,y) := E(x,y)$$

 $T(x,y) := T(x,z), E(z,y)$
 $Q(y) := T(3,y)$

Adorned:

$$T^{bf}(x,y) := E(x,y)$$

 $T^{bf}(x,y) := T^{bf}(x,z), E(z,y)$
 $Q(y) := T^{bf}(3,y)$

Magic Sets

```
/* T(x,y) := E(x,y) */
Supp_0(x) :- Magic_{Thf}(x)
Supp_1(x,y) := Supp_0(x), E(x,y)
T^{bf}(x,y) := Supp_1(x,y)
/* T(x,y) := T(x,z),E(z,y) */
Supp'_0(x) :- Magic_{Thf}(x)
Supp'<sub>1</sub>(x,z) :- Supp'<sub>0</sub>(x), T^{bf}(x,z)
Supp'_{2}(x,y) := Supp'_{1}(x,z), E(z,y)
T^{bf}(x,y) := Supp'_{2}(x,y)
/* Q(y) := T(3,y) */
Magic_{Thf}(3) :-
Magic_{Thf}(x) := Supp'_0(x) /* redundant */
```

Practice at home

We saw this

$$T(x,y) := E(x,y)$$

 $T(x,y) := T(x,z),E(z,y)$
 $Q(y) := T(3,y)$

$$T(x,y) := E(x,y)$$

 $T(x,y) := E(x,z), T(z,y)$
 $Q(y) := T(3,y)$

$$T(x,y) := E(x,y)$$

 $T(x,y) := T(x,z),T(z,y)$
 $Q(y) := T(3,y)$