
CSE 544
Principles of Database
Management Systems

Lectures 9 -10: Query optimization

CSE 544 - Winter 2018 1

Announcements

•  HW3 (SimpleDB) is due next Friday!

•  Reading assignment was due today

CSE 544 - Winter 2018 2

Query Optimization Motivation

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

3

Declarative query
Recall physical and
logical data independence

What We Already Know

•  There exists many logical plans...

•  ... and for each, there exist many physical plans

•  Optimizer chooses the logical/physical plan with the
smallest estimated cost

CSE 544 - Winter 2018 4

Discussion of the Paper

•  Query parsing/authorization
•  Query rewriting:

–  Is salary < 75k and salary > 100k implausible?
–  What is semantic optimization?

•  Query optimizer
–  Will discuss in detail...
–  What is query re-optimization?

Predictable performance (IBM) v.s. self-tuning (Microsoft)
–  What is the “halloween problem”?

•  Query execution
–  What are BP-tuples v.s. M-tuples? What is the pin-count?

•  Access methods: will discuss
5

Query Optimization

CSE 544 - Winter 2018

Three major components:

1.  Cardinality and cost estimation

2.  Search space

3.  Plan enumeration algorithms

6

CSE 544 - Winter 2018

Estimating Cost of a Query Plan

Goal: compute the cost of an entire physical query plan

•  We already know how to compute the cost of each
physical operator if we knew the T(R) and B(R) for each
of its arguments

•  Goal: estimate T(R) for each intermediate result R
B(R) can be derived from T(R)

7

CSE 544 - Winter 2018

Statistics on Base Data

•  Collected information for each database relation
–  Number of tuples (cardinality) T(R)
–  Number of physical pages B(R), clustering info
–  Indexes, number of keys in the index V(R,a)
–  Statistical information on attributes

•  Min value, max value, number distinct values
•  Histograms

–  Correlations between columns (hard)

•  Collection approach: periodic, using sampling

8

CSE 544 - Winter 2018

Size Estimation

Projection: output size same as input size
 T(Π(R)) = T(R)

Selection: the size decreases by selectivity factor θ
 T(σpred(R)) = T(R) * θpred

9

Selectivity Factors

•  A = c /* σA=c(R) */
–  Selectivity = 1/V(R,A)

•  A < c /* σA<c(R)*/
–  Selectivity = (c - min(R, A))/(max(R,A) - min(R,A))

•  c1 < A < c2 /* σc1<A<c2(R)*/
–  Selectivity = (c2 – c1)/(max(R,A) - min(R,A))

•  Multiple predicates: assume independence
10

CSE 544 - Winter 2018

Estimating Result Sizes

Join R ⋈R.A=S.B S

•  Take product of cardinalities of relations R and S

•  Apply this selectivity factor:
 1/ (MAX(V(R,A), V(S,B))

•  Why? Will explain next...

11

Assumptions

•  Containment of values: if V(R,A) ≤ V(S,B), then
the set of A values of R is included in the set of B
values of S
–  Note: this indeed holds when A is a foreign key in R,

and B is a key in S

•  Preservation of values: for any other attribute C,
V(R ⨝A=B S, C) = V(R, C) (or V(S, C))
–  This is only needed higher up in the plan

CSE 544 - Winter 2018 12

Selectivity of R ⨝A=B S

Assume V(R,A) ≤ V(S,B)
•  Each tuple t in R joins with T(S)/V(S,B) tuples in S

•  Hence T(R ⨝A=B S) = T(R) T(S) / V(S,B)

In general: T(R ⨝A=B S) = T(R) T(S) / max(V(R,A),V(S,B))

CSE 544 - Winter 2018 13

Computing the Cost of a Plan

•  Estimate cardinality in a bottom-up fashion
–  Cardinality is the size of a relation (nb of tuples)
–  Compute size of all intermediate relations in plan

•  Estimate cost by using the estimated cardinalities

•  Extensive example next...

CSE 544 - Winter 2018 14

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

Estimated
(why?)

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Estimated
(why?)

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

T = 4

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

T = 4

Different
estimate L

Physical Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100/10 * 100 = 1000

Physical Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100+100*100/10 = 1100

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’∧sstate=‘WA’

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’∧sstate=‘WA’

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’∧sstate=‘WA’

R⨝S in Postgres

31

Courtesy of Walter Cai

Nested loop

Hash join

Merge join

CSE 544 - Winter 2018

Simplifications

•  We considered only IO cost; in general we need
IO+CPU

•  We assumed that all index pages were in
memory: sometimes we need to add the cost of
fetching index pages from disk

32

33

Histograms

•  Statistics on data maintained by the RDBMS
•  Makes size estimation much more accurate (hence, cost

estimations are more accurate)

CSE 544 - Winter 2018

Histograms

CSE 544 - Winter 2018 34

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Histograms

CSE 544 - Winter 2018

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Estimate = 25000 / 50 = 500 Estimate = 25000 * 6 / 50 = 3000

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Histograms

CSE 544 - Winter 2018

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Estimate = 1200 Estimate = 1*80 + 5*500 = 2580

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Types of Histograms

•  How should we determine the bucket boundaries in a
histogram ?

