CSES544
Data Management

Lecture 2
SQL and Relational Algebra

CSE 544 - Winter 2020

Announcements

Thursday (tomorrow):
— Makeup lecture at10:30 in CSE2 371

Monday: no class (MLK day)
Tuesday: project groups due
Wednesday: first review due
Next Saturday: homework 1 due

CSE 544 - Winter 2020

Outline

wo topics today

 Crash course in SQL

» Relational algebra

CSE 544 - Winter 2020

Structured Query Language:
SQL

 Influenced by relational calculus (= First Order Logic)

« SQL is a declarative query language
— We say what we want to get
— We don'’t say how we should get it

« SQL has many parts
— Data definition language (DDL)
— Data manipulation language (DML)

CSE 544 - Winter 2020

Outline

You study independently SQL DDL

- CREATE TABLE, DROP TABLE, CREATE INDEX,
CLUSTER, ALTER TABLE, ...

« E.g. google for the postgres manual, or type this in psql:
\h create

\h create table
\h cluster
\?

Today: crash course in SQL DML
« SELECT-FROM-WHERE-GROUPBY
« Study independently: INSERT/DELETE/MODIFY

SQL Query

Basic form:

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

CSE 544 - Winter 2020

Simple SQL Query

Product PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi
SELECT PName, Price, Manufacturer
FROM Product @
WHERE Price > 100
PName Price Manufacturer
“selection” and SingleTouch $149.99 Canon
“projection” MultiTouch $203.99 Hitachi

CSE 544 - Winter 2020 7

Eliminating Duplicates

SELECT DISTINCT category
FROM Product |j>

Compare to:

SELECT category
FROM Product

—

CSE 544 - Winter 2020

Category

Gadgets

Photography

Household

Category

Gadgets

Gadgets

Photography

Household

Ordering/limiting the Results

SELECT pname, price, manufacturer
FROM Product

WHERE category="gizmo’ AND price > 50
ORDER BY price, pname

LIMIT 10

Ascending, unless you specify the DESC keyword.

CSE 544 - Winter 2020

Joins

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all products under $200 manufactured in Japan;
return their names and prices.

CSE 544 - Winter 2020

10

Joins

Product (pname, price, category, manufacturer)
Company (chname, stockPrice, country)

Find all products under $200 manufactured in Japan;
return their names and prices.

SELECT P.pname, P.price
FROM Product P, Company C

WHERE P.manufacturer=C.cname AND C.country="Japan’
AND P.price <= 200

CSE 544 - Winter 2020 11

Joins

Product (pname, price, category, manufacturer)
Company (chname, stockPrice, country)

Find all products under $200 manufactured in Japan;
return their names and prices.

SELECT P.pname, P.price
FROM Product P, Company C

WHERE P.manufacturer=C.cname AND C.country="Japan’
AND P.price <= 200

SELECT P.pname, P.price
FROM Product P JOIN Company C ON P.manufacturer=C.cname
WHERE C.country="Japan’ AND P.price <= 200

CSE 544 - Winter 2020 12

Joins

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all countries that manufacture products in both the
gadget category and in the photography category

[in class, or at home]

CSE 544 - Winter 2020 13

Semantics of SQL Queries

SELECT aq, a,, ..., a,
FROM R;AS x4, R, AS x,, ..., R, AS X,
WHERE Conditions

Answer = {}
for x, in R, do
for x, in R, do

”mfor X, In R, do
if Conditions
then Answer = Answer U {(ay,...,a,)}

return Answer

CSE 544 - Winter 2020 14

NULLs in SQL

A NULL value means missing, or
unknown, or undefined, or inapplicable

* We can specify whether attributes may

or may not be NULL.:

CREATE TABLE product
(pid int NOT NULL,
pname text NOT NULL,
price int — may be NULL

)

15

Three-Valued Logic

 False=0, Unknown=0.4, True=1

* Result of a comparison A=B is
— False or True when both A, B are not null
— Unknown otherwise

« AND, OR, NOT are min, max, 1-.

