CSE544 Data Management

Lectures 6-8 Query Execution

Announcements

- Review 2 due on Wednesday (Ch. 1&2 only)
- Friday: both HW2 and project proposals due
- Next Friday: will meet with each team to discuss the project proposals

Outline

- Architecture of a DBMS
- Steps involved in processing a query
- Main Memory Operators
- Storage
- External Memory Operators

Architecture of DBMS

CSE 544 - Winter 2020

Warning: it will be confusing...

DBMS are monoliths: all components must work together and cannot be isolated

• Good news:

- Hole system has rich functionality and is efficient

- Bad news:
 - Hard to discuss components in isolation
 - Impossible to use components in isolation

Multiple Processes

CSE 544 - Winter 2020

Why Multiple Processes

DBMS listens to requests from clients

• Each request = one SQL command

 Need to handle multiple requests concurrently, hence, multiple processes

Process Models

Process per DBMS worker

Thread per DBMS worker

Process pool

Discuss pro/cons for each model

CSE 544 - Winter 2020

Outline

- Architecture of a DBMS
- Steps involved in processing a query
- Main Memory Operators
- Storage
- External Memory Operators

Query Optimization

CSE 544 - Winter 2020

Example Database Schema

Supplier(sno,sname,scity,sstate) Part(pno,pname,psize,pcolor) Supply(sno,pno,price)

View: Suppliers in Seattle

CREATE VIEW NearbySupp AS SELECT sno, sname FROM Supplier WHERE scity='Seattle' AND sstate='WA'

Example Query

• Find the names of all suppliers in Seattle who supply part number 2

SELECT sname FROM NearbySupp WHERE sno IN (SELECT sno FROM Supplies WHERE pno = 2)

Lifecycle of a Query (1)

• Step 0: admission control

- User connects to the db with username, password
- User sends query in text format

• Step 1: Query parsing

- Parses query into an internal format
- Performs various checks using catalog:
 Correctness, authorization, integrity constraints

Step 2: Query rewrite

- View rewriting, flattening, decorrelation, etc.

View Rewriting, Flattening

Original query:

SELECT sname FROM NearbySupp WHERE sno IN (SELECT sno FROM Supplies WHERE pno = 2)

View rewriting = view inlining = view expansion Flattening = unnesting

View Rewriting, Flattening

Original query:

SELECT sname FROM NearbySupp WHERE sno IN (SELECT sno FROM Supplies WHERE pno = 2)

View rewriting = view inlining = view expansion Flattening = unnesting

Rewritten query:

SELECT S.sname FROM Supplier S, Supplies U WHERE S.scity='Seattle' AND S.sstate='WA' AND S.sno = U.sno AND U.pno = 2;

```
SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = 'WA'
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno
and P.price > 100)
```


Decorrelation

EXCEPT = set difference

Lifecycle of a Query (2)

• Step 3: Query optimization

- Find an efficient query plan for executing the query
- We will spend two lectures on this topic
- A query plan is
 - Logical query plan: an extended relational algebra tree
 - Physical query plan: with additional annotations at each node

Relational Algebra Operators

- Union U, intersection A, difference -
- Selection σ
- Projection π
- Cartesian product ×, join
- (Rename ρ)
- Duplicate elimination δ
- Grouping and aggregation y
- Sorting τ

Query Block

- Most optimizers operate on individual query blocks
- A query block is an SQL query with **no nesting**
 - Exactly one
 - SELECT clause
 - FROM clause
 - At most one
 - WHERE clause
 - GROUP BY clause
 - HAVING clause

Final Step in Query Processing • Step 4: Query execution

- How to synchronize operators
- How to pass data between operators
- Standard approach:
 - Iterator interface and
 - Pipelined execution or
 - Intermediate result materialization

Outline

- Architecture of a DBMS
- Steps involved in processing a query
- Main Memory Operators
- Storage
- External Memory Operators

Multiple Processes

CSE 544 - Winter 2020

Physical Operators

- For each operator, several algorithms
- Main memory or external memory
- Examples:
 - Main memory hash join
 - External memory merge join
 - External memory partitioned hash join-
 - Sort-based group by
 - Hash-based group by

 \bowtie

Main Memory Algorithms

Logical operator: Supplier ⋈_{sid=sid} Supply

Three algorithms:

- 1. Nested Loops
- 2. Hash-join
- 3. Merge-join

1. Nested Loop Join

Logical operator:

Supplier $\bowtie_{sid=sid}$ Supply

for x in Supplier do for y in Supply do if x.sid = y.sid then output(x,y)

1. Nested Loop Join

Logical operator:

Supplier $\bowtie_{sid=sid}$ Supply

for x in Supplier do for y in Supply do if x.sid = y.sid then output(x,y) If |R|=|S|=n, what is the runtime?

