CSE 544 Principles of Database Management Systems

Lectures 9 -10: Query optimization

Announcements

- HW3 (SimpleDB) is due next Friday!
- Reading assignment was due today

Query Optimization Motivation

What We Already Know

- There exists many logical plans...
- ... and for each, there exist many physical plans
- Optimizer chooses the logical/physical plan with the smallest <u>estimated</u> cost

Discussion of the Paper

- Query parsing/authorization
- Query rewriting:
 - Is salary < 75k and salary > 100k implausible?
 - What is semantic optimization?
- Query optimizer
 - Will discuss in detail...
 - What is query re-optimization?
 Predictable performance (IBM) v.s. self-tuning (Microsoft)
 - What is the "halloween problem"?
- Query execution
 - What are BP-tuples v.s. M-tuples? What is the *pin-count*?
- Access methods: will discuss

Query Optimization

Three major components:

- 1. Cardinality and cost estimation
- 2. Search space
- 3. Plan enumeration algorithms

Estimating Cost of a Query Plan

Goal: compute the cost of an entire physical query plan

- We already know how to compute the cost of each physical operator if we knew the T(R) and B(R) for each of its arguments
- Goal: estimate T(R) for each intermediate result R B(R) can be derived from T(R)

Statistics on Base Data

- Collected information for each database relation
 - Number of tuples (cardinality) T(R)
 - Number of physical pages B(R), clustering info
 - Indexes, number of keys in the index V(R,a)
 - Statistical information on attributes
 - Min value, max value, number distinct values
 - Histograms
 - Correlations between columns (hard)
- Collection approach: periodic, using sampling

Size Estimation

Projection: output size same as input size $T(\Pi(R)) = T(R)$

Selection: the size decreases by <u>selectivity factor</u> θ T($\sigma_{pred}(R)$) = T(R) * θ_{pred}

Selectivity Factors

- A = c /* $\sigma_{A=c}(R)$ */ - Selectivity = 1/V(R,A)
- A < c /* $\sigma_{A < c}(R)^*/$ - Selectivity = (c - min(R, A))/(max(R,A) - min(R,A))
- c1 < A < c2 /* $\sigma_{c1 < A < c2}(R)$ */ - Selectivity = (c2 - c1)/(max(R,A) - min(R,A))
- Multiple predicates: assume independence

Estimating Result Sizes

- $Join \; R \; \bowtie_{R.A=S.B} \; S$
- Take product of cardinalities of relations R and S
- Apply this selectivity factor: 1/ (MAX(V(R,A), V(S,B))
- Why? Will explain next...

Assumptions

- <u>Containment of values</u>: if V(R,A) ≤ V(S,B), then the set of A values of R is included in the set of B values of S
 - Note: this indeed holds when A is a foreign key in R, and B is a key in S
- <u>Preservation of values</u>: for any other attribute C,
 V(R ⋈_{A=B} S, C) = V(R, C) (or V(S, C))

– This is only needed higher up in the plan

Selectivity of R $\bowtie_{A=B} S$

Assume $V(R,A) \leq V(S,B)$

- Each tuple t in R joins with T(S)/V(S,B) tuples in S
- Hence $T(R \bowtie_{A=B} S) = T(R) T(S) / V(S,B)$

In general: $T(R \bowtie_{A=B} S) = T(R) T(S) / max(V(R,A),V(S,B))$

Computing the Cost of a Plan

- Estimate <u>cardinality</u> in a bottom-up fashion
 - Cardinality is the <u>size</u> of a relation (nb of tuples)
 - Compute size of all intermediate relations in plan
- Estimate <u>cost</u> by using the estimated cardinalities
- Extensive example next...

RMS in Postgres

Courtesy of Walter Cai

Simplifications

 We considered only IO cost; in general we need IO+CPU

 We assumed that all index pages were in memory: sometimes we need to add the cost of fetching index pages from disk

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Employee(<u>ssn</u>, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{age=48}$ (Empolyee) = ? $\sigma_{age>28 \text{ and } age<35}$ (Empolyee) = ?

Employee(<u>ssn</u>, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{age=48}$ (Empolyee) = ? $\sigma_{age>28 \text{ and } age<35}$ (Empolyee) = ?

Estimate = 25000 / 50 = 500 Estimate = 25000 * 6 / 50 = 3000

CSE 544 - Winter 2018

Employee(<u>ssn</u>, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{age=48}$ (Empolyee) = ? $\sigma_{age>28 \text{ and } age<35}$ (Empolyee) = ?