Three-Valued Logic

 False=0, Unknown=0.4, True=1

* Result of a comparison A=B is
— False or True when both A, B are not null
— Unknown otherwise

« AND, OR, NOT are min, max, 1-.

select *
from Product pid Pname | price
where (price <= 100) or (price > 100) 1 iPhone 500

2 iPod 80

3 iPad NULL

Three-Valued Logic

 False=0, Unknown=0.4, True=1

* Result of a comparison A=B is
— False or True when both A, B are not null
— Unknown otherwise

« AND, OR, NOT are min, max, 1-.

select *
from Product pld Pname price
where (price <= 100) or (price > 100) 1 iPhone 500
_ . 2 iPod 80
where (prlce <= 100) or (price > 100) 3 Pad NULL
or isNull(price)

OUter JO| ns Retrieve all product

names, categories,

and stores where they
Product(name, category) were purchased,

Purchase(prodName, store) include products
that never sold

-- prodName is foreign key

19

OUter JO| ns Retrieve all product

names, categories,

and stores where they
Product(name, category) were purchased,

Purchase(prodName, store) include products
that never sold

-- prodName is foreign key

SELECT x.name, Xx.category, y.store
FROM Product x, Purchase y
WHERE Xx.name = y.prodName

OUter JO| ns Retrieve all product

names, categories,

and stores where they
Product(name, category) were purchased,

Purchase(prodName, store) include products
that never sold

-- prodName is foreign key

SELECT x.name, Xx.category, y.store
FROM Product x, Purchase y
WHERE Xx.name = y.prodName

Product Purchase
Name | Category ProdName Store
Gizmo gadget Gizmo Wiz
Camera Photo Camera Ritz
OneClick | Photo Camera Wiz

OUter JO| ns Retrieve all product

names, categories,

and stores where they
Product(name, category) were purchased,

Purchase(prodName, store) include products
that never sold

-- prodName is foreign key

SELECT x.name, Xx.category, y.store
FROM Product x, Purchase y
WHERE Xx.name = y.prodName

Product Purchase Output
Name | Category ProdName Store Name Category | Store
Gizmo gadget Gizmo Wiz Gizmo gadget Wiz
Camera Photo Camera Ritz Camera Photo Ritz
OneClick | Photo Camera Wiz Camera Photo Wiz

OUter JO| ns Retrieve all product

names, categories,

and stores where they
Product(name, category) were purchased,

Purchase(prodName, store) include products
that never sold

-- prodName is foreign key

SELECT x.name, Xx.category, y.store
FROM Product x LEFT OUTER JOIN Purchase y

ON X.name = y.prodName
Product Purchase Output
Name | Category ProdName Store Name Category | Store
Gizmo gadget Gizmo Wiz Gizmo gadget Wiz
Camera Photo Camera Ritz Camera Photo Ritz
OneClick | Photo Camera Wiz Camera Photo Wiz
— OneClick Photo NULL

Now it’s present

Joins

Inner join = includes only matching
tuples (i.e. regular join)

Left outer join = includes everything
from the left

Right outer join = includes everything
from the right

Full outer join = includes everything

CSE 544 - Winter 2020

24

ON v.s. WHERE

* Quter join condition in the ON clause

 Different from the WHERE clause

« Compare:

SELECT x.name, y.store
FROM Product x

LEFT OUTER JOIN Purchase y
ON X.name = y.prodName
AND y.price=10

SELECT x.name, y.store
FROM Product x

LEFT OUTER JOIN Purchase y
ON X.name = y.prodName

WHERE y.price=10

Aggregation

SELECT avg(price)
FROM Product
WHERE maker="Toyota’

SELECT count(*)
FROM Product
WHERE maker="Toyota’

26

Aggregation

SELECT avg(price)
FROM Product
WHERE maker="Toyota’

SELECT count(*)
FROM Product
WHERE maker="Toyota’

SQL supports several aggregation operations:
sum, count, min, max, avg

27

Aggregation

SELECT avg(price)
FROM Product
WHERE maker="Toyota’

SELECT count(*)
FROM Product
WHERE maker="Toyota’

SQL supports several aggregation operations:
sum, count, min, max, avg

Duplicates are kept unless DISTINCT
Nulls are “ignored”