1. Nested Loop Join

Logical operator:

Supplier $\bowtie_{sid=sid}$ Supply

for x in Supplier do for y in Supply do if x.sid = y.sid then output(x,y) If |R|=|S|=n, what is the runtime?

O(n²)

BRIEF Review of Hash Tables Separate chaining:

BRIEF Review of Hash Tables

insert(k, v) = inserts a key k with value v

Many values for one key
– Hence, duplicate k's are OK

 find(k) = returns the <u>list</u> of all values v associated to the key k

2. Hash Join

Logical operator:

Supplier $\bowtie_{sid=sid}$ Supply

for x in Supplier do insert(x.sid, x)

for y in Supply do
 x = find(y.sid);
 output(x,y);

2. Hash Join

Logical operator:

Supplier $\bowtie_{sid=sid}$ Supply

for x in Supplier do insert(x.sid, x)

for y in Supply do
 x = find(y.sid);
 output(x,y);

If |R|=|S|=n, what is the runtime?

2. Hash Join

Logical operator:

Supplier $\bowtie_{sid=sid}$ Supply

for x in Supplier do insert(x.sid, x)

for y in Supply do
 x = find(y.sid);
 output(x,y);

If |R|=|S|=n, what is the runtime?

O(n)

2. Hash Join

2. Hash Join

2. Hash Join

2. Hash Join

CSE 544 - Winter 2020

3. Merge Join

Logical operator:

Supplier ⋈_{sid=sid} Supply

Sort(Supplier); Sort(Supply);

- x = Supplier.first();
- y = Supply.first();

3. Merge Join

Logical operator:

Supplier M_{sid=sid} Supply

```
Sort(Supplier); Sort(Supply);
```

```
x = Supplier.first();
```

```
y = Supply.first();
```

```
while y != NULL do
```

case:

```
x.sid < y.sid: ???
```

```
x.sid = y.sid: ???
```

```
x.sid > y.sid: ???
```

3. Merge Join

Logical operator:

Supplier ⋈_{sid=sid} Supply

Sort(Supplier); Sort(Supply);

```
x = Supplier.first();
```

```
y = Supply.first();
```

while y != NULL do

case:

```
x.sid < y.sid: x = x.next()
x.sid = y.sid: ???
x.sid > y.sid: ???
```

3. Merge Join

Logical operator: Supplier ⋈_{sid=sid} Supply Sort(Supplier); Sort(Supply); x =Supplier.first(); y = Supply.first(); while y != NULL do case: x.sid < y.sid: x = x.next()x.sid = y.sid: output(x,y); y = y.next();x.sid > y.sid: ???

3. Merge Join

Logical operator: Supplier $\bowtie_{sid=sid}$ Supply Sort(Supplier); Sort(Supply); x =Supplier.first(); y = Supply.first(); while y != NULL do case: x.sid < y.sid: x = x.next()x.sid = y.sid: output(x,y); y = y.next();x.sid > y.sid: y = y.next();

3. Merge Join

```
Logical operator:
Supplier \bowtie_{sid=sid} Supply
Sort(Supplier); Sort(Supply);
x = Supplier.first();
y = Supply.first();
while y != NULL do
  case:
   x.sid < y.sid: x = x.next()
   x.sid = y.sid: output(x,y); y = y.next();
   x.sid > y.sid: y = y.next();
```

If |R|=|S|=n, what is the runtime?

3. Merge Join

Logical operator:	
Supplier M _{sid=sid} Supply	
Sort(Supplier); Sort(Supply);	
x = Supplier.first();	If R = S =n
y = Supply.first();	what is the
while y != NULL do	
case:	O(n log(n))
x.sid < y.sid: x = x.next()	
x.sid = y.sid: $output(x,y)$; y = y.next();	
x.sid > y.sid: y = y.next();	

|=|S|=n, t is the runtime?

