
CSE544
Data Management

Lecture 2
SQL and Relational Algebra

CSE 544 - Winter 2020 1

Announcements

• Thursday (tomorrow):
– Makeup lecture at10:30 in CSE2 371

• Monday: no class (MLK day)
• Tuesday: project groups due
• Wednesday: first review due
• Next Saturday: homework 1 due

CSE 544 - Winter 2020 2

Outline

Two topics today

• Crash course in SQL

• Relational algebra

CSE 544 - Winter 2020 3

Structured Query Language:
SQL

• Influenced by relational calculus (= First Order Logic)

• SQL is a declarative query language
– We say what we want to get
– We don’t say how we should get it

• SQL has many parts
– Data definition language (DDL)
– Data manipulation language (DML)
– ...

CSE 544 - Winter 2020 4

Outline
You study independently SQL DDL
• CREATE TABLE, DROP TABLE, CREATE INDEX,

CLUSTER, ALTER TABLE, …
• E.g. google for the postgres manual, or type this in psql:

\h create
\h create table
\h cluster
\?

Today: crash course in SQL DML
• SELECT-FROM-WHERE-GROUPBY
• Study independently: INSERT/DELETE/MODIFY

SQL Query

CSE 544 - Winter 2020 6

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

Basic form:

Simple SQL Query

CSE 544 - Winter 2020 7

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

SELECT PName, Price, Manufacturer
FROM Product
WHERE Price > 100

Product

PName Price Manufacturer

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi
“selection” and

“projection”

Eliminating Duplicates

CSE 544 - Winter 2020 8

SELECT DISTINCT category
FROM Product

Compare to:

SELECT category
FROM Product

Category

Gadgets

Gadgets

Photography

Household

Category

Gadgets

Photography

Household

Ordering/limiting the Results

CSE 544 - Winter 2020 9

Ascending, unless you specify the DESC keyword.

SELECT pname, price, manufacturer
FROM Product
WHERE category=‘gizmo’ AND price > 50
ORDER BY price, pname
LIMIT 10

Joins

CSE 544 - Winter 2020 10

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all products under $200 manufactured in Japan;
return their names and prices.

Joins

CSE 544 - Winter 2020 11

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all products under $200 manufactured in Japan;
return their names and prices.

SELECT P.pname, P.price
FROM Product P, Company C
WHERE P.manufacturer=C.cname AND C.country=‘Japan’

AND P.price <= 200

Joins

CSE 544 - Winter 2020 12

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all products under $200 manufactured in Japan;
return their names and prices.

SELECT P.pname, P.price
FROM Product P, Company C
WHERE P.manufacturer=C.cname AND C.country=‘Japan’

AND P.price <= 200

SELECT P.pname, P.price
FROM Product P JOIN Company C ON P.manufacturer=C.cname
WHERE C.country=‘Japan’ AND P.price <= 200

Joins

CSE 544 - Winter 2020 13

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all countries that manufacture products in both the
gadget category and in the photography category

[in class, or at home]

Semantics of SQL Queries

CSE 544 - Winter 2020 14

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer È {(a1,…,ak)}
return Answer

NULLs in SQL

• A NULL value means missing, or
unknown, or undefined, or inapplicable

• We can specify whether attributes may
or may not be NULL:

CSE 544 - Winter 2020 15

CREATE TABLE product
(pid int NOT NULL,
pname text NOT NULL,
price int – may be NULL
);

Three-Valued Logic

• False=0, Unknown=0.4, True=1
• Result of a comparison A=B is

– False or True when both A, B are not null
– Unknown otherwise

• AND, OR, NOT are min, max, 1-.

Three-Valued Logic

• False=0, Unknown=0.4, True=1
• Result of a comparison A=B is

– False or True when both A, B are not null
– Unknown otherwise

• AND, OR, NOT are min, max, 1-.
select *
from Product
where (price <= 100) or (price > 100)

pid Pname price
1 iPhone 500
2 iPod 80
3 iPad NULL

Three-Valued Logic

• False=0, Unknown=0.4, True=1
• Result of a comparison A=B is

– False or True when both A, B are not null
– Unknown otherwise

• AND, OR, NOT are min, max, 1-.
select *
from Product
where (price <= 100) or (price > 100)

pid Pname price
1 iPhone 500
2 iPod 80
3 iPad NULLwhere (price <= 100) or (price > 100)

or isNull(price)