28

Aggregation

SELECT count(*)
FROM Product
WHERE maker="Toyota’

SELECT avg(price)
FROM Product
WHERE maker="Toyota’

SQL supports several aggregation operations:
sum, count, min, max, avg

Duplicates are kept unless DISTINCT
Nulls are “ignored”

SELECT count(*) SELECT count(model) SELECT count(DISTINCT model)
FROM Product FROM Product FROM Product
WHERE maker="Toyota’ WHERE maker="Toyota’ WHERE maker="Toyota’

29

Grouping and Aggregation
Purchase(date, product, price, quantity)

For each product, find the total quantity of sales over $1

CSE 544 - Winter 2020 30

Grouping and Aggregation
Purchase(date, product, price, quantity)

For each product, find the total quantity of sales over $1

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase

WHERE price > 1

GROUP BY product

L et's see what this means...
CSE 544 - Winter 2020 31

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.
2. Group by the attributes in the GROUP BY

3. Compute the SELECT clause:
grouped attributes and aggregates.

CSE 544 - Winter 2020 32

3. SELECT

Product | Price |Quantity

Bagel 3 20 WHERE price > 1
Bagel 1.50 20

Banana .
Banana 2 10
Banana 4 10

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase

WHERE price > 1

GROUP BY product

33

3. SELECT

Product | Price |Quantity Product | TotalSales
Bagel 3 20 i>> Bagel 40
Bagel 1.50 20 Banana 20
Banana :

Banana 2 10

Banana 4 10

@s ONE TUPLE per group

SELECT product, Sum(quaﬁy) AS TotalSales
FROM Purchase

WHERE price > 1

GROUP BY product

34

HAVING Clause

Same query as earlier, except that we consider only products
that brought in revenue > $1000.

SELECT product, Sum(quantity)
FROM Purchase

WHERE price > 1

GROUP BY product

HAVING Sum(price* quantity) > 1000

HAVING clause contains conditions on aggregates.

CSE 544 - Winter 2020 35

WHERE vs HAVING

WHERE condition is applied to individual rows
« Keep or drop the row
* No aggregates allowed in WHERE

HAVING condition is applied to the entire group
« Keep or drop the group
 May use aggregate functions in HAVING

CSE 544 - Winter 2020 36

Syntax & Semantics

SELECT S
FROM R,....R,
WHERE Cf
GROUP BY ay,...,a,
HAVING C2

Sytnax:

« R1, ..., Rn =tables to be joined

« C1 =is any condition on the attributes in Ry,...,R,

« C2 =is any condition on aggregate expressions

. and on attributes a,,...,a,

« S = may contain attributes a,,...,a, and/or any
aggregates but NO OTHER ATTRIBUTES

37

Syntax & Semantics

SELECT S
FROM Ri,....R,
WHERE C1
GROUP BY a,,...,a,
HAVING C2
Semantics

1. Evaluate FROM-WHERE using Nested Loop Semantics

Group by the attributes ay,...,a,

2
3. Apply condition C2 to each group (may have aggregates)
4

Compute aggregates in S and return the result a8

Subqueries

A subquery is a SQL query nested inside a larger query
Such inner-outer queries are called nested queries

A subquery may occur In:
— A SELECT clause
— A FROM clause
— A WHERE clause

Rule of thumb: avoid writing nested queries when
possible; keep in mind that sometimes it's impossible

CSE 544 - Winter 2020 39

Subqueries in WHERE

Product (pname, price, cid) [Existential quantifiers}
Company(cid, cname, city)

Find all companies that make some products with price < 200

Using EXISTS:

SELECT C.cid, C.cname

FROM Company C

WHERE EXISTS (SELECT *

FROM Product P

WHERE C.cid = P.cid and P.price < 200)

CSE 544 - Winter 2020 40

Subqueries in WHERE

Product (pname, price, cid) [Existential quantifiers}
Company(cid, cname, city)

Find all companies that make some products with price < 200

Using IN

SELECT C.cid, C.cname

FROM Company C

WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 200)

CSE 544 - Winter 2020 41

Subqueries in WHERE

Product (pname, price, cid) [Existential quantifiers}
Company(cid, cname, city)