Main Memory Algorithms

- Join ⊠:
 - Nested loop join
 - Hash join
 - Merge join
- Selection σ
 - "on-the-fly"

- Index-based selection (next lecture)
- Group by **y**
 - Hash–based
 - Merge-based

How Do We Combine Them?

How Do We Combine Them?

The Iterator Interface

- open()
- next()

О W Ο S K R

close()

```
// initializes operator state
// and sets parameters
void open (...);
```

```
// initializes operator state
// and sets parameters
void open (...);
```

```
// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();
```

```
// initializes operator state
// and sets parameters
void open (...);
```

```
// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();
```

```
// cleans up (if any)
void close ();
```

Example "on the fly" selection operator

```
// initializes operator state
// and sets parameters
void open (...);
```

```
// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();
```

```
// cleans up (if any)
void close ();
```

Example "on the fly" selection operator

```
interface Operator {
```

```
// initializes operator state
// and sets parameters
void open (...);
```

```
// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();
```

```
// cleans up (if any)
void close ();
```

Example "on the fly" selection operator

```
interface Operator {
```

```
// initializes operator state
// and sets parameters
void open (...);
```

```
// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();
```

```
// cleans up (if any)
void close ();
```

Example "on the fly" selection operator

```
// initializes operator state
// and sets parameters
void open (...);
```

```
// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();
```

```
class Select implements Operator {...
  void open (Predicate p,
             Operator c) {
    this.p = p; this.c = c; c.open();
    }
  Tuple next () {
    boolean found = false;
    Tuple r = null;
    while (!found) {
       r = c.next();
       if (r == null) break;
       found = p(r);
    }
```

```
// cleans up (if any)
void close ();
```

Example "on the fly" selection operator

```
// initializes operator state
// and sets parameters
void open (...);
```

```
// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();
```

```
// cleans up (if any)
void close ();
```

```
class Select implements Operator {...
 void open (Predicate p,
             Operator c) {
    this.p = p; this.c = c; c.open();
    }
 Tuple next () {
    boolean found = false;
    Tuple r = null;
    while (!found) {
       r = c.next();
       if (r == null) break;
       found = p(r);
    return r;
```

}

Example "on the fly" selection operator

class Select implements Operator {...

```
interface Operator {
   // initializes operator state
   // and sets parameters
   void open (...);
   // calls next() on its inputs
   // processes an input tuple
   // produces output tuple(s)
   // returns null when done
```

Tuple next ();

void close ();

// cleans up (if any)

```
void open (Predicate p,
           Operator c) {
  this.p = p; this.c = c; c.open();
  }
Tuple next () {
  boolean found = false;
  Tuple r = null;
  while (!found) {
     r = c.next();
     if (r == null) break;
     found = p(r);
  return r;
void close () { c.close(); }
```

```
}
```

interface Operator {

```
// initializes operator state
// and sets parameters
void open (...);
```

```
// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();
```

// cleans up (if any) void close ();

Query plan execution

```
Operator q = parse("SELECT ...");
q = optimize(q);
```

```
q.open();
while (true) {
  Tuple t = q.next();
  if (t == null) break;
  else printOnScreen(t);
}
q.close();
```


Pipeline v.s. Blocking

- Pipeline
 - A tuple moves all the way through up the query plan
 - Advantages: speed
 - Disadvantage: need all hash at the same time in memory
- Blocking
 - The entire result of the subplan is computed (and stored to disk) before the first tuple is sent up the plan
 - Advantage: saves memory
 - Disadvantage: slower

Outline

- Architecture of a DBMS
- Steps involved in processing a query
- Main Memory Operators
- Storage
- External Memory Operators

Multiple Processes

CSE 544 - Winter 2020

The Mechanics of Disk

Student

Data Sto	orage
----------	-------

ID	fName	IName
10	Tom	Hanks
20	Amy	Hanks

- DBMSs store data in files
- Most common organization is row-wise storage
- On disk, a file is split into blocks
- Each block contains a set of tuples

10	Tom	Hanks	block 1
20	Amy	Hanks	biook i
50			block 2
200			biook 2
220			block 3
240			biook o
420			
800			

In the example, we have 4 blocks with 2 tuples each

Disk Access Characteristics

• Disk latency

- Time between when command is issued and when data is in memory
- Equals = seek time + rotational latency
- Seek time = time for the head to reach cylinder
 - 10ms 40ms
- Rotational latency = time for the sector to rotate
 - Rotation time = 10ms
 - Average latency = 10ms/2
- Transfer time = typically 40MB/s

Basic factoid: disks always read/write an entire block at a time

- Data must be in RAM for DBMS to operate on it!
- Table of <frame#, pageid> pairs is maintained

Buffer Manager

Needs to decide on page replacement policy

- LRU
- Clock algorithm

Both work well in OS, but not always in DB

Enables the higher levels of the DBMS to assume that the needed data is in main memory.