Outer joins

19

Product(name, category)
Purchase(prodName, store)

-- prodName is foreign key

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Outer joins

SELECT x.name, x.category, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Product(name, category)
Purchase(prodName, store)

-- prodName is foreign key

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Outer joins
Product(name, category)
Purchase(prodName, store)

-- prodName is foreign key

Name Category
Gizmo gadget

Camera Photo
OneClick Photo

ProdName Store
Gizmo Wiz

Camera Ritz
Camera Wiz

Product Purchase

SELECT x.name, x.category, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Outer joins
Product(name, category)
Purchase(prodName, store)

-- prodName is foreign key

Name Category
Gizmo gadget

Camera Photo
OneClick Photo

ProdName Store
Gizmo Wiz

Camera Ritz
Camera Wiz

Product Purchase Output

missing

SELECT x.name, x.category, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Name Category Store
Gizmo gadget Wiz

Camera Photo Ritz
Camera Photo Wiz

Outer joins
Product(name, category)
Purchase(prodName, store)

-- prodName is foreign key

Name Category
Gizmo gadget

Camera Photo
OneClick Photo

ProdName Store
Gizmo Wiz

Camera Ritz
Camera Wiz

Product Purchase Output

Now it’s present

SELECT x.name, x.category, y.store
FROM Product x LEFT OUTER JOIN Purchase y
ON x.name = y.prodName

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Name Category Store
Gizmo gadget Wiz

Camera Photo Ritz
Camera Photo Wiz
OneClick Photo NULL

Joins

• Inner join = includes only matching
tuples (i.e. regular join)

• Left outer join = includes everything
from the left

• Right outer join = includes everything
from the right

• Full outer join = includes everything

CSE 544 - Winter 2020 24

ON v.s. WHERE

• Outer join condition in the ON clause

• Different from the WHERE clause

• Compare:

25

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName

AND y.price=10

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
WHERE y.price=10

Aggregation

26

SELECT count(*)
FROM Product
WHERE maker=‘Toyota’

SELECT avg(price)
FROM Product
WHERE maker=‘Toyota’

Aggregation

27

SELECT count(*)
FROM Product
WHERE maker=‘Toyota’

SELECT avg(price)
FROM Product
WHERE maker=‘Toyota’

SQL supports several aggregation operations:
sum, count, min, max, avg

Aggregation

28

SELECT count(*)
FROM Product
WHERE maker=‘Toyota’

Duplicates are kept unless DISTINCT
Nulls are “ignored”

SELECT avg(price)
FROM Product
WHERE maker=‘Toyota’

SQL supports several aggregation operations:
sum, count, min, max, avg

Aggregation

29

SELECT count(*)
FROM Product
WHERE maker=‘Toyota’

Duplicates are kept unless DISTINCT
Nulls are “ignored”

SELECT avg(price)
FROM Product
WHERE maker=‘Toyota’

SQL supports several aggregation operations:
sum, count, min, max, avg

SELECT count(model)
FROM Product
WHERE maker=‘Toyota’

SELECT count(*)
FROM Product
WHERE maker=‘Toyota’

SELECT count(DISTINCT model)
FROM Product
WHERE maker=‘Toyota’

Grouping and Aggregation

CSE 544 - Winter 2020 30

Purchase(date, product, price, quantity)

For each product, find the total quantity of sales over $1

Grouping and Aggregation

CSE 544 - Winter 2020 31

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Let’s see what this means…

Purchase(date, product, price, quantity)

For each product, find the total quantity of sales over $1

Grouping and Aggregation

CSE 544 - Winter 2020 32

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUP BY

3. Compute the SELECT clause:
grouped attributes and aggregates.

3. SELECT

CSE 544 - Winter 2020 33

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

WHERE price > 1

3. SELECT

CSE 544 - Winter 2020 34

Product TotalSales
Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Returns ONE TUPLE per group

HAVING Clause

CSE 544 - Winter 2020 35

SELECT product, Sum(quantity)
FROM Purchase
WHERE price > 1
GROUP BY product
HAVING Sum(price* quantity) > 1000

Same query as earlier, except that we consider only products
that brought in revenue > $1000.

HAVING clause contains conditions on aggregates.

