# CSE 544 Principles of Database Management Systems

Lecture 12 – Parallel DBMSs

#### Announcements

- HW3 due on Friday!!!
- HW4 posted please apply for AWS credits asap
- Project, project, ...
- No class on Monday

#### Where We Are

- Relational data model: SQL, RA, datalog, FDs, ...
- Systems: disk I/Os, buffer, physical RA, iterator model, ...
- Today: scaling up to parallel computation

## Two Ways to Scale a DBMS



## Two Ways to Scale a DBMS

- Obviously this can be used to:
  - Execute multiple queries in parallel
  - Speed up a single query
- For now: how to speed up a single query
- We will worry about how to scale to multiple queries later

## Parallel v.s. Distributed Databases

- Distributed database system:
  - Data is managed by several sites, each site capable of running independently

- Parallel database system:
  - Data is managed by a single site, but processed distributively, using parallel implementation

### Parallel DBMSs

- Goal
  - Improve performance by executing multiple operations in parallel
- Key benefit
  - Cheaper to scale than relying on a single increasingly more powerful processor
- Key challenge
  - Ensure overhead and contention do not kill performance

## Performance Metrics for Parallel DBMSs

#### Speedup

- More processors → higher speed
- Individual queries should run faster
- Should do more transactions per second (TPS)
- Fixed problem size overall, vary # of processors ("strong scaling")

## Linear v.s. Non-linear Speedup



## Performance Metrics for Parallel DBMSs

#### Scaleup

- More processors → can process more data
- Fixed problem size per processor, vary # of processors ("weak scaling")
- Batch scaleup
  - Same query on larger input data should take the same time
- Transaction scaleup
  - N-times as many TPS on N-times larger database
  - But each transaction typically remains small

### Linear v.s. Non-linear Scaleup



### Buzzwords, buzzwords

- Be careful. Commonly used terms today:
  - "scale up" = use an increasingly more powerful server
  - "scale out" = use a larger number of servers

## Challenges to Linear Speedup and Scaleup

#### Startup cost

Cost of starting an operation on many processors

#### Interference

Contention for resources between processors

#### Skew

Slowest processor becomes the bottleneck

### Parallel DBMS Architectures

## Architecture for Parallel DBMS: Shared Memory



Aka SMP= symmetric multi processor

## Architecture for Parallel DBMS: Shared Disk



## Architecture for Parallel DBMS: Shared Nothing



#### A Professional Picture...

Figure 1 - Types of database architecture



From: Greenplum Database Whitepaper

SAN = "Storage Area Network"

### **Shared Memory**

- Nodes share both RAM and disk
- Dozens to hundreds of processors

Example: SQL Server runs on a single machine

leverage many threads to get a query to run faster

#### Characteristics:

- Easy to use and program
- But very expensive to scale

#### **Shared Disk**

- All nodes access the same disks
- Found in the largest "single-box" (non-cluster) multiprocessors

Oracle dominates this class of systems

#### Characteristics:

 Also hard to scale past a certain point: existing deployments typically have fewer than 10 machines

## **Shared Nothing**

- Cluster of machines on high-speed network
- Called "clusters" or "blade servers"
- Each machine has its own memory and disk: lowest contention.

NOTE: Because all machines today have many cores and many disks, then shared-nothing systems typically run many "nodes" on a single physical machine.

#### Characteristics:

- Today, this is the most scalable architecture.
- Most difficult to administer and tune.

#### So...

You have a parallel machine. Now what?

 How do you speed up your DBMS given a sharednothing architecture?

- Inter-query parallelism
  - Each query runs on one processor
  - Only for running multiple queries (OLTP)



- Inter-query parallelism
  - Each query runs on one processor
  - Only for running multiple queries (OLTP)
- Inter-operator parallelism
  - A query runs on multiple processors
  - An operator runs on one processor
  - For both OLTP and Decision Support





- Inter-query parallelism
  - Each query runs on one processor
  - Only for running multiple queries (OLTP)
- Inter-operator parallelism
  - A query runs on multiple processors
  - An operator runs on one processor
  - For both OLTP and Decision Support
- Intra-operator parallelism
  - An operator runs on multiple processors
  - For both OLTP and Decision Support





- Inter-query parallelism
  - Each query runs on one processor
  - Only for running multiple queries (OLTP)
- Inter-operator parallelism
  - A query runs on multiple processors
  - An operator runs on one processor
  - For both OLTP and Decision Support
- Intra-operator parallelism
  - An operator runs on multiple processors
  - For both OLTP and Decision Support





We study only intra-operator parallelism: most scalable

## **Data Partitioning**

## Horizontal Data Partitioning

- Relation R split into P chunks R<sub>0</sub>, ..., R<sub>P-1</sub>, stored at the P nodes
- Block partitioned
  - Each group of k tuples go to a different node
- Hash based partitioning on attribute A:
  - Tuple t to chunk h(t.A) mod P
- Range based partitioning on attribute A:
  - Tuple t to chunk i if  $v_{i-1} < t.A < v_i$

#### Uniform Data v.s. Skewed Data

- Let R(K,A,B,C); which of the following partition methods may result in skewed partitions?
- Block partition
- Hash-partition
  - On the key K
  - On the attribute A
- Range-partition
  - On the key K
  - On the attribute A



#### All You Need to Know About Skew

Hash-partition a m data values (with duplicates!) to p bins

Fact 1 Expected size of any one fixed bin is m/p

Fact 2 Say that data is *skewed* if some value has degree > m/p. Then **some** bin has load > m/p

factors

Fact 3 Conversely, if the database is skew-free then max size of all bins = O(m/p) w.h.p.