CSE 544 - Winter 2018 38

Types of Histograms

•  How should we determine the bucket boundaries in a
histogram ?

•  Eq-Width
•  Eq-Depth
•  Compressed
•  V-Optimal histograms

CSE 544 - Winter 2018 39

Histograms

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Employee(ssn, name, age)

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 1800 2000 2100 2200 1900 1800

Eq-width:

Eq-depth:

Compressed: store separately highly frequent values: (48,1900)

V-Optimal Histograms

•  Defines bucket boundaries in an optimal way, to minimize
the error over all point queries

•  Computed rather expensively, using dynamic
programming

•  Modern databases systems use V-optimal histograms or
some variations

CSE 544 - Winter 2018 41

Discussion
•  Small number of buckets

–  Hundreds, or thousands, but not more
–  WHY ?

•  Not updated during database update, but recomputed
periodically
–  WHY ?

•  Multidimensional histograms rarely used
–  WHY ?

CSE 544 - Winter 2018 42

Query Optimization

CSE 544 - Winter 2018

Three major components:

1.  Cardinality and cost estimation

2.  Search space
–  Access path selection
–  Rewrite rules

3.  Plan enumeration algorithms

43

CSE 544 - Winter 2018

Access Path

Access path: a way to retrieve tuples from a table

•  A file scan, or

•  An index plus a matching selection condition

Usually the access path implements a selection σP(R),
where the predicate P is called search argument SARG
(see paper)

44

Access Path Selection

45

Which access path should we use?

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 ∧ scity=‘Seattle’
Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20
Max(Supplier, sid) = 1000, Min(Supplier,sid) =1
B(Supplier) = 100, T(Supplier) = 1000

Access Path Selection

46

Which access path should we use?

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 ∧ scity=‘Seattle’
Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20
Max(Supplier, sid) = 1000, Min(Supplier,sid) =1
B(Supplier) = 100, T(Supplier) = 1000

1.  Sequential scan: cost = 100

Access Path Selection

47

Which access path should we use?

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 ∧ scity=‘Seattle’
Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20
Max(Supplier, sid) = 1000, Min(Supplier,sid) =1
B(Supplier) = 100, T(Supplier) = 1000

1.  Sequential scan: cost = 100
2.  Index scan on sid: cost = 7/10 * 100 = 70

Access Path Selection

48

Which access path should we use?

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 ∧ scity=‘Seattle’
Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20
Max(Supplier, sid) = 1000, Min(Supplier,sid) =1
B(Supplier) = 100, T(Supplier) = 1000

1.  Sequential scan: cost = 100
2.  Index scan on sid: cost = 7/10 * 100 = 70
3.  Index scan on scity: cost = 1000/20 = 50

Rewrite Rules

•  The optimizer’s search space is defined by the
set of rewrite rules that it implements

•  More rewrite rules means that more plans are
being explored

CSE 544 - Winter 2018 49

CSE 544 - Winter 2018

Relational Algebra Laws

•  Selections
–  Commutative: σc1(σc2(R)) same as σc2(σc1(R))
–  Cascading: σc1∧c2(R) same as σc2(σc1(R))

•  Projections
–  Cascading

•  Joins
–  Commutative : R ⋈ S same as S ⋈ R

–  Associative: R ⋈ (S ⋈ T) same as (R ⋈ S) ⋈ T

50

Selections and Joins

CSE 544 - Winter 2018

σA=v(R(A,B) ⨝ B=C S(C,D)) =
 (σA=v (R(A,B))) ⨝ B=C S(C,D)

R(A, B), S(C,D)

51

Selections and Joins

CSE 544 - Winter 2018

σA=v(R(A,B) ⨝ B=C S(C,D)) =
 (σA=v (R(A,B))) ⨝ B=C S(C,D)

The simplest optimizers use only this rule
Called heuristic-based opimtizer
In general: cost-based optimizer

R(A, B), S(C,D)

52

Group-by and Join

CSE 544 - Winter 2018

γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) = ?

R(A, B), S(C,D)

53

Group-by and Join

CSE 544 - Winter 2018

γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) =
 γA, sum(D)(R(A,B) ⨝ B=C (γC, sum(D)S(C,D)))

These are very powerful laws.
They were introduced only in the 90’s.

