CSE544 Data Management

Lecture 3
Schema Normalization

Announcements

- Monday: no class (MLK day)
- Tuesday: project groups due
- Wednesday: first review due
- Next Saturday: homework 1 due
 - git pull # just in case
 - git commit –a –m 'your message here'
 - git push

Database Design

 The relational model is great, but how do I design my database schema?

Outline

Conceptual db design: entity-relationship model

Problematic database designs

Functional dependencies

Normal forms and schema normalization

Conceptual Schema Design

Relational Model:

plus FD's

(FD = functional dependency)

Normalization: Eliminates anomalies

Entity sets
Patient

Relationship sets

Patient

Doctor

Entity sets
Patient

Relationship sets

Attributes

Entity sets

Patient

Relationship sets

Attributes

Entity sets

Patient

Relationship sets

patient_of

Attributes

Entity sets

Patient

Relationship sets

patient_of

Entity-Relationship Model

- Typically, each entity has a key
- ER relationships can include multiplicity
 - One-to-one, one-to-many, etc.
 - Indicated with arrows

- Can model subclasses
- And more...

Patient

pno	name	zip
P311	Alice	98765

Patient_of

pno	dno	since
P311	D007	2001

Doctor

<u>dno</u>	name	spec
D007	Bob	cardio

Notice Many-One Relationship

Patient

<u>pno</u>	name	zip	dno	since
P311	Alice	98765	D007	2001

Doctor

<u>dno</u>	name	spec
D007	Bob	cardio

C	Name	Price	Category
	Gizmo	99	gadget
	Camera	49	photo
	Toy	39	gadget

E/R Diagram to Relations

- Each entity set becomes a relation with a key
- Each relationship set becomes a relation with foreign keys <u>except</u> many-one relationships: just add a fk
- Each isA relationship becomes another relation, with both a key and foreign key

Outline

Conceptual db design: entity-relationship model

Problematic database designs

Functional dependencies

Normal forms and schema normalization

Relational Schema Design

Name	SSN	<u>PhoneNumber</u>	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

One person may have multiple phones, but lives in only one city

Primary key is thus (SSN, PhoneNumber)

What is the problem with this schema?

Relational Schema Design

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

Anomalies:

- Redundancy = repeat data for Fred
- Update anomalies = what if Fred moves to "Bellevue"?
- Deletion anomalies = what if Joe deletes his phone number?

Relation Decomposition

Break the relation into two:

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

SSN	<u>PhoneNumber</u>
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121

Anomalies have gone:

- No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- Easy to delete all Joe's phone numbers (how ?)

Relational Schema Design (or Logical Design)

How do we do this systematically?

Start with some relational schema

- Find out its <u>functional dependencies</u> (FDs)
- Use FDs to <u>normalize</u> the relational schema

Functional Dependencies (FDs)

Definition

If two tuples agree on the attributes

$$A_1, A_2, ..., A_n$$

then they must also agree on the attributes

$$B_1, B_2, ..., B_m$$

Formally:

$$A_1...A_n$$
 determines $B_1...B_m$

$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

Functional Dependencies (FDs)

<u>Definition</u> $A_1, ..., A_m \rightarrow B_1, ..., B_n$ holds in R if: ∀t, t' ∈ R, $(t.A_1 = t'.A_1 \land ... \land t.A_m = t'.A_m \rightarrow t.B_1 = t'.B_1 \land ... \land t.B_n = t'.B_n)$

if t, t' agree here then t, t' agree here

Example

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID → Name, Phone, Position

Position → Phone

but not Phone → Position

Example

EmpID	Name	Phone	Position	
E0045	Smith	1234	Clerk	
E3542	Mike	9876 ←	Salesrep	
E1111	Smith	9876 ←	Salesrep	
E9999	Mary	1234	Lawyer	

Position → Phone

Example

EmplD	Name	Phone	Position
E0045	Smith	1234 →	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234 →	Lawyer

But not Phone → Position

Example name → color

name → color
category → department
color, category → price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

Which FD's hold?

Buzzwords

FD holds or does not hold on an instance

 If we can be sure that every instance of R will be one in which a given FD is true, then we say that R satisfies the FD

 If we say that R satisfies an FD, we are stating a constraint on R

An Interesting Observation

If all these FDs are true:

name → color
category → department
color, category → price

Then this FD also holds:

name, category → price

Find out from application domain some FDs, Compute all FD's implied by them

Given a set of attributes $A_1, ..., A_n$

The **closure** is the set of attributes B, denoted $\{A_1, ..., A_n\}^+$, s.t. $A_1, ..., A_n \rightarrow B$

Given a set of attributes A₁, ..., A_n

The **closure** is the set of attributes B, denoted $\{A_1, ..., A_n\}^+$, s.t. $A_1, ..., A_n \rightarrow B$

- Example: 1. name → color
 - 2. category → department
 - 3. color, category → price

Given a set of attributes A₁, ..., A_n

The **closure** is the set of attributes B, denoted $\{A_1, ..., A_n\}^+$, s.t. $A_1, ..., A_n \rightarrow B$

