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Announcements 

•  HW3 (SimpleDB) is due next Friday! 

•  Reading assignment was due today 
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Query Optimization Motivation 

Parse & Rewrite Query 

Select Logical Plan 

Select Physical Plan 

Query Execution 

Disk 

SQL query 

Query 
optimization 

Logical 
plan 

Physical 
plan 
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Declarative query 
Recall physical and 
logical data independence 



What We Already Know 

•  There exists many logical plans... 

•  ... and for each, there exist many physical plans 

•  Optimizer chooses the logical/physical plan with the 
smallest estimated cost 
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Discussion of the Paper 

•  Query parsing/authorization 
•  Query rewriting:  

–  Is salary < 75k and salary > 100k implausible? 
–  What is semantic optimization? 

•  Query optimizer 
–  Will discuss in detail... 
–  What is query re-optimization? 

Predictable performance (IBM) v.s. self-tuning (Microsoft) 
–  What is the “halloween problem”? 

•  Query execution 
–  What are BP-tuples v.s. M-tuples?  What is the pin-count? 

•  Access methods: will discuss 
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Query Optimization 

CSE 544 - Winter 2018 

Three major components: 

1.  Cardinality and cost estimation 

2.  Search space 

3.  Plan enumeration algorithms 
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Estimating Cost of a Query Plan 

Goal: compute the cost of an entire physical query plan 

•  We already know how to compute the cost of each 
physical operator if we knew the T(R) and B(R) for each 
of its arguments 

•  Goal: estimate T(R) for each intermediate result R 
B(R) can be derived from T(R) 
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Statistics on Base Data 

•  Collected information for each database relation 
–  Number of tuples (cardinality)  T(R) 
–  Number of physical pages B(R), clustering info 
–  Indexes, number of keys in the index  V(R,a) 
–  Statistical information on attributes 

•  Min value, max value, number distinct values 
•  Histograms 

–  Correlations between columns (hard) 

•  Collection approach: periodic, using sampling 
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Size Estimation 

Projection: output size same as input size 
 T(Π(R)) = T(R) 

Selection: the size decreases by selectivity factor θ
 T(σpred(R)) = T(R) * θpred 

9 



Selectivity Factors 

•  A = c        /* σA=c(R) */ 
–  Selectivity  = 1/V(R,A) 

•  A < c         /* σA<c(R)*/ 
–  Selectivity = (c - min(R, A))/(max(R,A) - min(R,A)) 
 

•  c1 < A < c2         /* σc1<A<c2(R)*/ 
–  Selectivity = (c2 – c1)/(max(R,A) - min(R,A)) 

•  Multiple predicates: assume independence 
10 
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Estimating Result Sizes 

Join R  ⋈R.A=S.B S 

•  Take product of cardinalities of relations R and S 

•  Apply this selectivity factor: 
 1/ ( MAX( V(R,A), V(S,B)) 

•  Why? Will explain next... 
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Assumptions 

•  Containment of values: if V(R,A) ≤ V(S,B), then 
the set of A values of R is included in the set of B 
values of S 
–  Note: this indeed holds when A is a foreign key in R, 

and B is a key in S 

•  Preservation of values: for any other attribute C,  
V(R ⨝A=B S, C) = V(R, C)   (or V(S, C)) 
–  This is only needed higher up in the plan 
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Selectivity of R ⨝A=B S 

Assume V(R,A) ≤ V(S,B) 
•  Each tuple t in R joins with T(S)/V(S,B) tuples in S 

•  Hence T(R ⨝A=B S) = T(R) T(S) / V(S,B) 

In general: T(R ⨝A=B S) = T(R) T(S) / max(V(R,A),V(S,B)) 
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Computing the Cost of a Plan 

•  Estimate cardinality in a bottom-up fashion 
–  Cardinality is the size of a relation (nb of tuples) 
–  Compute size of all intermediate relations in plan  

•  Estimate cost by using the estimated cardinalities 

•  Extensive example next... 
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Logical Query Plan 1 

Supply Supplier 

 
sid = sid 

σpno=2∧scity=‘Seattle’∧sstate=‘WA’ 

πsname 

T(Supplier) = 1000 
B(Supplier) = 100 
V(Supplier, scity) = 20 
V(Supplier, state) = 10 

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000 
B(Supply) = 100 
V(Supply, pno) = 2500 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

M=11 



Logical Query Plan 1 

Supply Supplier 

 
sid = sid 

σpno=2∧scity=‘Seattle’∧sstate=‘WA’ 

πsname 

T(Supplier) = 1000 
B(Supplier) = 100 
V(Supplier, scity) = 20 
V(Supplier, state) = 10 

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000 
B(Supply) = 100 
V(Supply, pno) = 2500 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

M=11 

T = 10000 

Estimated 
(why?) 