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	200	800	5000	12000	6500	500

Employee(<u>ssn</u>, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{age=48}$ (Empolyee) = ? $\sigma_{age>28 \text{ and } age<35}$ (Empolyee) = ?

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	200	800	5000	12000	6500	500

Estimate = 1200 Estimate = 1*80 + 5*500 = 2580

Types of Histograms

 How should we determine the bucket boundaries in a histogram ?

Types of Histograms

- How should we determine the bucket boundaries in a histogram ?
- Eq-Width
- Eq-Depth
- Compressed
- V-Optimal histograms

Eq-width:

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	200	800	5000	12000	6500	500

Eq-depth:

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	1800	2000	2100	2200	1900	1800

Compressed: store separately highly frequent values: (48,1900)

V-Optimal Histograms

- Defines bucket boundaries in an optimal way, to minimize the error over all point queries
- Computed rather expensively, using dynamic programming
- Modern databases systems use V-optimal histograms or some variations

Discussion

- Small number of buckets
 - Hundreds, or thousands, but not more
 - WHY ?
- Not updated during database update, but recomputed periodically
 - WHY ?
- Multidimensional histograms rarely used
 - WHY ?

Query Optimization

Three major components:

- 1. Cardinality and cost estimation
- 2. Search space
 - Access path selection
 - Rewrite rules

3. Plan enumeration algorithms

Access Path

Access path: a way to retrieve tuples from a table

- A file scan, or
- An index *plus* a matching selection condition

Usually the access path implements a selection $\sigma_P(R)$, where the predicate P is called <u>search argument</u> SARG (see paper)

Supplier(sid,sname,scity,sstate) Selection condition: sid > 300 ^ scity='Seattle' Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20 Max(Supplier, sid) = 1000, Min(Supplier,sid) =1 B(Supplier) = 100, T(Supplier) = 1000

Which access path should we use?

Supplier(sid,sname,scity,sstate) Selection condition: sid > 300 ^ scity='Seattle' Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20 Max(Supplier, sid) = 1000, Min(Supplier,sid) =1 B(Supplier) = 100, T(Supplier) = 1000

Which access path should we use?

1. Sequential scan: cost = 100

Supplier(sid,sname,scity,sstate) Selection condition: sid > 300 ^ scity='Seattle' Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20 Max(Supplier, sid) = 1000, Min(Supplier,sid) =1 B(Supplier) = 100, T(Supplier) = 1000

Which access path should we use?

- 1. Sequential scan: cost = 100
- 2. Index scan on sid: cost = 7/10 * 100 = 70

Supplier(sid,sname,scity,sstate) Selection condition: sid > 300 ^ scity='Seattle' Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20 Max(Supplier, sid) = 1000, Min(Supplier,sid) =1 B(Supplier) = 100, T(Supplier) = 1000

Which access path should we use?

- 1. Sequential scan: cost = 100
- 2. Index scan on sid: cost = 7/10 * 100 = 70
- 3. Index scan on scity: cost = 1000/20 = 50

Rewrite Rules

- The optimizer's search space is defined by the set of rewrite rules that it implements
- More rewrite rules means that more plans are being explored

Relational Algebra Laws

Selections

- Commutative: $\sigma_{c1}(\sigma_{c2}(R))$ same as $\sigma_{c2}(\sigma_{c1}(R))$
- Cascading: $\sigma_{c1 \land c2}(R)$ same as $\sigma_{c2}(\sigma_{c1}(R))$

• Projections

- Cascading

• Joins

- Commutative : $R \bowtie S$ same as $S \bowtie R$
- Associative: $R \bowtie (S \bowtie T)$ same as $(R \bowtie S) \bowtie T$

Selections and Joins

R(A, B), S(C,D)

 $\sigma_{A=v}(R(A,B) \bowtie_{B=C} S(C,D)) =$

Selections and Joins

R(A, B), S(C,D)

$$\sigma_{A=v}(R(A,B) \bowtie_{B=C} S(C,D)) = (\sigma_{A=v}(R(A,B))) \bowtie_{B=C} S(C,D)$$

The simplest optimizers use <u>only</u> this rule Called <u>heuristic-based opimtizer</u> In general: <u>cost-based optimizer</u>

Group-by and Join

R(A, B), S(C,D)

 $\gamma_{A, sum(D)}(R(A,B) \bowtie_{B=C} S(C,D)) =$

Group-by and Join

R(A, B), S(C,D)

 $\begin{array}{l} \gamma_{\mathsf{A, sum}(\mathsf{D})}(\mathsf{R}(\mathsf{A},\mathsf{B}) \bowtie_{\mathsf{B}=\mathsf{C}} \mathsf{S}(\mathsf{C},\mathsf{D})) = \\ \gamma_{\mathsf{A, sum}(\mathsf{D})}(\mathsf{R}(\mathsf{A},\mathsf{B}) \bowtie_{\mathsf{B}=\mathsf{C}} (\gamma_{\mathsf{C, sum}(\mathsf{D})} \mathsf{S}(\mathsf{C},\mathsf{D}))) \end{array}$

These are very powerful laws. They were introduced only in the 90's.

