CSE 544 Principles of Database Management Systems

Lecture 12 – Parallel DBMSs

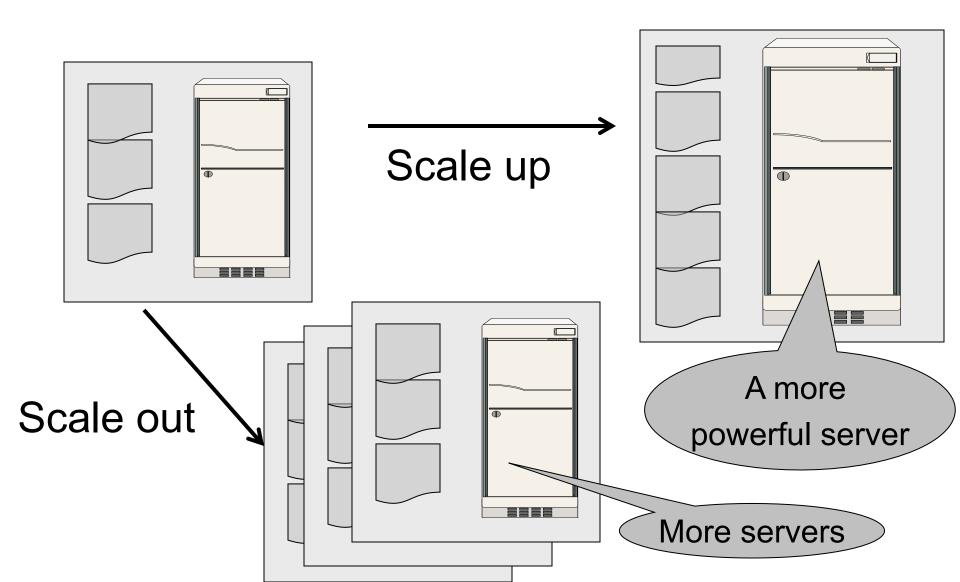
Announcements

- HW3 due on Friday!!!
- HW4 posted please apply for AWS credits asap
- Project, project, ...
- No class on Monday

Where We Are

- Relational data model: SQL, RA, datalog, FDs, ...
- Systems: disk I/Os, buffer, physical RA, iterator model, ...
- Today: scaling up to parallel computation

Two Ways to Scale a DBMS



Two Ways to Scale a DBMS

- Obviously this can be used to:
 - Execute multiple queries in parallel
 - Speed up a single query
- For now: how to speed up a single query
- We will worry about how to scale to multiple queries later

Parallel v.s. Distributed Databases

- Distributed database system:
 - Data is managed by several sites, each site capable of running independently

- Parallel database system:
 - Data is managed by a single site, but processed distributively, using parallel implementation

Parallel DBMSs

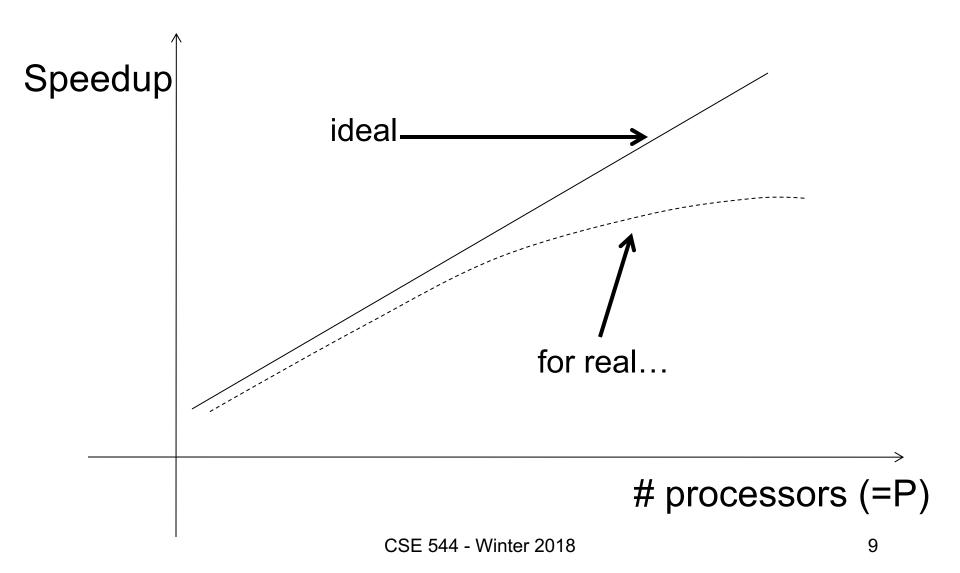
- Goal
 - Improve performance by executing multiple operations in parallel
- Key benefit
 - Cheaper to scale than relying on a single increasingly more powerful processor
- Key challenge
 - Ensure overhead and contention do not kill performance