- Example: 1. name → color
 - 2. category → department
 - 3. color, category → price

Closures:

```
name<sup>+</sup> = {name, color}
```

Given a set of attributes A₁, ..., A_n

The **closure** is the set of attributes B, denoted $\{A_1, ..., A_n\}^+$, s.t. $A_1, ..., A_n \rightarrow B$

- Example: 1. name → color
 - 2. category → department
 - 3. color, category → price

Closures:

```
name<sup>+</sup> = {name, color}
{name, category}+ = {name, category, color, department, price}
```

Given a set of attributes A₁, ..., A_n

The **closure** is the set of attributes B, denoted $\{A_1, ..., A_n\}^+$, s.t. $A_1, ..., A_n \rightarrow B$

- Example: 1. name → color
 - 2. category → department
 - 3. color, category → price

Closures:

```
name<sup>+</sup> = {name, color}
{name, category}+ = {name, category, color, department, price}
color^+ = \{color\}
```

Keys

A superkey is a set of attributes A₁, ..., A_n s.t. for any attribute B, we have A₁, ..., A_n → B

 A key is a minimal superkey (no subset is a superkey)

Computing (Super)Keys

For all sets X, compute X⁺

 If X⁺ = [all attributes], then X is a superkey

 If, in addition, no subset of X is a superkey, then X is a key

Product(name, price, category, color)

name, category → price category → color

What is the key?

Product(name, price, category, color)

```
name, category → price category → color
```

```
What is the key?
(name, category) + = { name, category, price, color }
```

Product(name, price, category, color)

```
name, category → price category → color
```

```
What is the key?
(name, category) + = { name, category, price, color }
Hence (name, category) is a key
```

Key or Keys?

Can we have more than one key?

Key or Keys?

Can we have more than one key?

$$\begin{array}{c} A \rightarrow B \\ B \rightarrow C \\ C \rightarrow A \end{array}$$

what are the keys here?

Key or Keys?

Can we have more than one key?

$$\begin{array}{c} A \rightarrow B \\ B \rightarrow C \\ C \rightarrow A \end{array}$$

what are the keys here?

Eliminating Anomalies

Main idea:

X → A is OK if X is a (super)key

- X → A is not OK otherwise
 - Need to decompose the table

Boyce-Codd Normal Form

There are no "bad" FDs:

Definition. A relation R is in BCNF if:

Whenever X→ B is a non-trivial dependency, then X is a superkey.

Equivalently:

Definition. A relation R is in BCNF if:

 \forall X, either X⁺ = X or X⁺ = [all attributes]

BCNF Decomposition Algorithm

```
Normalize(R)

find X s.t.: X \neq X^+ \neq [all \ attributes]

if (not found) then "R is in BCNF"

let Z = [all \ attributes] - X^+

decompose R into R1(X+) and R2(X U Z)

Normalize(R1); Normalize(R2);
```


Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

SSN → Name, City

The only key is: {SSN, PhoneNumber}

Hence SSN → Name, City is a "bad" dependency

Name, SSN Phone-Number

In other words:

SSN+ = SSN, Name, City and is neither SSN nor All Attributes

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age

age → hairColor

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age

age → hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age

age → hairColor

What are the keys?

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor

Decompose: People(SSN, name, age)

Hair(age, hairColor)

Phone(SSN, phoneNumber)

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age age → hairColor

Note the keys!

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor

Decompose: People(SSN, name, age)

Hair(age, hairColor)

Phone(SSN, phoneNumber)

$A \rightarrow B$ $B \rightarrow C$

Example: BCNF

Recall: find X s.t. $X \subseteq X^+ \subseteq [all-attrs]$

R(A,B,C,D)

$\begin{array}{c} A \rightarrow B \\ B \rightarrow C \end{array}$

$$R(A,B,C,D)$$

 $A^+ = ABC \neq ABCD$

$A \rightarrow B$ $B \rightarrow C$

$A \rightarrow B$ $B \rightarrow C$

Example: BCNF

 $\begin{array}{c} A \rightarrow B \\ B \rightarrow C \end{array}$

What happens if in R we first pick B⁺ ? Or AB⁺ ?₅₈

Decompositions in General

$$S_1$$
 = projection of R on A_1 , ..., A_n , B_1 , ..., B_m
 S_2 = projection of R on A_1 , ..., A_n , C_1 , ..., C_p

Lossless Decomposition

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Name	Price
Gizmo	19.99
OneClick	24.99
Gizmo	19.99

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Lossy Decomposition

What is lossy here?