Arranging Pages on Disk

A disk is organized into blocks (a.k.a. pages)

- blocks on same track, followed by
- blocks on same cylinder, followed by
- blocks on adjacent cylinder

A file should (ideally) consists of sequential blocks on disk, to minimize seek and rotational delay.

For a sequential scan, pre-fetching several pages at a time is a big win!

Issues

Managing free blocks

• File Organization

• Represent the records inside a page

Represent attributes inside the records

Managing Free Blocks

Linked list of free blocks

Directory of pages

• Bit map

File Organization

File Organization

Better: directory of pages

File Organization

 Bit map: store compactly the free/full status of each page

Records into a Page

Issues to consider

- 1 page = fixed size (e.g. 8KB)
- Records:
 - Fixed length
 - Variable length
- Record id = RID

– Typically RID = (PageID, SlotNumber)

Records into a Page

Variable-length records

Record Formats: Fixed Length

Product(pid, name, descr, maker)

Base address (B) Address = B+L1+L2

- Information about field types same for all records in a file; stored in *system catalogs.*
- Finding *i'th* field requires scan of record.
- Note the importance of schema information!

timestamp (e.g. for MVCC)

Need the header because:

- The schema may change for a while new+old may coexist
- Records from different relations may coexist

Place the fixed fields first: F1 Then the variable length fields: F2, F3, F4 Null values take 2 bytes only Sometimes they take 0 bytes (when at the end)

BLOB

- Binary large objects
- Supported by modern database systems
- E.g. images, sounds, etc.
- Storage: attempt to cluster blocks together

CLOB = character large object

• Supports only restricted operations

File Organizations

- Heap (random order) files: Suitable when typical access is a file scan retrieving all records.
- Sequential file (sorted): Best if records must be retrieved in some order, or by a `range'
- Indexe: Data structures to organize records via trees or hashing.

Index

• An additional file, that allows fast access to records in the data file given a search key

Index

- An additional file, that allows fast access to records in the data file given a search key
- The index contains (key, value) pairs:
 - Key = an attribute value (e.g., student ID or name)
 - Value = a pointer to the record OR the record itself

Index

- An additional file, that allows fast access to records in the data file given a search key
- The index contains (key, value) pairs:
 - Key = an attribute value (e.g., student ID or name)
 - Value = a pointer to the record OR the record itself
- Could have many indexes for one table

Key = means here search key

- Primary key uniquely identifies a tuple
- Key of the sequential file how the data file is sorted, if at all
- Index key how the index is organized

This is not a pipe.

CSE 544 - Winter 2020

Student

Student

Index Organization

Hash table

- B+ trees most common
 - They are search trees, but they are not binary instead have higher fan-out
 - Will discuss them briefly next

 Specialized indexes: bit maps, R-trees, inverted index; won't discuss

B+ Tree Index by Example

d = 2

Clustered vs Unclustered

CLUSTERED

UNCLUSTERED

Every table can have **only one** clustered and **many** unclustered indexes Why?

Index Classification

Clustered/unclustered

- Clustered = records close in index are close in data
 - Option 1: Data inside data file is sorted on disk
 - Option 2: Store data directly inside the index (no separate files)
- Unclustered = records close in index may be far in data

Index Classification

Clustered/unclustered

- Clustered = records close in index are close in data
 - Option 1: Data inside data file is sorted on disk
 - Option 2: Store data directly inside the index (no separate files)
- Unclustered = records close in index may be far in data

Primary/secondary

- Meaning 1:
 - Primary = is over attributes that include the primary key
 - Secondary = otherwise
- Meaning 2: means the same as clustered/unclustered

Index Classification

Clustered/unclustered

- Clustered = records close in index are close in data
 - Option 1: Data inside data file is sorted on disk
 - Option 2: Store data directly inside the index (no separate files)
- Unclustered = records close in index may be far in data

Primary/secondary

- Meaning 1:
 - Primary = is over attributes that include the primary key
 - Secondary = otherwise
- Meaning 2: means the same as clustered/unclustered
- **Organization** B+ tree or Hash table

CREATE TABLE V(M int, N text, P int);

CREATE TABLE V(M int, N text, P int);

CREATE INDEX V1 ON V(N)

CREATE INDEX V2 ON V(P, M)

Which Indexes?