## Parallelizing Operator Implementations

#### Parallel Selection

Compute  $\sigma_{A=v}(R)$ , or  $\sigma_{v1<A< v2}(R)$ 

On a conventional database: cost = B(R)

Q: What is the cost on a parallel database with P processors?

- Block partitioned
- Hash partitioned
- Range partitioned

#### Parallel Selection

Q: What is the cost on a parallel database with P nodes?

A: B(R) / P in all cases (except range) if cost is response time

However, not all processors are equal (workwise):

- Block: all servers do the same amount of work
- Hash: one server for  $\sigma_{A=v}(R)$ , all for  $\sigma_{v1<A< v2}(R)$
- Range: some servers only

- If R is partitioned on A, then each node computes the group-by locally
- Otherwise, hash-partition R(K,A,B,C) on A, then compute group-by locally:



- Step 1: server i partitions chunk R<sub>i</sub> using a hash function h(t.A) mod P: R<sub>i0</sub>, R<sub>i1</sub>, ..., R<sub>i,P-1</sub> (there are P servers total)
- Step 2: server i sends partition R<sub>ij</sub> to server j
- Step 3: server j computes  $\gamma_{A, sum(B)}$  on  $R_{0j}, R_{1j}, ..., R_{P-1,j}$

#### Can we do better?

- Sum?
- Count?
- Avg?
- Max?
- Median?

- Sum(B) = Sum(B<sub>0</sub>) + Sum(B<sub>1</sub>) + ... + Sum(B<sub>n</sub>)
- Count(B) = Count(B<sub>0</sub>) + Count(B<sub>1</sub>) + ... + Count(B<sub>n</sub>)
- $Max(B) = Max(Max(B_0), Max(B_1), ..., Max(B_n))$

#### distributive

Avg(B) = Sum(B) / Count(B)

algebraic

Median(B) = ???

holistic

## Parallel Join: R ⋈<sub>A=B</sub> S

#### Step 1

- For all servers in [0,k], server i partitions chunk R<sub>i</sub> using a hash function h(t.A) mod P: R<sub>i0</sub>, R<sub>i1</sub>, ..., R<sub>i.P-1</sub>
- For all servers in [k+1,P], server j partitions chunk S<sub>j</sub> using a hash function h(t.A) mod P: S<sub>j0</sub>, S<sub>j1</sub>, ..., R<sub>j,P-1</sub>

#### Step 2:

- Server i sends partition R<sub>iii</sub> to server u
- Server j sends partition S<sub>ju</sub> to server u
- Steps 3: Server u computes the join of R<sub>iu</sub> with S<sub>ju</sub>

## Example of Parallel Query Plan

Find all orders from today, along with the items ordered

```
SELECT *

FROM Orders o, Lines i
WHERE o.item = i.item

AND o.date = today()

scan

Item i

Order o
```

### Example Parallel Plan





### Example Parallel Plan





CSE 544 - Winter 2018

### **Example Parallel Plan**



## Optimization for Small Relations

- When joining R and S
- If |R| >> |S|
  - Leave R where it is
  - Replicate entire S relation across nodes
- Sometimes called a "small join" or "broadcast join"

## Other Interesting Parallel Join Implementation

Problem of skew during join computation

Some join partitions get more input tuples than others

- Reason 1: Base data unevenly distributed
  - Because used a range-partition function
  - Or used hashing but some values are very popular (Skew)
- Reason 2: Selection before join with different selectivities
- Reason 3: Input data got unevenly rehashed (or otherwise repartitioned before the join)

Some partitions output more tuples than others

## Some Skew Handling Techniques

- 1. Use range- instead of hash-partitions
  - Ensure that each range gets same number of tuples
  - Example: {1, 1, 1, 2, 3, 4, 5, 6} → [1,2] and [3,6]
- 2. Create more partitions than nodes
  - And be smart about scheduling the partitions
- 3. Use subset-replicate (i.e., "skewedJoin")
  - Given an extremely common value 'v'
  - Distribute R tuples with value v randomly across k nodes (R is the build relation)
  - Replicate S tuples with value v to same k machines (S is the probe relation)

## Parallel Dataflow Implementation

Use relational operators unchanged

#### Add a special shuffle operator

- Handle data routing, buffering, and flow control
- Inserted between consecutive operators in the query plan
- Two components: ShuffleProducer and ShuffleConsumer
- Producer pulls data from operator and sends to n consumers
  - Producer acts as driver for operators below it in query plan
- Consumer buffers input data from n producers and makes it available to operator through getNext interface

#### Conclusion

- Making databases parallel is another way to speed up query processing
- Many algorithms for parallelizing different relational operators
- Next time: MapReduce and Spark