Find all companies that make some products with price < 200

Using ANY:

SELECT C.cid, C.cname

FROM Company C

WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

CSE 544 - Winter 2020 42

Subqueries in WHERE

Product (pname, price, cid) [Existential quantifiers}
Company(cid, cname, city)

Find all companies that make some products with price < 200

[Now let's unnest it:}

SELECT DISTINCT C.cid, C.cname
FROM Company C, Product P
WHERE C.cid= P.cid and P.price < 200

Existential quantifiers are easy ! ©

CSE 544 - Winter 2020 43

Subqueries in WHERE

Product (pname, price, cid) [Universal quantifiers}
Company(cid, cname, city)

Find all companies that make only products with price < 200

same as:
Find all companies whose products all have price < 200

Universal quantifiers are hard ! ®

CSE 544 - Winter 2020 44

Subqueries in WHERE

1. Find the other companies: i.e. s.t. some product > 200

SELECT C.cid, C.cname

FROM Company C

WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

CSE 544 - Winter 2020

45

Subqueries in WHERE

1. Find the other companies: i.e. s.t. some product > 200

SELECT C.cid, C.cname

FROM Company C

WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

2. Find all companies s.t. all their products have price < 200

SELECT C.cid, C.cname

FROM Company C

WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

46

Subqueries in WHERE

Product (pname, price, cid) [Universal quantifiers}
Company(cid, cname, city)

Find all companies that make only products with price < 200

Using EXISTS:

SELECT C.cid, C.cname

FROM Company C

WHERE NOT EXISTS (SELECT *

FROM Product P

WHERE P.cid = C.cid and P.price >= 200)

CSE 544 - Winter 2020 47

Subqueries in WHERE

Product (pname, price, cid) {Universal quantifiers}
Company(cid, cname, city)

Find all companies that make only products with price < 200

Using ALL:

SELECT C.cid, C.cname

FROM Company C

WHERE 200 > ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

CSE 544 - Winter 2020 48

Monotone Queries

* Definition: A query Q is called monotone if:
— Whenever we add a tuple to a table...
— ...we do not lose any tuple from the output

49

Monotone Queries

* Definition: A query Q is called monotone if:
— Whenever we add a tuple to a table...
— ...we do not lose any tuple from the output

 SELECT * FROM R -- IS moontone
SELECT count(*) FROM R -- is not

50

Monotone Queries

* Definition: A query Q is called monotone if:
— Whenever we add a tuple to a table...
— ...we do not lose any tuple from the output

 SELECT * FROM R -- IS moontone
SELECT count(*) FROM R -- is not

« Fact: All queries without subqueries or aggregates
are monotone.
Proof: nested loop semantics

51

Monotone Queries

Definition: A query Q is called monotone if:
— Whenever we add a tuple to a table...
— ...we do not lose any tuple from the output

SELECT * FROM R -- IS moontone
SELECT count(*) FROM R -- is not

Fact: All queries without subqueries or aggregates
are monotone.
Proof: nested loop semantics

Fact “Find all companies that make only products
with price < 200" is not monotone (proof in class)

52

Monotone Queries

Definition: A query Q is called monotone if:
— Whenever we add a tuple to a table...
— ...we do not lose any tuple from the output

SELECT * FROM R -- IS moontone
SELECT count(*) FROM R -- is not

Fact: All queries without subqueries or aggregates
are monotone.
Proof: nested loop semantics

Fact “Find all companies that make only products
with price < 200" is not monotone (proof in class)

Hence, it cannot be flattened without aggregates

53

Outline

wo topics today

 Crash course in SQL

» Relational algebra

CSE 544 - Winter 2020

54

Relational Algebra

« Simple algebra over relations:
selection, projection, join, union, difference

* Unlike SQL, RA specifies in which order to
perform operations; used to compile and optimize
SQL

« Declarative? Mostly yes, because we still don't
specify (yet) how each RA operator is to be

executed
CSE 544 - Winter 2020 55

Set v.s. Bag Semantics

Sets: {a,b,d,e}; {1,7,8,12,19}
Bags: {a,a,b}, {1,7,7,2,2,2,8,9,9}

SQL bag semantics

Relational Algebra: either set semantics
or bag semantics

CSE 544 - Winter 2020 56

Relational Operators

Selection: oogition(S)