Search Space Challenges

- Search space is huge!
 - Many possible equivalent trees (logical)
 - Many implementations for each operator (physical)
 - Many access paths for each relation (physical)
- Cannot consider ALL plans
- Want a search space that includes low-cost plans
- Typical compromises:
 - Only left-deep plans
 - Only plans without cartesian products
 - Always push selections down to the leaves

Query Optimization

Three major components:

- 1. Cardinality and cost estimation
- 2. Search space
- 3. Plan enumeration algorithms

Two Types of Optimizers

- Heuristic-based optimizers:
 - Apply greedily rules that always improve plan
 - Typically: push selections down
 - Very limited: no longer used today
- Cost-based optimizers:
 - Use a cost model to estimate the cost of each plan
 - Select the "cheapest" plan
 - We focus on cost-based optimizers

Three Approaches to Search Space Enumeration

- Complete plans
- Bottom-up plans
- Top-down plans

Complete Plans

CSE 544 - Winter 2018

Bottom-up Partial Plans

CSE 544 - Winter 2018

Top-down Partial Plans

Why is this best for rewrite rules?

Two Types of Plan Enumeration Algorithms

- Dynamic programming (in class)
 - Based on System R (aka Selinger) style optimizer[1979]
 - Limited to joins: *join reordering algorithm*
 - Bottom-up
- Rule-based algorithm (will not discuss)
 - Database of rules (=algebraic laws)
 - Usually: dynamic programming
 - Usually: top-down

System R Search Space (1979)

- Only left-deep plans
 - Enable dynamic programming for enumeration
 - Facilitate tuple pipelining from outer relation
- Consider plans with all "interesting orders"
- Perform cross-products after all other joins (heuristic)
- Only consider nested loop & sort-merge joins
- Consider both file scan and indexes
- Try to evaluate predicates early

System R Enumeration Algorithm

- Idea: use dynamic programming
- For each subset of {R1, ..., Rn}, compute the best plan for that subset
- In increasing order of set cardinality:
 - Step 1: for {R1}, {R2}, …, {Rn}
 - Step 2: for {R1,R2}, {R1,R3}, ..., {Rn-1, Rn}

- ...

- Step n: for {R1, …, Rn}
- It is a bottom-up strategy
- A subset of {R1, ..., Rn} is also called a *subquery*

- For each subquery Q ⊆{R1, ..., Rn} compute the following:
 - Size(Q)
 - A best plan for Q: Plan(Q)
 - The cost of that plan: Cost(Q)

- **Step 1**: Enumerate all single-relation plans
 - Consider selections on attributes of relation
 - Consider all possible access paths
 - Consider attributes that are not needed
 - Compute cost for each plan
 - Keep cheapest plan per "interesting" output order

- Step 2: Generate all two-relation plans
 - For each each single-relation plan from step 1
 - Consider that plan as outer relation
 - Consider every other relation as inner relation
 - Compute cost for each plan
 - Keep cheapest plan per "interesting" output order

- **Step 3**: Generate all three-relation plans
 - For each each two-relation plan from step 2
 - Consider that plan as outer relation
 - Consider every other relation as inner relation
 - Compute cost for each plan
 - Keep cheapest plan per "interesting" output order
- Steps 4 through n: repeat until plan contains all the relations in the query

Commercial Query Optimizers

DB2, Informix, Microsoft SQL Server, Oracle 8

- Inspired by System R
 - Left-deep plans and dynamic programming
 - Cost-based optimization (CPU and IO)
- Go beyond System R style of optimization
 - Also consider right-deep and bushy plans (e.g., Oracle and DB2)
 - Variety of additional strategies for generating plans (e.g., DB2 and SQL Server)

Other Query Optimizers

Randomized plan generation

- Genetic algorithm
- PostgreSQL uses it for queries with many joins

• Rule-based

- *Extensible* collection of rules
- Rule = Algebraic law with a direction
- Algorithm for firing these rules
 - Generate many alternative plans, in some order
 - Prune by cost
- Startburst (later DB2) and Volcano (later SQL Server)