Performance Metrics for Parallel DBMSs

Speedup

- More processors → higher speed
- Individual queries should run faster
- Should do more transactions per second (TPS)
- Fixed problem size overall, vary # of processors ("strong scaling")

Linear v.s. Non-linear Speedup

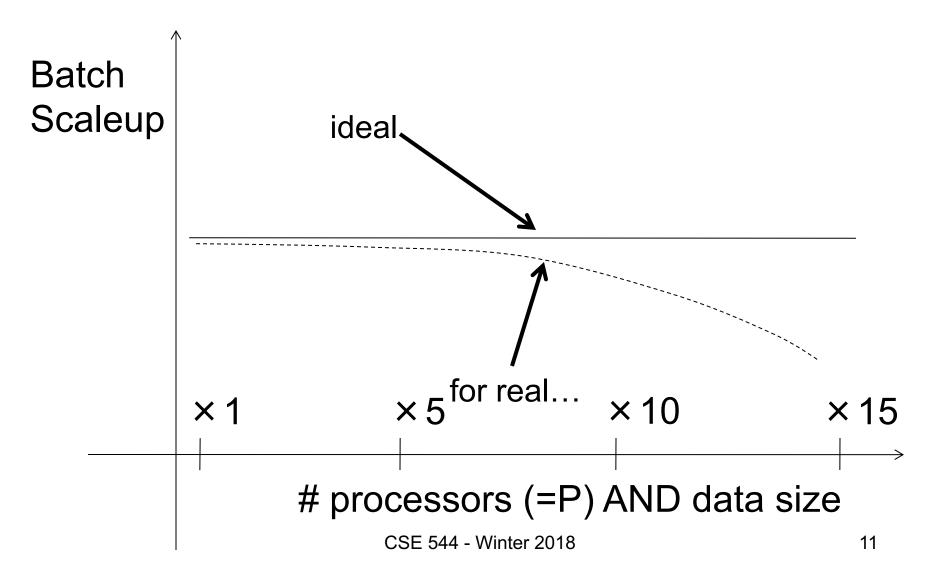


Performance Metrics for Parallel DBMSs

Scaleup

- More processors → can process more data
- Fixed problem size per processor, vary # of processors ("weak scaling")
- Batch scaleup
 - Same query on larger input data should take the same time
- Transaction scaleup
 - N-times as many TPS on N-times larger database
 - But each transaction typically remains small

Linear v.s. Non-linear Scaleup



Buzzwords, buzzwords

- Be careful. Commonly used terms today:
 - "scale up" = use an increasingly more powerful server
 - "scale out" = use a larger number of servers