Projection: Tclist-of—attributes(S)

Union (V)

Set difference (-),

Cross-product or cartesian product (x)
Join: R My S = 6y(R x S)

Intersection (M)

Division: R/S

Rename p(R(F),E)

CSE 544 - Winter 2020

Y

Selection & Projection

Patient Tip disease(Patient)

no name |zip disease zip disease
1 p1 98125 flu 98125 flu

2 p2 98125 heart 98125 heart

3 p3 98120 lung 98120 lung

4 p4 98120 heart 98120 heart

Gdisease=‘heart’(Patient)

no |name |zip disease
2 p2 98125 heart
4 p4 98120 heart

CSE 544 - Winter 2020

Tczip (Gdisease=‘heart’(Patient))

zip

98120

98125

58

Cross-Product

AnonPatient P Voters V
age |zip disease name |age zip
54 98125 heart p1 54 98125
20 98120 flu p2 20 98120
AnonPatient X Voters
P.age P.zip P.disease |V.name | V.age | V.zip
54 98125 heart p1 54 98125
54 98125 heart p2 20 98120
20 98120 |flu p1 54 98125
20 98120 |flu p2 20 98120

CSE 544 - Winter 2020

59

Many Types of Joins

* Theta-join: R ;S =cy(R x S)
— Join of R and S with a join condition 6
— Cross-product followed by selection 6

* Equijoin: R xS =cy(R*xS)

— Theta-join where 0 consists only of equalities

« Natural join: R @ S =1t (04(R % S))
— Equijoin on attributes with the same name

— Followed by removal (projection) of duplicate attributes
60

Equijoin Example

AnonPatient P Voters V
age |zip disease name |age zip
54 98125 heart p1 54 98125
20 98120 flu p2 20 98120
p3 20 98123

AnonPatient P Xp,4e-y 500 Voters V

P.age P.zip P.disease | V.name V.age V.zip

54 98125 heart p1 54 98125
20 98120 flu p2 20 98120
20 98120 flu p3 20 98123

CSE 544 - Winter 2020 61

AnonPatient P

Theta-Join Example

age |zip disease
50 98125 heart
19 98120 flu

P NP.zip = V.zip and P.age <= V.age + 1 and P.age >= V.age - 1 \4

Voters V
name |age zip
p1 54 98125
p2 20 98120

P.age

P.zip

P.disease

V.name

V.age

V.zip

19

98120

flu

p2

20

98120

CSE 544 - Winter 2020

Natural Join Example

CSE 544 - Winter 2020

AnonPatient P Voters V
age |zip disease name |age zip
54 98125 heart p1 54 98125
20 98120 flu p2 20 98120
PxV
age zip disease name
o4 98125 heart p1
20 98120 flu p2

63

Natural Join

* Given schemas R(A, B, C, D), S(A, C, E),
what is the schema of Rp<t S ?

. Given R(A, B, C), S(D, E), what is R < S?

. Given R(A, B), S(A, B), whatis R > S?

CSE 544 - Winter 2020 64

Outer Join Example

AnonPatient P Voters V
age |zip disease name |age zip
54 98125 heart p1 54 98125
20 98120 flu p2 20 98120
33 98120 lung
age zip disease name
P1«<V |54 98125 | heart p1
20 98120 | flu p2
33 98120 lung null

CSE 544 - Winter 2020

65

More Joins
« Semi-join = the subset of R that joins with S
RXS = MNayrr) (R > S)

« Anti-semi join = the subset of R that doesn’t
join with S

R - (RxS)

CSE 544 - Winter 2020 66

Example of Algebra Queries

Q1: Names of patients who have heart
disease

Tcname(VOter X (Gdisease=‘heart’ (AnonPatient))

CSE 544 - Winter 2020 67

More Examples

Relations
Supplier(sno,sname,scity,sstate)
Part (pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Q2: Name of supplier of parts with size greater than 10
Tsname(SUPPlier > Supply (Gpsize>10 (Part))