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Price	Category
19.99	Gadget
24.99	Camera
19.99	Camera

Lossy Decomposition

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Price	Category
19.99	Gadget
24.99	Camera
19.99	Camera

Decomposition in General

$$\begin{array}{c} R(A_1, \, ..., \, A_n, \, B_1, \, ..., \, B_m, \, C_1, \, ..., \, C_p) \\ \hline \\ S_1(A_1, \, ..., \, A_n, \, B_1, \, ..., \, B_m) \end{array} \, \left[\begin{array}{c} S_2(A_1, \, ..., \, A_n, \, C_1, \, ..., \, C_p) \end{array} \right]$$

Let:
$$S_1$$
 = projection of R on A_1 , ..., A_n , B_1 , ..., B_m
 S_2 = projection of R on A_1 , ..., A_n , C_1 , ..., C_p

The decomposition is called <u>lossless</u> if $R = S_1 \bowtie S_2$

Fact: If $A_1, ..., A_n \rightarrow B_1, ..., B_m$ then the decomposition is lossless

It follows that every BCNF decomposition is lossless

Testing for Lossless Join

If we decompose R into $\Pi_{S1}(R)$, $\Pi_{S2}(R)$, $\Pi_{S3}(R)$, ... Is it true that S1 \bowtie S2 \bowtie S3 \bowtie ... = R?

That is true if we can show that:

 $R \subseteq S1 \bowtie S2 \bowtie S3 \bowtie ...$ but this always holds; why?

R ⊇ S1 ⋈ S2 ⋈ S3 ⋈ ... neet to check

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

 $S1 = \Pi_{AD}(R)$, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

 $S1 = \Pi_{AD}(R)$, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose (a,b,c,d) \in S1 \bowtie S2 \bowtie S3 Is it also in R?

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R)$$
, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose (a,b,c,d) \in S1 \bowtie S2 \bowtie S3 Is it also in R?

R must contain the following tuples:

A	В	С	D	Why ?
а	b1	c1	d	$(a,d) \in S1 = \Pi_{AD}(R)$

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R)$$
, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose (a,b,c,d) \in S1 \bowtie S2 \bowtie S3 Is it also in R?

R must contain the following tuples:

				_
A	В	C	D	Why?
а	b1	c1	d	(a,d) ∈S1 = Π _{AD} (R)
а	b2	С	d2	(a,c) ∈S2 = Π _{BD} (R)

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R)$$
, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose (a,b,c,d) \in S1 \bowtie S2 \bowtie S3 Is it also in R?

R must contain the following tuples:

A	В	C	D	Why?
а	b1	с1	d	$(a,d) \in S1 = \Pi_{AD}(R)$
а	b2	С	d2	$(a,c) \in S2 = \Pi_{BD}(R)$
а3	b	C	d	$(b,c,d) \in S3 = \Pi_{BCD}(R)$

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R)$$
, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose $(a,b,c,d) \in S1 \bowtie S2 \bowtie S3$ Is it also in R?

R must contain the following tuples:

"Chase" them (apply FDs):

A	В	С	D	Why ?
а	b1	c1	d	(a,d) ∈S1 = Π _{AD} (R)
а	b2	С	d2	(a,c) ∈S2 = Π _{BD} (R)
а3	b	С	d	$(b,c,d) \in S3 = \Pi_{BCD}(R)$

	A→	В		
	A	В	С	D
	а	b1	с1	d
$\neg \nearrow$	а	b1	С	d2
	а3	b	С	d

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R)$$
, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose (a,b,c,d) \in S1 \bowtie S2 \bowtie S3 Is it also in R?

R must contain the following tuples:

"Chase" them (apply FDs):

	A >	В			B→	С		
	A	В	С	D	A	В	С	D
\	а	b1	с1	d	а	b1	С	d
	а	b1	С	d2	а	b1	С	d2
	а3	b	С	d	а3	b	С	d

A	В	С	D	Why ?
а	b1	c1	а	$(a,d) \in S1 = \Pi_{AD}(R)$
а	b2	С	d2	$(a,c) \in S2 = \Pi_{BD}(R)$
а3	b	C	d	$(b,c,d) \in S3 = \Pi_{BCD}(R)$

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R)$$
, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose (a,b,c,d) \in S1 \bowtie S2 \bowtie S3 Is it also in R?

R must contain the following tuples:

"Chase" them (a	pply FDs)) [
-----------------	-----------	-----

	$A \rightarrow$	В			B→	С		
	A	В	С	D	A	В	С	D
\	а	b1	с1	d	а	b1	С	d
	а	b1	С	d2	а	b1	С	d2
	а3	b	С	d	а3	b	С	d

A	В	С	D
а	b1	c1	d
а	b2	С	d2
а3	b	С	d

Why?
(a,d) ∈S1 = Π _{AD} (R)
(a,c) ∈S2 = Π _{BD} (R)
$(b,c,d) \in S3 = \Pi_{BCD}(R)$

1						
	A	В	C	D		
	а	b1	С	d		
	а	b1	С	d2		
	а	b	С	d		

CD→A

Hence R contains (a,b,c,d)

Schema Refinements = Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = no bad FDs
- 3rd Normal Form = see book
 - BCNF is lossless but can cause loss of ability to check some FDs
 - 3NF fixes that (is lossless and dependencypreserving), but some tables might not be in BCNF – i.e., they may have redundancy anomalies