- How many indexes could we create?
- Which indexes should we create?

Which Indexes?

- How many indexes could we create?
- Which indexes should we create?

This is called the *Index Selection Problem*

(not to be confused with the *index selection* operator!)

Your workload is this 100000 queries:

100 queries:

Your workload is this 100000 queries:

100 queries:

What indexes ?

Your workload is this 100000 queries:

100 queries:

A: V(N) and V(P) (hash tables or B-trees)

Your workload is this 100000 queries: 100

100 queries:

SELECT * FROM V WHERE N>? and N<? SELECT * FROM V WHERE P=? 100000 queries:

INSERT INTO V VALUES (?, ?, ?)

What indexes ?

WHERE N>? and N<?

Your workload is this100000 queries:100 queries:100000 queries:SELECT *SELECT *INSERT INTO VFROM VFROM VVALUES (?, ?, ?)

WHERE P=?

A: definitely V(N) (must B-tree); unsure about V(P)

V(M, N, P);

Your workload is this 100000 queries: 100000 queries:

SELECT * FROM V WHERE N=?

SELECT* FROM V WHERE N=? and P>?

What indexes ?

Your workload is this 100000 queries: 100000 queries:

SELECT * FROM V WHERE N=?

INSERT INTO V VALUES (?, ?, ?)

A: V(N, P)

How does this index differ from: 1. Two indexes V(N) and V(P)? CSE 544 2. An index V(P, N)?

V(M, N, P);

Your workload is this 1000 queries:

SELECT * FROM V WHERE N>? and N<? 100000 queries:

SELECT * FROM V WHERE P>? and P<?

What indexes ?

Your workload is this 1000 queries:

SELECT * FROM V WHERE N>? and N<? 100000 queries:

SELECT * FROM V WHERE P>? and P<?

A: V(N) secondary, V(P) primary index

Two typical kinds of queries

SELECT * FROM Movie WHERE year = ?

- Point queries
- Hash- or B⁺-tree index
- Clustered or not
- Range queries
- B⁺-tree index
- Clustered

To Cluster or Not

Remember:

• Rule of thumb:

Random reading 1-2% of file ≈ sequential scan entire file;

Range queries benefit mostly from clustering because they may read more than 1-2%

Outline

- Architecture of a DBMS
- Steps involved in processing a query
- Main Memory Operators
- Storage
- External Memory Operators

Architecture

CSE 544 - Winter 2020

Cost Parameters

- In database systems the data is on disk
- Parameters:
 - B(R) = # of blocks (i.e., pages) for relation R
 - T(R) = # of tuples in relation R
 - V(R, a) = # of distinct values of attribute a
 - M = # pages available in main memory
- Cost = total number of I/Os
- Convention: writing the final result to disk is not included

Cost Parameters

Supplier(sid, sname, scity, sstate)
Block size = 8KB

- B(Supplier) = 1,000,000 blocks
- T(Supplier) = 50,000,000 records
- V(Supplier, sid) =
- V(Supplier, sname) =
- V(Supplier, scity) =
- V(Supplier, sstate) =

- = 8GB
- ~ 50 / block

Cost Parameters

Supplier(sid, sname, scity, sstate)
Block size = 8KB

- B(Supplier) = 1,000,000 blocks
- T(Supplier) = 50,000,000 records
- V(Supplier, sid) = 50,000,000
- V(Supplier, sname) =
- V(Supplier, scity) =
- V(Supplier, sstate) =

• M =

- = 8GB
- ~ 50 / block

why?

Cost Parameters

Supplier(sid, sname, scity, sstate)
Block size = 8KB

- B(Supplier) = 1,000,000 blocks
- T(Supplier) = 50,000,000 records
- V(Supplier, sid) = 50,000,000
- V(Supplier, sname) = 40,000,000
- V(Supplier, scity) =
- V(Supplier, sstate) =

- = 8GB
- ~ 50 / block
- why?
- meaning?