Q3: Name of supplier of red parts or parts with size greater than 10
Tcsname(supp"er X Supply X (Gpsize>10 (Part) " Opcolor=red’ (Part))

)

(Many more examples in the R&G) 68

Logical Query Plans
An RA expression but represented as a tree

I_I X.Shame

>
/pno=z. 0
>

X.SNO=YysSNOo

o z.psize > 10
VRN |

Supplier x Supplyy Part z

CSE 544 - Winter 2020

69

Extended Operators
of Relational Algebra

* Duplicate elimination (d)
— Since commercial DBMSs operate on
multisets/bags not sets

* Grouping and aggregate operators (y)
— Partitions tuples of a relation into “groups”

— Aggregates can then be applied to groups
— Min, max, sum, average, count

« Sort operator (t)
CSE 544 - Winter 2020

70

From SQL to RA

» Every SQL query can (and is) translated
to RA

CSE 544 - Winter 2020 71

Translating SQL to RA

Answer
SELECT city, sum(quantity) .
FROM sales T city, g
GROUP BY city DU T2(City,q,c)
HAVING count(*) > 100 -
c>100

R T1(city,q,c)

Y city, sum(quantity)—q, count(*) — ¢

T1, T2 =temporary tables sales(product, city, quantity)

CSE 544 - Winter 2020 72

Supplier(sno,sname,scity,sstate)
Supply(sno, pno,price)

How about Subqueries?
Find all supplies in Washington who sell only products < $100

CSE 544 - Winter 2020 73

How about Sub

Find all supplies in Washington who s

SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA’
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

CSE 544 - Winter 2020

and P.price > 100)

Supplier(sno,sname,scity,sstate)
Supply(sno, pno,price)

queﬂes?
ell only products < $100

74

Supplier(sno,sname,scity,sstate)
Supply(sno, pno,price)

How about Subqueries?
Find all supplies in Washington who sell only products < $100

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sho

and P.price > 100)

Correlation !

CSE 544 - Winter 2020 75

Supplier(sno,sname,scity,sstate)
Supply(sno, pno,price)

How about Subqueries?

Find all supplies in Washington Who se

Il only products < $100

SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate
and not exists
(SELECT *

FROM Supply P
WHERE P.sno =

= WA’

Q.sno

De-Correlation

SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA’
and Q.sno not 1in

and P.price > 100)| (SELECT P.sno

CSE 544 - Winter 2020

FROM Supply P
WHERE P.price > 100)

76

Supplier(sno,sname,scity,sstate)
Supply(sno, pno,price)

How about Subqueries?
Find all supplies in Washington who sell only products < $100

Un-nesting
(SELECT Q.sno

FROM Supplier Q
WHERE Q.sstate = ‘WA’)
EXCEPT
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA’
and Q.sno not 1in
(SELECT P.sno

FROM Supply P

WHERE P.price > 100)

EXCEPT = set difference

CSE 544 - Winter 2020 77

Supplier(sno,sname,scity,sstate)
Supply(sno, pno,price)

How about Subqueries?
Find all supplies in Washington who sell only products < $100

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

1Ll
Msno sSno

O-sstate=‘WA’0-Pric:e > 100

Supplier Supply

CSE 544 - Winter 2020 78

Supplier(sno,sname,scity,sstate)
Part (pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Relational Calculus

RC = First Order Logic (A,V,7, Vv, 3)

A query is {expr | FOL-predicate}

Two variants

« Tuple relational calculus query; uses tuple variables
« Domain relational calculus

E.g. names of suppliers that sell only products > $100

{ s.name | s € Supplier A V p (p € Supply = p.price > 100)}

{n|3s,c,t (Supplier(s,n,c,t) AVp,q,p(Supply(s,p,q,pr) = pr > 100)}

79

Example

Set division: R(A,B)/S(B)
— Defined as the largest set T(A) suchthat T X Sc R
— Equivalently: the set of A’s s.t. they occur with all B’s

— Example:
Takes(student, courseName), Course(courseName)
Takes/Course = the students who took all courses.

In class, or at home:

— Define set division in RC
— Convert to RA

CSE 544 - Winter 2020

80