Logical Query Plan 1 

Supply Supplier 

 
sid = sid 

σpno=2∧scity=‘Seattle’∧sstate=‘WA’ 

πsname 

T(Supplier) = 1000 
B(Supplier) = 100 
V(Supplier, scity) = 20 
V(Supplier, state) = 10 

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000 
B(Supply) = 100 
V(Supply, pno) = 2500 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

M=11 

T = 10000 

T  < 1 

Estimated 
(why?) 



Logical Query Plan 2 

Supply Supplier 

 
sid = sid 

σscity=‘Seattle’∧sstate=‘WA’ 

πsname 

σpno=2 

T(Supplier) = 1000 
B(Supplier) = 100 
V(Supplier, scity) = 20 
V(Supplier, state) = 10 

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000 
B(Supply) = 100 
V(Supply, pno) = 2500 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

M=11 



Logical Query Plan 2 

Supply Supplier 

 
sid = sid 

σscity=‘Seattle’∧sstate=‘WA’ 

πsname 

σpno=2 

T(Supplier) = 1000 
B(Supplier) = 100 
V(Supplier, scity) = 20 
V(Supplier, state) = 10 

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000 
B(Supply) = 100 
V(Supply, pno) = 2500 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

M=11 

T = 4 T= 5 



Logical Query Plan 2 

Supply Supplier 

 
sid = sid 

σscity=‘Seattle’∧sstate=‘WA’ 

πsname 

σpno=2 

T(Supplier) = 1000 
B(Supplier) = 100 
V(Supplier, scity) = 20 
V(Supplier, state) = 10 

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000 
B(Supply) = 100 
V(Supply, pno) = 2500 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

M=11 

T = 4 T= 5 
Very wrong! 

Why? 



Logical Query Plan 2 

Supply Supplier 

 
sid = sid 

σscity=‘Seattle’∧sstate=‘WA’ 

πsname 

σpno=2 

T(Supplier) = 1000 
B(Supplier) = 100 
V(Supplier, scity) = 20 
V(Supplier, state) = 10 

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000 
B(Supply) = 100 
V(Supply, pno) = 2500 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

M=11 

T = 4 T= 5 
Very wrong! 

Why? 

T = 4 



Logical Query Plan 2 

Supply Supplier 

 
sid = sid 

σscity=‘Seattle’∧sstate=‘WA’ 

πsname 

σpno=2 

T(Supplier) = 1000 
B(Supplier) = 100 
V(Supplier, scity) = 20 
V(Supplier, state) = 10 

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000 
B(Supply) = 100 
V(Supply, pno) = 2500 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

M=11 

T = 4 T= 5 
Very wrong! 

Why? 

T = 4 

Different 
estimate L 



Physical Plan 1 

Supply Supplier 

 
sid = sid 

σpno=2∧scity=‘Seattle’∧sstate=‘WA’ 

πsname 

T(Supplier) = 1000 
B(Supplier) = 100 
V(Supplier, scity) = 20 
V(Supplier, state) = 10 

T(Supply) = 10000 
B(Supply) = 100 
V(Supply, pno) = 2500 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

M=11 

T = 10000 

T  < 1 

Block nested loop join 

Scan 
Scan 

Total cost:   100/10 * 100 = 1000 



Physical Plan 1 

Supply Supplier 

 
sid = sid 

σpno=2∧scity=‘Seattle’∧sstate=‘WA’ 

πsname 

T(Supplier) = 1000 
B(Supplier) = 100 
V(Supplier, scity) = 20 
V(Supplier, state) = 10 