R(A, B), S(C,D)

54

Search Space Challenges

•  Search space is huge!
–  Many possible equivalent trees (logical)
–  Many implementations for each operator (physical)
–  Many access paths for each relation (physical)

•  Cannot consider ALL plans
•  Want a search space that includes low-cost plans

•  Typical compromises:
–  Only left-deep plans
–  Only plans without cartesian products
–  Always push selections down to the leaves

55

CSE 544 - Winter 2018

Left-Deep Plans and
Bushy Plans

R3 R1 R2 R4 R3 R1

R4

R2

Left-deep plan Bushy plan

56

Query Optimization

CSE 544 - Winter 2018

Three major components:

1.  Cardinality and cost estimation

2.  Search space

3.  Plan enumeration algorithms

57

Two Types of Optimizers

•  Heuristic-based optimizers:
–  Apply greedily rules that always improve plan

•  Typically: push selections down
–  Very limited: no longer used today

•  Cost-based optimizers:
–  Use a cost model to estimate the cost of each plan
–  Select the “cheapest” plan
–  We focus on cost-based optimizers

CSE 544 - Winter 2018 58

Three Approaches to Search
Space Enumeration

•  Complete plans

•  Bottom-up plans

•  Top-down plans

CSE 544 - Winter 2018 59

Complete Plans

CSE 544 - Winter 2018

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

⨝

S σA<40

R

⨝

T

⨝

S

σA<40

R

⨝

T

Why is this
search space
inefficient ?

R(A,B)
S(B,C)
T(C,D)

60

Bottom-up Partial Plans

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

R S T

⨝

S σA<40

R

⨝

R S

⨝

S σA<40

R

⨝

T

…..

Why is this
better ?

CSE 544 - Winter 2018 61

Top-down Partial Plans

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

T
⨝

S

⨝

T

…..

SELECT R.A, T.D
FROM R, S, T
WHERE R.B=S.B
 and S.C=T.C

SELECT *
FROM R, S
WHERE R.B=S.B
 and R.A < 40 SELECT *

FROM R
WHERE R.A < 40

CSE 544 - Winter 2018 62 Why is this best for rewrite rules?

Two Types of Plan
Enumeration Algorithms

•  Dynamic programming (in class)
–  Based on System R (aka Selinger) style optimizer[1979]
–  Limited to joins: join reordering algorithm
–  Bottom-up

•  Rule-based algorithm (will not discuss)
–  Database of rules (=algebraic laws)
–  Usually: dynamic programming
–  Usually: top-down

CSE 544 - Winter 2018 63

CSE 544 - Winter 2018

System R Search Space (1979)

•  Only left-deep plans
–  Enable dynamic programming for enumeration
–  Facilitate tuple pipelining from outer relation

•  Consider plans with all “interesting orders”
•  Perform cross-products after all other joins (heuristic)
•  Only consider nested loop & sort-merge joins
•  Consider both file scan and indexes
•  Try to evaluate predicates early

64

CSE 544 - Winter 2018

System R Enumeration Algorithm

•  Idea: use dynamic programming
•  For each subset of {R1, …, Rn}, compute the best plan

for that subset
•  In increasing order of set cardinality:

–  Step 1: for {R1}, {R2}, …, {Rn}
–  Step 2: for {R1,R2}, {R1,R3}, …, {Rn-1, Rn}
–  …
–  Step n: for {R1, …, Rn}

•  It is a bottom-up strategy
•  A subset of {R1, …, Rn} is also called a subquery

65

CSE 544 - Winter 2018

Dynamic Programming Algo.

•  For each subquery Q ⊆{R1, …, Rn} compute the
following:
–  Size(Q)
–  A best plan for Q: Plan(Q)
–  The cost of that plan: Cost(Q)

66

CSE 544 - Winter 2018

Dynamic Programming Algo.

•  Step 1: Enumerate all single-relation plans

–  Consider selections on attributes of relation
–  Consider all possible access paths
–  Consider attributes that are not needed

–  Compute cost for each plan

–  Keep cheapest plan per “interesting” output order

67

CSE 544 - Winter 2018

Dynamic Programming Algo.

•  Step 2: Generate all two-relation plans

–  For each each single-relation plan from step 1
–  Consider that plan as outer relation
–  Consider every other relation as inner relation

–  Compute cost for each plan

–  Keep cheapest plan per “interesting” output order

68

CSE 544 - Winter 2018

Dynamic Programming Algo.

•  Step 3: Generate all three-relation plans

–  For each each two-relation plan from step 2
–  Consider that plan as outer relation
–  Consider every other relation as inner relation
–  Compute cost for each plan
–  Keep cheapest plan per “interesting” output order

•  Steps 4 through n: repeat until plan contains all the
relations in the query

69

CSE 544 - Winter 2018

Commercial Query Optimizers

DB2, Informix, Microsoft SQL Server, Oracle 8

•  Inspired by System R
–  Left-deep plans and dynamic programming
–  Cost-based optimization (CPU and IO)

•  Go beyond System R style of optimization
–  Also consider right-deep and bushy plans (e.g., Oracle and DB2)
–  Variety of additional strategies for generating plans (e.g., DB2

and SQL Server)

70

CSE 544 - Winter 2018

Other Query Optimizers

•  Randomized plan generation
–  Genetic algorithm
–  PostgreSQL uses it for queries with many joins

•  Rule-based
–  Extensible collection of rules
–  Rule = Algebraic law with a direction
–  Algorithm for firing these rules

•  Generate many alternative plans, in some order
•  Prune by cost

–  Startburst (later DB2) and Volcano (later SQL Server)

71