Challenges to Linear Speedup and Scaleup

Startup cost

Cost of starting an operation on many processors

Interference

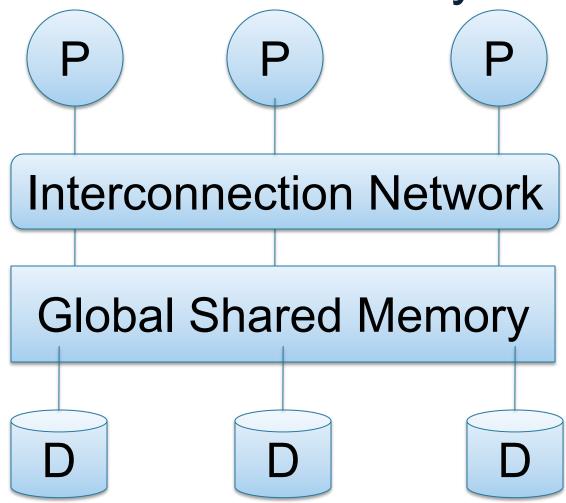
Contention for resources between processors

Skew

Slowest processor becomes the bottleneck

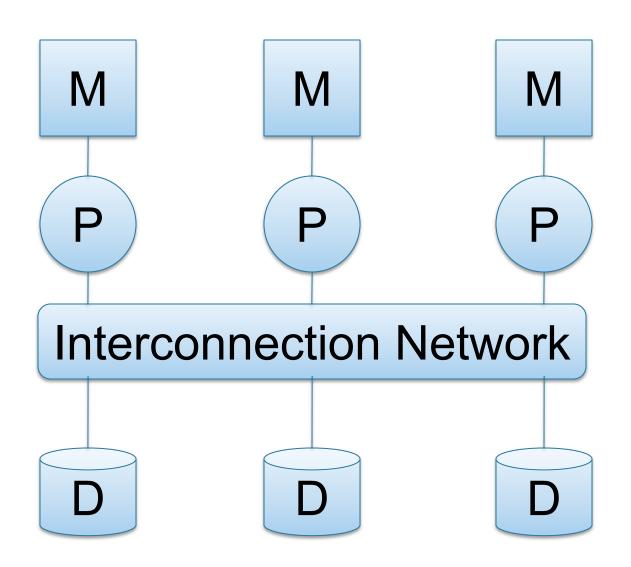
Parallel DBMS Architectures

Architecture for Parallel DBMS: Shared Memory

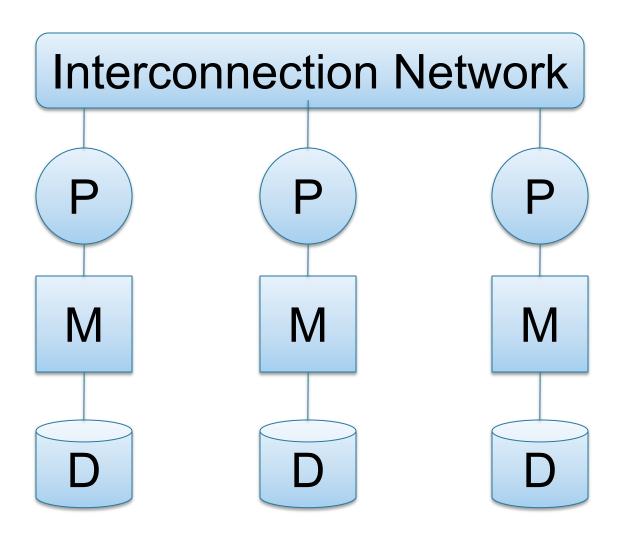


Aka SMP= symmetric multi processor

Architecture for Parallel DBMS: Shared Disk

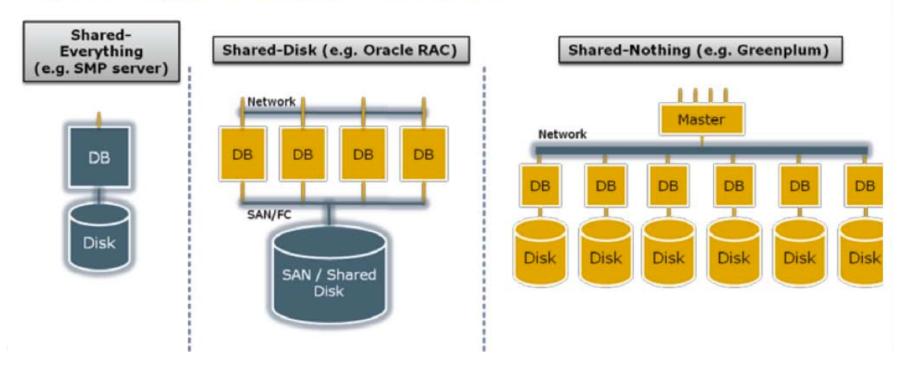


Architecture for Parallel DBMS: Shared Nothing



A Professional Picture...

Figure 1 - Types of database architecture



From: Greenplum Database Whitepaper

SAN = "Storage Area Network"

Shared Memory

- Nodes share both RAM and disk
- Dozens to hundreds of processors

Example: SQL Server runs on a single machine

leverage many threads to get a query to run faster

Characteristics:

- Easy to use and program
- But very expensive to scale

Shared Disk

- All nodes access the same disks
- Found in the largest "single-box" (non-cluster) multiprocessors

Oracle dominates this class of systems

Characteristics:

 Also hard to scale past a certain point: existing deployments typically have fewer than 10 machines

Shared Nothing

- Cluster of machines on high-speed network
- Called "clusters" or "blade servers"
- Each machine has its own memory and disk: lowest contention.