T(Supply) = 10000 
B(Supply) = 100 
V(Supply, pno) = 2500 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

M=11 

T = 10000 

T  < 1 

Block nested loop join 

Scan 
Scan 

Total cost:   100+100*100/10 = 1100 



Physical Plan 2 

Supply Supplier 

 
sid = sid 

σsstate=‘WA’ 

πsname 

σpno=2 

T(Supplier) = 1000 
B(Supplier) = 100 
V(Supplier, scity) = 20 
V(Supplier, state) = 10 

T(Supply) = 10000 
B(Supply) = 100 
V(Supply, pno) = 2500 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

M=11 

T = 4 

T= 5 

T = 4 

Unclustered 
index lookup 
Supply(pno) 

Unclustered 
index lookup 
Supplier(scity) 

σscity=‘Seattle’ 

Cost of Supply(pno) = 4 
Cost of Supplier(scity) = 50 
Total cost:   54 

Main memory join 

T= 50 



Physical Plan 2 

Supply Supplier 

 
sid = sid 

σsstate=‘WA’ 

πsname 

σpno=2 

T(Supplier) = 1000 
B(Supplier) = 100 
V(Supplier, scity) = 20 
V(Supplier, state) = 10 

T(Supply) = 10000 
B(Supply) = 100 
V(Supply, pno) = 2500 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

M=11 

T = 4 

T= 5 

T = 4 

Unclustered 
index lookup 
Supply(pno) 

Unclustered 
index lookup 
Supplier(scity) 

σscity=‘Seattle’ 

Cost of Supply(pno) = 4 
Cost of Supplier(scity) = 50 
Total cost:   54 

Main memory join 

T= 50 



Physical Plan 2 

Supply Supplier 

 
sid = sid 

σsstate=‘WA’ 

πsname 

σpno=2 

T(Supplier) = 1000 
B(Supplier) = 100 
V(Supplier, scity) = 20 
V(Supplier, state) = 10 

T(Supply) = 10000 
B(Supply) = 100 
V(Supply, pno) = 2500 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

M=11 

T = 4 

T= 5 

T = 4 

Unclustered 
index lookup 
Supply(pno) 

Unclustered 
index lookup 
Supplier(scity) 

σscity=‘Seattle’ 

Cost of Supply(pno) = 4 
Cost of Supplier(scity) = 50 
Total cost:   54 

Main memory join 

T= 50 



Physical Plan 3 

Supply Supplier 

 
sid = sid 

πsname 

σpno=2 

T(Supplier) = 1000 
B(Supplier) = 100 
V(Supplier, scity) = 20 
V(Supplier, state) = 10 

T(Supply) = 10000 
B(Supply) = 100 
V(Supply, pno) = 2500 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

M=11 

T = 4 

T = 4 

Unclustered 
index lookup 
Supply(pno) 

Cost of Supply(pno) = 4 
Cost of Index join = 4 
Total cost:   8 

Clustered 
Index join 

σscity=‘Seattle’∧sstate=‘WA’ 



Physical Plan 3 

Supply Supplier 

 
sid = sid 

πsname 

σpno=2 

T(Supplier) = 1000 
B(Supplier) = 100 
V(Supplier, scity) = 20 
V(Supplier, state) = 10 

T(Supply) = 10000 
B(Supply) = 100 
V(Supply, pno) = 2500 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

M=11 

T = 4 

T = 4 

Unclustered 
index lookup 
Supply(pno) 

Cost of Supply(pno) = 4 
Cost of Index join = 4 
Total cost:   8 

Clustered 
Index join 

σscity=‘Seattle’∧sstate=‘WA’ 



Physical Plan 3 

Supply Supplier 

 
sid = sid 

πsname 

σpno=2 

T(Supplier) = 1000 
B(Supplier) = 100 
V(Supplier, scity) = 20 
V(Supplier, state) = 10 

T(Supply) = 10000 
B(Supply) = 100 
V(Supply, pno) = 2500 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

M=11 

T = 4 

T = 4 

Unclustered 
index lookup 
Supply(pno) 

Cost of Supply(pno) = 4 
Cost of Index join = 4 
Total cost:   8 

Clustered 
Index join 

σscity=‘Seattle’∧sstate=‘WA’ 