WHERE vs HAVING

WHERE condition is applied to individual rows
• Keep or drop the row
• No aggregates allowed in WHERE

HAVING condition is applied to the entire group
• Keep or drop the group
• May use aggregate functions in HAVING

CSE 544 - Winter 2020 36

Syntax & Semantics

37

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BY a1,…,ak
HAVING C2

Sytnax:
• R1, …, Rn = tables to be joined
• C1 = is any condition on the attributes in R1,…,Rn
• C2 = is any condition on aggregate expressions
• and on attributes a1,…,ak
• S = may contain attributes a1,…,ak and/or any

aggregates but NO OTHER ATTRIBUTES

Syntax & Semantics

38

Semantics
1. Evaluate FROM-WHERE using Nested Loop Semantics

2. Group by the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)
4. Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BY a1,…,ak
HAVING C2

Subqueries
• A subquery is a SQL query nested inside a larger query
• Such inner-outer queries are called nested queries
• A subquery may occur in:

– A SELECT clause
– A FROM clause
– A WHERE clause

• Rule of thumb: avoid writing nested queries when
possible; keep in mind that sometimes it’s impossible

CSE 544 - Winter 2020 39

Subqueries in WHERE

CSE 544 - Winter 2020 40

SELECT C.cid, C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid and P.price < 200)

Existential quantifiers

Using EXISTS:

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies that make some products with price < 200

Subqueries in WHERE

CSE 544 - Winter 2020 41

Find all companies that make some products with price < 200

SELECT C.cid, C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 200)

Existential quantifiers

Using IN

Product (pname, price, cid)
Company(cid, cname, city)

Subqueries in WHERE

CSE 544 - Winter 2020 42

Find all companies that make some products with price < 200

SELECT C.cid, C.cname
FROM Company C
WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Existential quantifiers

Using ANY:

Product (pname, price, cid)
Company(cid, cname, city)

Subqueries in WHERE

CSE 544 - Winter 2020 43

Find all companies that make some products with price < 200

SELECT DISTINCT C.cid, C.cname
FROM Company C, Product P
WHERE C.cid= P.cid and P.price < 200

Existential quantifiers are easy ! J

Existential quantifiers

Now let’s unnest it:

Product (pname, price, cid)
Company(cid, cname, city)

Subqueries in WHERE

CSE 544 - Winter 2020 44

Find all companies whose products all have price < 200

Universal quantifiers are hard ! L

Find all companies that make only products with price < 200

same as:

Universal quantifiersProduct (pname, price, cid)
Company(cid, cname, city)

Subqueries in WHERE

CSE 544 - Winter 2020 45

1. Find the other companies: i.e. s.t. some product ³ 200

SELECT C.cid, C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Subqueries in WHERE

CSE 544 - Winter 2020 46

2. Find all companies s.t. all their products have price < 200

1. Find the other companies: i.e. s.t. some product ³ 200

SELECT C.cid, C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

SELECT C.cid, C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Subqueries in WHERE

CSE 544 - Winter 2020 47

SELECT C.cid, C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *

FROM Product P
WHERE P.cid = C.cid and P.price >= 200)

Universal quantifiers

Using EXISTS:

Find all companies that make only products with price < 200

Product (pname, price, cid)
Company(cid, cname, city)

Subqueries in WHERE

CSE 544 - Winter 2020 48

SELECT C.cid, C.cname
FROM Company C
WHERE 200 > ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ALL:

Universal quantifiers

Find all companies that make only products with price < 200

Product (pname, price, cid)
Company(cid, cname, city)

Monotone Queries
• Definition: A query Q is called monotone if:

– Whenever we add a tuple to a table…
– …we do not lose any tuple from the output

49

Monotone Queries
• Definition: A query Q is called monotone if:

– Whenever we add a tuple to a table…
– …we do not lose any tuple from the output

• SELECT * FROM R -- is moontone
SELECT count(*) FROM R -- is not

50

Monotone Queries
• Definition: A query Q is called monotone if:

– Whenever we add a tuple to a table…
– …we do not lose any tuple from the output

• SELECT * FROM R -- is moontone
SELECT count(*) FROM R -- is not

• Fact: All queries without subqueries or aggregates
are monotone.
Proof: nested loop semantics

51

Monotone Queries
• Definition: A query Q is called monotone if:

– Whenever we add a tuple to a table…
– …we do not lose any tuple from the output

• SELECT * FROM R -- is moontone
SELECT count(*) FROM R -- is not

• Fact: All queries without subqueries or aggregates
are monotone.
Proof: nested loop semantics

• Fact “Find all companies that make only products
with price < 200” is not monotone (proof in class)

52

Monotone Queries
• Definition: A query Q is called monotone if:

– Whenever we add a tuple to a table…
– …we do not lose any tuple from the output

• SELECT * FROM R -- is moontone
SELECT count(*) FROM R -- is not

• Fact: All queries without subqueries or aggregates
are monotone.
Proof: nested loop semantics

• Fact “Find all companies that make only products
with price < 200” is not monotone (proof in class)

• Hence, it cannot be flattened without aggregates
53

Outline

Two topics today

• Crash course in SQL

• Relational algebra

CSE 544 - Winter 2020 54

Relational Algebra
• Simple algebra over relations:

selection, projection, join, union, difference

• Unlike SQL, RA specifies in which order to
perform operations; used to compile and optimize
SQL

• Declarative? Mostly yes, because we still don’t
specify (yet) how each RA operator is to be
executed

CSE 544 - Winter 2020 55

Set v.s. Bag Semantics

• Sets: {a,b,d,e}; {1,7,8,12,19}

• Bags: {a,a,b}, {1,7,7,2,2,2,8,9,9}

• SQL bag semantics
• Relational Algebra: either set semantics

or bag semantics
CSE 544 - Winter 2020 56

Relational Operators
• Selection: scondition(S)
• Projection: plist-of-attributes(S)
• Union (È)
• Set difference (–),
• Cross-product or cartesian product (´)
• Join: R ⋈q S = sq(R ´ S)
• Intersection (Ç)
• Division: R/S
• Rename r(R(F),E)

CSE 544 - Winter 2020 57

Selection & Projection

CSE 544 - Winter 2020 58

no name zip disease
1 p1 98125 flu
2 p2 98125 heart
3 p3 98120 lung
4 p4 98120 heart

Patient

sdisease=‘heart’(Patient)
no name zip disease
2 p2 98125 heart
4 p4 98120 heart

zip disease
98125 flu
98125 heart
98120 lung
98120 heart

pzip,disease(Patient)

pzip (sdisease=‘heart’(Patient))
zip
98120
98125

Cross-Product

CSE 544 - Winter 2020 59

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P.age P.zip P.disease
54 98125 heart
54 98125 heart
20 98120 flu
20 98120 flu

V.name V.age V.zip
p1 54 98125
p2 20 98120
p1 54 98125
p2 20 98120

AnonPatient× Voters

name age zip
p1 54 98125
p2 20 98120

Many Types of Joins
• Theta-join: R ⋈q S = sq(R × S)

– Join of R and S with a join condition q
– Cross-product followed by selection q

• Equijoin: R ⋈q S = sq(R × S)
– Theta-join where q consists only of equalities

• Natural join: R ⋈ S = pA (sq(R × S))
– Equijoin on attributes with the same name
– Followed by removal (projection) of duplicate attributes

60

Equijoin Example

CSE 544 - Winter 2020 61

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

AnonPatient P ⋈P.age=V.age Voters V

name age zip
p1 54 98125
p2 20 98120
p3 20 98123

P.age P.zip P.disease V.name V.age V.zip
54 98125 heart p1 54 98125
20 98120 flu p2 20 98120
20 98120 flu p3 20 98123

Theta-Join Example

CSE 544 - Winter 2020 62

age zip disease
50 98125 heart
19 98120 flu

AnonPatient P Voters V

P.age P.zip P.disease V.name V.age V.zip
19 98120 flu p2 20 98120

P ⋈P.zip = V.zip and P.age <= V.age + 1 and P.age >= V.age - 1 V

name age zip
p1 54 98125
p2 20 98120

Natural Join Example

CSE 544 - Winter 2020 63

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P ⋈ V

name age zip
p1 54 98125
p2 20 98120

age zip disease name

54 98125 heart p1

20 98120 flu p2

Natural Join
• Given schemas R(A, B, C, D), S(A, C, E),

what is the schema of R ⨝ S ?

• Given R(A, B, C), S(D, E), what is R ⨝ S?