NOTE: Because all machines today have many cores and many disks, then shared-nothing systems typically run many "nodes" on a single physical machine.

Characteristics:

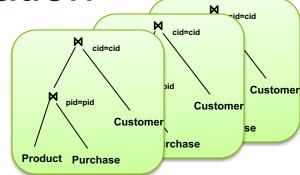
- Today, this is the most scalable architecture.
- Most difficult to administer and tune.

So...

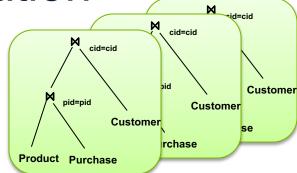
You have a parallel machine. Now what?

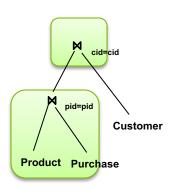
 How do you speed up your DBMS given a sharednothing architecture?

- Inter-query parallelism
 - Each query runs on one processor
 - Only for running multiple queries (OLTP)

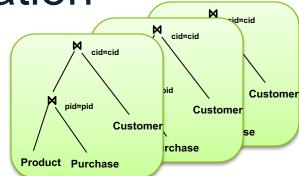


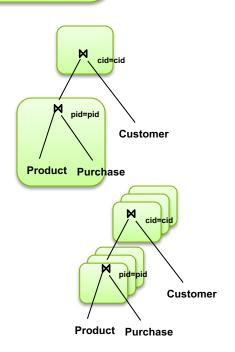
- Inter-query parallelism
 - Each query runs on one processor
 - Only for running multiple queries (OLTP)
- Inter-operator parallelism
 - A query runs on multiple processors
 - An operator runs on one processor
 - For both OLTP and Decision Support



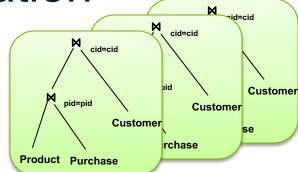


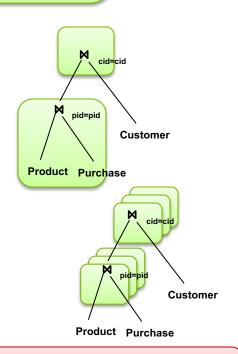
- Inter-query parallelism
 - Each query runs on one processor
 - Only for running multiple queries (OLTP)
- Inter-operator parallelism
 - A query runs on multiple processors
 - An operator runs on one processor
 - For both OLTP and Decision Support
- Intra-operator parallelism
 - An operator runs on multiple processors
 - For both OLTP and Decision Support