R⨝S in Postgres 

31 

Courtesy of Walter Cai 

Nested loop 

Hash join 

Merge join 



CSE 544 - Winter 2018 

Simplifications 

•  We considered only IO cost; in general we need 
IO+CPU 

•  We assumed that all index pages were in 
memory: sometimes we need to add the cost of 
fetching index pages from disk 
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Histograms 

•  Statistics on data maintained by the RDBMS 
•  Makes size estimation much more accurate (hence, cost 

estimations are more accurate) 
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Histograms 
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Employee(ssn, name, age) 

T(Employee) = 25000,  V(Empolyee, age) = 50 
min(age) = 19,  max(age) = 68 

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ? 



Histograms 
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Employee(ssn, name, age) 

T(Employee) = 25000,  V(Empolyee, age) = 50 
min(age) = 19,  max(age) = 68 

Estimate = 25000 / 50 = 500 Estimate = 25000  * 6 / 50 = 3000 

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ? 



Histograms 
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Age: 0..20 20..29 30-39 40-49 50-59 > 60 

Tuples 200 800 5000 12000 6500 500 

Employee(ssn, name, age) 

T(Employee) = 25000,  V(Empolyee, age) = 50 
min(age) = 19,  max(age) = 68 

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ? 



Histograms 

Employee(ssn, name, age) 

T(Employee) = 25000,  V(Empolyee, age) = 50 
min(age) = 19,  max(age) = 68 

Estimate = 1200 Estimate = 1*80 + 5*500 = 2580 

Age: 0..20 20..29 30-39 40-49 50-59 > 60 

Tuples 200 800 5000 12000 6500 500 

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ? 



Types of Histograms 

•  How should we determine the bucket boundaries in a 
histogram ? 
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Types of Histograms 

•  How should we determine the bucket boundaries in a 
histogram ? 

•  Eq-Width 
•  Eq-Depth 
•  Compressed 
•  V-Optimal histograms 

CSE 544 - Winter 2018        39 



Histograms 

Age: 0..20 20..29 30-39 40-49 50-59 > 60 

Tuples 200 800 5000 12000 6500 500 

Employee(ssn, name, age) 

Age: 0..20 20..29 30-39 40-49 50-59 > 60 

Tuples 1800 2000 2100 2200 1900 1800 

Eq-width: 

Eq-depth: 

Compressed: store separately highly frequent values: (48,1900) 



V-Optimal Histograms 

•  Defines bucket boundaries in an optimal way, to minimize 
the error over all point queries 

•  Computed rather expensively, using dynamic 
programming 

•  Modern databases systems use V-optimal histograms or 
some variations 
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Discussion 
•  Small number of buckets 

–  Hundreds, or thousands, but not more 
–  WHY ? 

•  Not updated during database update, but recomputed 
periodically 
–  WHY ?  

•  Multidimensional histograms rarely used 
–  WHY ? 
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Query Optimization 

CSE 544 - Winter 2018 

Three major components: 

1.  Cardinality and cost estimation 

2.  Search space 
–  Access path selection 
–  Rewrite rules 

3.  Plan enumeration algorithms 

43 
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Access Path 

Access path: a way to retrieve tuples from a table 

•  A file scan, or 

•  An index plus a matching selection condition 

Usually the access path implements a selection σP(R), 
where the predicate P is called search argument SARG 
(see paper) 
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Access Path Selection 

45 

Which access path should we use? 

Supplier(sid,sname,scity,sstate) 
Selection condition: sid > 300 ∧ scity=‘Seattle’ 
Indexes: clustered B+-tree on sid; B+-tree on scity 

V(Supplier,scity) = 20 
Max(Supplier, sid) = 1000, Min(Supplier,sid) =1 
B(Supplier) = 100, T(Supplier) = 1000 



Access Path Selection 

46 

Which access path should we use? 

Supplier(sid,sname,scity,sstate) 
Selection condition: sid > 300 ∧ scity=‘Seattle’ 
Indexes: clustered B+-tree on sid; B+-tree on scity 

V(Supplier,scity) = 20 
Max(Supplier, sid) = 1000, Min(Supplier,sid) =1 
B(Supplier) = 100, T(Supplier) = 1000 

1.  Sequential scan: cost = 100 



Access Path Selection 

47 

Which access path should we use? 