• Given R(A, B), S(A, B), what is R ⨝ S?

CSE 544 - Winter 2020 64

Outer Join Example

CSE 544 - Winter 2020 65

age zip disease
54 98125 heart
20 98120 flu
33 98120 lung

AnonPatient P Voters V

P V

name age zip
p1 54 98125
p2 20 98120

age zip disease name
54 98125 heart p1

20 98120 flu p2

33 98120 lung null

More Joins

• Semi-join = the subset of R that joins with S

R⋉S = ΠAttr(R)(R ⋈ S)

• Anti-semi join = the subset of R that doesn’t
join with S

R – (R⋉S)

CSE 544 - Winter 2020 66

Example of Algebra Queries

Q1: Names of patients who have heart
disease

pname(Voter ⋈ (sdisease=‘heart’ (AnonPatient))

CSE 544 - Winter 2020 67

More Examples
Relations

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Q2: Name of supplier of parts with size greater than 10
psname(Supplier ⋈ Supply ⋈ (spsize>10 (Part))

Q3: Name of supplier of red parts or parts with size greater than 10
psname(Supplier ⋈ Supply ⋈ (spsize>10 (Part) È spcolor=‘red’ (Part))
)

(Many more examples in the R&G)
68

Logical Query Plans

CSE 544 - Winter 2020 69

Supplier x Supply y

y.pno=z.pno

Part z

Π x.sname

σ z.psize > 10
x.sno=ysno

An RA expression but represented as a tree

Extended Operators
of Relational Algebra

• Duplicate elimination (d)
– Since commercial DBMSs operate on

multisets/bags not sets

• Grouping and aggregate operators (g)
– Partitions tuples of a relation into “groups”
– Aggregates can then be applied to groups
– Min, max, sum, average, count

• Sort operator (t)
CSE 544 - Winter 2020 70

From SQL to RA

• Every SQL query can (and is) translated
to RA

CSE 544 - Winter 2020 71

Translating SQL to RA

CSE 544 - Winter 2020 72

SELECT city, sum(quantity)
FROM sales
GROUP BY city
HAVING count(*) > 100

T1, T2 = temporary tables sales(product, city, quantity)

g city, sum(quantity)→q, count(*) → c

s c > 100

P city, q

Answer

T1(city,q,c)

T2(city,q,c)

How about Subqueries?

CSE 544 - Winter 2020 73

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Find all supplies in Washington who sell only products ≤ $100

How about Subqueries?

CSE 544 - Winter 2020 74

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

Find all supplies in Washington who sell only products ≤ $100

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

How about Subqueries?

CSE 544 - Winter 2020 75

Correlation !

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Find all supplies in Washington who sell only products ≤ $100

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

How about Subqueries?

CSE 544 - Winter 2020 76

De-Correlation

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Find all supplies in Washington who sell only products ≤ $100

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

How about Subqueries?

CSE 544 - Winter 2020 77

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno

FROM Supply P
WHERE P.price > 100)

EXCEPT = set difference

Un-nesting

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Find all supplies in Washington who sell only products ≤ $100

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno

FROM Supply P
WHERE P.price > 100)

How about Subqueries?

CSE 544 - Winter 2020 78

Supply

σsstate=‘WA’

Supplier

σPrice > 100

−
Finally…

πsnoπsno

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Find all supplies in Washington who sell only products ≤ $100

Relational Calculus
RC = First Order Logic (∧,∨,¬, ∀, ∃)
A query is {expr | FOL-predicate}
Two variants
• Tuple relational calculus query; uses tuple variables
• Domain relational calculus
E.g. names of suppliers that sell only products > $100

79

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

{ s.name | s ∈ Supplier ∧ ∀ p (p ∈ Supply à p.price > 100)}

{ n | ∃s,c,t (Supplier(s,n,c,t) ∧∀p,q,p(Supply(s,p,q,pr) à pr > 100)}

Example
• Set division: R(A,B)/S(B)

– Defined as the largest set T(A) such that T × S ⊆ R
– Equivalently: the set of A’s s.t. they occur with all B’s
– Example:

Takes(student, courseName), Course(courseName)
Takes/Course = the students who took all courses.

• In class, or at home:
– Define set division in RC
– Convert to RA

CSE 544 - Winter 2020 80