- Inter-query parallelism
 - Each query runs on one processor
 - Only for running multiple queries (OLTP)
- Inter-operator parallelism
 - A query runs on multiple processors
 - An operator runs on one processor
 - For both OLTP and Decision Support
- Intra-operator parallelism
 - An operator runs on multiple processors
 - For both OLTP and Decision Support





We study only intra-operator parallelism: most scalable

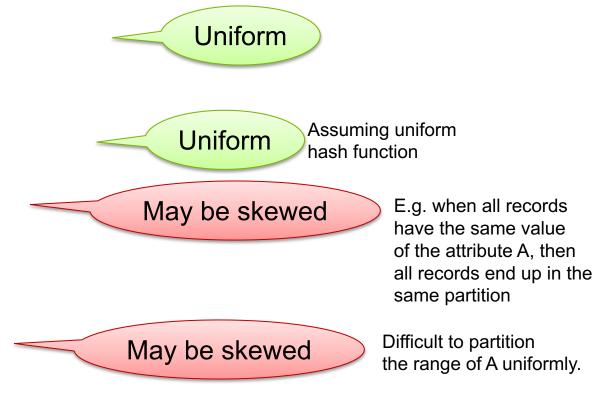
Data Partitioning

Horizontal Data Partitioning

- Relation R split into P chunks R₀, ..., R_{P-1}, stored at the P nodes
- Block partitioned
 - Each group of k tuples go to a different node
- Hash based partitioning on attribute A:
 - Tuple t to chunk h(t.A) mod P
- Range based partitioning on attribute A:
 - Tuple t to chunk i if $v_{i-1} < t.A < v_i$

Uniform Data v.s. Skewed Data

- Let R(K,A,B,C); which of the following partition methods may result in skewed partitions?
- Block partition
- Hash-partition
 - On the key K
 - On the attribute A
- Range-partition
 - On the key K
 - On the attribute A



All You Need to Know About Skew

Hash-partition a m data values (with duplicates!) to p bins

Fact 1 Expected size of any one fixed bin is m/p

Fact 2 Say that data is *skewed* if some value has degree > m/p. Then **some** bin has load > m/p

factors

Fact 3 Conversely, if the database is skew-free then max size of all bins = O(m/p) w.h.p.

Parallelizing Operator Implementations

Parallel Selection

Compute $\sigma_{A=v}(R)$, or $\sigma_{v1<A< v2}(R)$

On a conventional database: cost = B(R)

Q: What is the cost on a parallel database with P processors?

- Block partitioned
- Hash partitioned
- Range partitioned

Parallel Selection

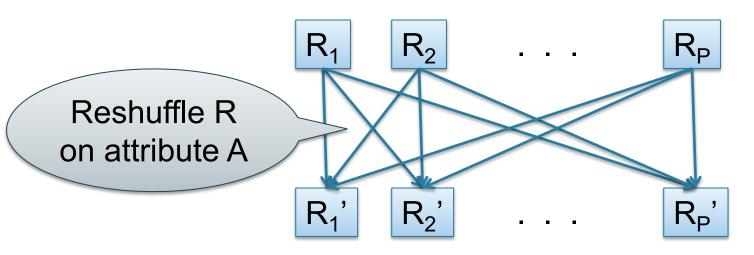
Q: What is the cost on a parallel database with P nodes?

A: B(R) / P in all cases (except range) if cost is response time

However, not all processors are equal (workwise):

- Block: all servers do the same amount of work
- Hash: one server for $\sigma_{A=v}(R)$, all for $\sigma_{v1<A< v2}(R)$
- Range: some servers only

- If R is partitioned on A, then each node computes the group-by locally
- Otherwise, hash-partition R(K,A,B,C) on A, then compute group-by locally:



- Step 1: server i partitions chunk R_i using a hash function h(t.A) mod P: R_{i0}, R_{i1}, ..., R_{i,P-1} (there are P servers total)
- Step 2: server i sends partition R_{ij} to server j
- Step 3: server j computes $\gamma_{A, sum(B)}$ on $R_{0j}, R_{1j}, ..., R_{P-1,j}$

Can we do better?