Supplier(sid,sname,scity,sstate) 
Selection condition: sid > 300 ∧ scity=‘Seattle’ 
Indexes: clustered B+-tree on sid; B+-tree on scity 

V(Supplier,scity) = 20 
Max(Supplier, sid) = 1000, Min(Supplier,sid) =1 
B(Supplier) = 100, T(Supplier) = 1000 

1.  Sequential scan: cost = 100 
2.  Index scan on sid: cost = 7/10 * 100 = 70 



Access Path Selection 

48 

Which access path should we use? 

Supplier(sid,sname,scity,sstate) 
Selection condition: sid > 300 ∧ scity=‘Seattle’ 
Indexes: clustered B+-tree on sid; B+-tree on scity 

V(Supplier,scity) = 20 
Max(Supplier, sid) = 1000, Min(Supplier,sid) =1 
B(Supplier) = 100, T(Supplier) = 1000 

1.  Sequential scan: cost = 100 
2.  Index scan on sid: cost = 7/10 * 100 = 70 
3.  Index scan on scity: cost = 1000/20 = 50  



Rewrite Rules 

•  The optimizer’s search space is defined by the 
set of rewrite rules that it implements 

•  More rewrite rules means that more plans are 
being explored 
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Relational Algebra Laws 

•  Selections 
–  Commutative: σc1(σc2(R)) same as σc2(σc1(R)) 
–  Cascading:  σc1∧c2(R) same as σc2(σc1(R)) 

•  Projections 
–  Cascading 

•  Joins 
–  Commutative : R ⋈ S same as S ⋈ R  

–  Associative: R ⋈ (S ⋈ T) same as (R ⋈ S) ⋈ T  

50 



Selections and Joins 

CSE 544 - Winter 2018 

σA=v(R(A,B) ⨝ B=C S(C,D)) =   
    (σA=v (R(A,B))) ⨝ B=C S(C,D) 

R(A, B),  S(C,D) 

51 



Selections and Joins 

CSE 544 - Winter 2018 

σA=v(R(A,B) ⨝ B=C S(C,D)) =   
    (σA=v (R(A,B))) ⨝ B=C S(C,D) 

The simplest optimizers use only this rule 
Called heuristic-based opimtizer 
In general: cost-based optimizer 

R(A, B),  S(C,D) 
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Group-by and Join 
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γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) =        ? 
      

R(A, B),  S(C,D) 
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Group-by and Join 
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γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) =   
     γA, sum(D)(R(A,B) ⨝ B=C (γC, sum(D)S(C,D))) 

These are very powerful laws. 
They were introduced only in the 90’s. 

R(A, B),  S(C,D) 
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Search Space Challenges 

•  Search space is huge! 
–  Many possible equivalent trees (logical) 
–  Many implementations for each operator (physical) 
–  Many access paths for each relation (physical) 

•  Cannot consider ALL plans 
•  Want a search space that includes low-cost plans 

•  Typical compromises: 
–  Only left-deep plans 
–  Only plans without cartesian products 
–  Always push selections down to the leaves 
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Left-Deep Plans and 
Bushy Plans 

R3 R1 R2 R4 R3 R1 

R4 

R2 

Left-deep plan Bushy plan 
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Query Optimization 

CSE 544 - Winter 2018 

Three major components: 

1.  Cardinality and cost estimation 

2.  Search space 

3.  Plan enumeration algorithms 
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Two Types of Optimizers 

•  Heuristic-based optimizers: 
–  Apply greedily rules that always improve plan 

•  Typically: push selections down 
–  Very limited: no longer used today 

•  Cost-based optimizers: 
–  Use a cost model to estimate the cost of each plan 
–  Select the “cheapest” plan 
–  We focus on cost-based optimizers 
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Three Approaches to Search 
Space Enumeration 

•  Complete plans 

•  Bottom-up plans 

•  Top-down plans 
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Complete Plans 
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SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

⨝ 

S σA<40 

R 

⨝ 

T 

⨝ 

S 

σA<40 

R 

⨝ 

T 

Why is this 
search space 
inefficient ? 