- Sum?
- Count?
- Avg?
- Max?
- Median?

- Sum(B) = Sum(B₀) + Sum(B₁) + ... + Sum(B_n)
- Count(B) = Count(B₀) + Count(B₁) + ... + Count(B_n)
- $Max(B) = Max(Max(B_0), Max(B_1), ..., Max(B_n))$

distributive

Avg(B) = Sum(B) / Count(B)

algebraic

Median(B) = ???

holistic

Parallel Join: R ⋈_{A=B} S

Step 1

- For all servers in [0,k], server i partitions chunk R_i using a hash function h(t.A) mod P: R_{i0}, R_{i1}, ..., R_{i.P-1}
- For all servers in [k+1,P], server j partitions chunk S_j using a hash function h(t.A) mod P: S_{j0}, S_{j1}, ..., R_{j,P-1}

Step 2:

- Server i sends partition R_{iii} to server u
- Server j sends partition S_{ju} to server u
- Steps 3: Server u computes the join of R_{iu} with S_{ju}

Example of Parallel Query Plan

Find all orders from today, along with the items ordered

```
SELECT *

FROM Orders o, Lines i
WHERE o.item = i.item

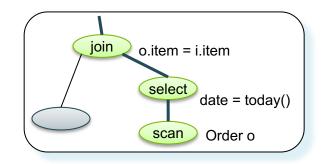
AND o.date = today()

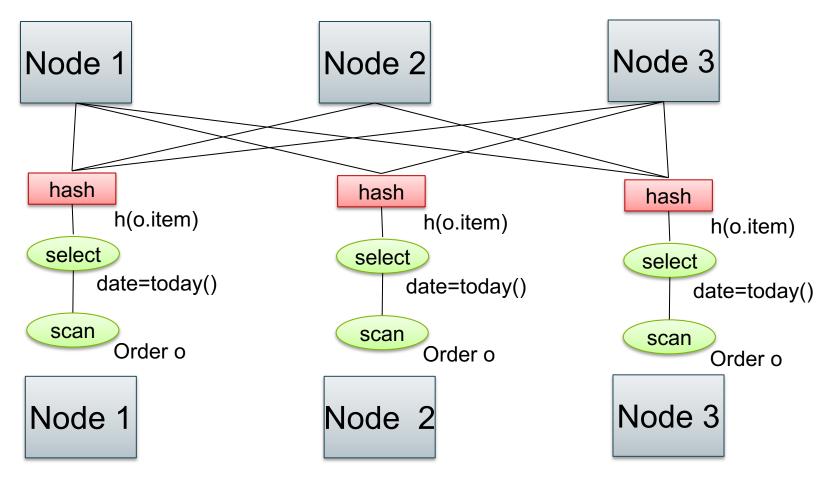
scan

Item i

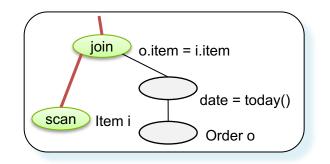
Order o
```