R(A,B) 
S(B,C) 
T(C,D) 
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Bottom-up Partial Plans 

SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

⨝ σA<40 

R S T 

⨝ 

S σA<40 

R 

⨝ 

R S 

⨝ 

S σA<40 

R 

⨝ 

T 

….. 

Why is this 
better ? 
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Top-down Partial Plans 

SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

⨝ σA<40 

T 
⨝ 

S 

⨝ 

T 

….. 

SELECT R.A, T.D 
FROM R, S, T 
WHERE R.B=S.B 
        and S.C=T.C 

SELECT * 
FROM R, S 
WHERE R.B=S.B 
        and R.A < 40 SELECT * 

FROM R 
WHERE R.A < 40 

CSE 544 - Winter 2018 62 Why is this best for rewrite rules? 



Two Types of Plan 
Enumeration Algorithms 

•  Dynamic programming  (in class) 
–  Based on System R (aka Selinger) style optimizer[1979] 
–  Limited to joins: join reordering algorithm 
–  Bottom-up 

•  Rule-based algorithm (will not discuss) 
–  Database of rules (=algebraic laws) 
–  Usually: dynamic programming 
–  Usually: top-down 
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System R Search Space (1979) 

•  Only left-deep plans 
–  Enable dynamic programming for enumeration 
–  Facilitate tuple pipelining from outer relation 

•  Consider plans with all “interesting orders” 
•  Perform cross-products after all other joins (heuristic) 
•  Only consider nested loop & sort-merge joins 
•  Consider both file scan and indexes 
•  Try to evaluate predicates early 
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System R Enumeration Algorithm 

•  Idea: use dynamic programming 
•  For each subset of {R1, …, Rn}, compute the best plan 

for that subset 
•  In increasing order of set cardinality: 

–  Step 1: for {R1}, {R2}, …, {Rn} 
–  Step 2: for {R1,R2}, {R1,R3}, …, {Rn-1, Rn} 
–  … 
–  Step n: for {R1, …, Rn} 

•  It is a bottom-up strategy 
•  A subset of {R1, …, Rn} is also called a subquery 
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Dynamic Programming Algo. 

•  For each subquery Q ⊆{R1, …, Rn} compute the 
following: 
–  Size(Q) 
–  A best plan for Q: Plan(Q) 
–  The cost of that plan: Cost(Q) 
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Dynamic Programming Algo. 

•  Step 1: Enumerate all single-relation plans 

–  Consider selections on attributes of relation 
–  Consider all possible access paths 
–  Consider attributes that are not needed 

–  Compute cost for each plan 

–  Keep cheapest plan per “interesting” output order 
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Dynamic Programming Algo. 

•  Step 2: Generate all two-relation plans 

–  For each each single-relation plan from step 1 
–  Consider that plan as outer relation 
–  Consider every other relation as inner relation 

–  Compute cost for each plan 

–  Keep cheapest plan per “interesting” output order 
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Dynamic Programming Algo. 

•  Step 3: Generate all three-relation plans 

–  For each each two-relation plan from step 2 
–  Consider that plan as outer relation 
–  Consider every other relation as inner relation 
–  Compute cost for each plan 
–  Keep cheapest plan per “interesting” output order 

•  Steps 4 through n: repeat until plan contains all the 
relations in the query 

69 



CSE 544 - Winter 2018 

Commercial Query Optimizers 

DB2, Informix, Microsoft SQL Server, Oracle 8 

•  Inspired by System R 
–  Left-deep plans and dynamic programming 
–  Cost-based optimization (CPU and IO) 

•  Go beyond System R style of optimization 
–  Also consider right-deep and bushy plans (e.g., Oracle and DB2) 
–  Variety of additional strategies for generating plans (e.g., DB2 

and SQL Server) 
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Other Query Optimizers 

•  Randomized plan generation 
–  Genetic algorithm 
–  PostgreSQL uses it for queries with many joins 

•  Rule-based 
–  Extensible collection of rules 
–  Rule = Algebraic law with a direction 
–  Algorithm for firing these rules 

•  Generate many alternative plans, in some order 
•  Prune by cost 

–  Startburst (later DB2) and Volcano (later SQL Server) 
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