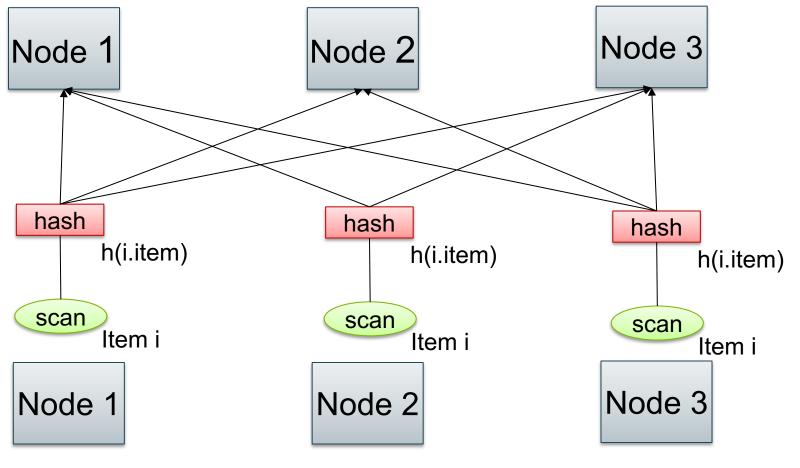
Example Parallel Plan





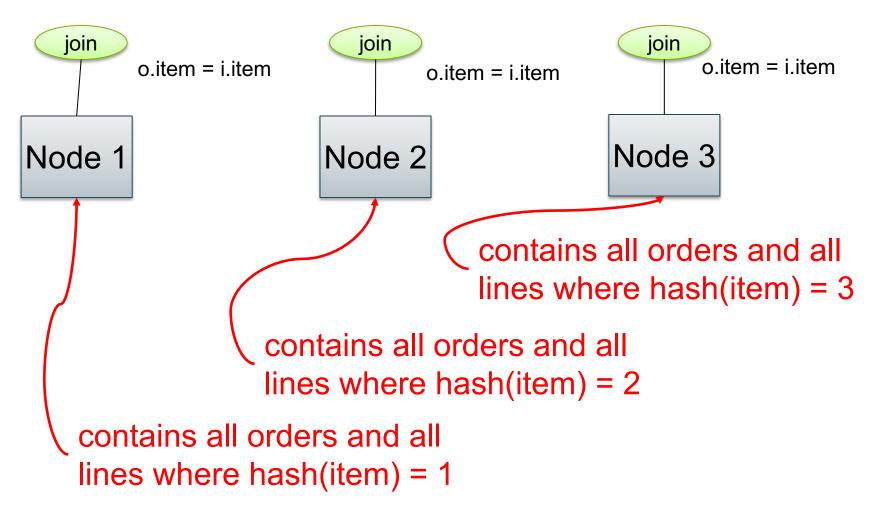
Example Parallel Plan





CSE 544 - Winter 2018

Example Parallel Plan



Optimization for Small Relations

- When joining R and S
- If |R| >> |S|
 - Leave R where it is
 - Replicate entire S relation across nodes
- Sometimes called a "small join" or "broadcast join"

Other Interesting Parallel Join Implementation

Problem of skew during join computation

Some join partitions get more input tuples than others

- Reason 1: Base data unevenly distributed
 - Because used a range-partition function
 - Or used hashing but some values are very popular (Skew)
- Reason 2: Selection before join with different selectivities
- Reason 3: Input data got unevenly rehashed (or otherwise repartitioned before the join)

Some partitions output more tuples than others

Some Skew Handling Techniques

- 1. Use range- instead of hash-partitions
 - Ensure that each range gets same number of tuples
 - Example: {1, 1, 1, 2, 3, 4, 5, 6} → [1,2] and [3,6]
- 2. Create more partitions than nodes
 - And be smart about scheduling the partitions
- 3. Use subset-replicate (i.e., "skewedJoin")
 - Given an extremely common value 'v'
 - Distribute R tuples with value v randomly across k nodes (R is the build relation)
 - Replicate S tuples with value v to same k machines (S is the probe relation)

Parallel Dataflow Implementation

Use relational operators unchanged

Add a special shuffle operator

- Handle data routing, buffering, and flow control
- Inserted between consecutive operators in the query plan
- Two components: ShuffleProducer and ShuffleConsumer
- Producer pulls data from operator and sends to n consumers
 - Producer acts as driver for operators below it in query plan
- Consumer buffers input data from n producers and makes it available to operator through getNext interface

Conclusion

- Making databases parallel is another way to speed up query processing
- Many algorithms for parallelizing different relational operators
- Next time: MapReduce and Spark