Cost Parameters

Supplier(sid, sname, scity, sstate)
Block size = 8KB

- B(Supplier) = 1,000,000 blocks
- T(Supplier) = 50,000,000 records
- V(Supplier, sid) = 50,000,000
- V(Supplier, sname) = 40,000,000
- V(Supplier, scity) = 860
- V(Supplier, sstate) =

- = 8GB
- ~ 50 / block
- why?
- meaning?

Cost Parameters

Supplier(sid, sname, scity, sstate)
Block size = 8KB

- B(Supplier) = 1,000,000 blocks
- T(Supplier) = 50,000,000 records
- V(Supplier, sid) = 50,000,000
- V(Supplier, sname) = 40,000,000
- V(Supplier, scity) = 860
- V(Supplier, sstate) = 50

= 8GB

~ 50 / block

why?

- meaning?
- why?

Cost Parameters

Supplier(sid, sname, scity, sstate)
Block size = 8KB

- B(Supplier) = 1,000,000 blocks
- T(Supplier) = 50,000,000 records
- V(Supplier, sid) = 50,000,000
- V(Supplier, sname) = 40,000,000
- V(Supplier, scity) = 860
- V(Supplier, sstate) = 50
- M = 10,000,000 = 80GB

- = 8GB
- ~ 50 / block
- why?
- meaning?
- why? why so little?

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$ V(R, a) = # of distinct values of attribute a

Cost of index-based selection:

- Clustered index on a:
- Unclustered index on a:

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$ V(R, a) = # of distinct values of attribute a Assumptions:

- Values are uniformly distributed
- Ignore the cost of reading the index (why?)

Cost of index-based selection:

- Clustered index on a:
- Unclustered index on a:

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$ V(R, a) = # of distinct values of attribute a Assumptions:

- Values are uniformly distributed
- Ignore the cost of reading the index (why?)

Cost of index-based selection:

- Clustered index on a:
- Unclustered index on a:

cost = B(R) / V(R,a)cost = T(R) / V(R,a)

- Table scan (assuming R is clustered)
- Index based selection
 - If index is clustered:
 - If index is unclustered:

B(R) = 2000

V(R, a) = 20

T(R) = 100,000

• Example:

- Table scan (assuming R is clustered)
 B(R) = 2,000 I/Os
- Index based selection
 - If index is clustered:
 - If index is unclustered:

 $| \text{cost of } \sigma_{a=v}(\mathsf{R}) = ? |$

- Example:
- B(R) = 2000T(R) = 100,000 V(R, a) = 20
- Table scan (assuming R is clustered)
 B(R) = 2,000 I/Os
- Index based selection
 - If index is clustered: B(R)/V(R,a) = 100 I/Os
 - If index is unclustered:

 $| \text{cost of } \sigma_{a=v}(\mathsf{R}) = ? |$

- Example:
- Table scan (assuming R is clustered)
 - B(R) = 2,000 I/Os
- Index based selection
 - If index is clustered: B(R)/V(R,a) = 100 I/Os

B(R) = 2000

V(R, a) = 20

T(R) = 100,000

- If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

cost of $\sigma_{a=v}(R) = ?$

• Example:

B(R) = 2000T(R) = 100,000 V(R, a) = 20

- Table scan (assuming R is clustered)
 B(R) = 2,000 I/Os
- Index based selection
 - If index is clustered: B(R)/V(R,a) = 100 I/Os
 - If index is unclustered: T(R)/V(R,a) = 5,000 I/Os
- Lesson
 - Don't build unclustered indexes when V(R,a) is small !

cost of $\sigma_{a=v}(R) = ?$

The 2% rule!

External Memory Joins

Recall standard main memory algorithms:

- Hash join
- Nested loop join
- Sort-merge join

Review in class

Index Nested Loop Join

 $\mathsf{R} \bowtie \mathsf{S}$

- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S
- Cost:
 - Assuming R is clustered
 - If index on S is clustered:
 - If index on S is unclustered:

B(R) + T(R)B(S)/V(S,a)B(R) + T(R)T(S)/V(S,a)

One Pass Hash Join

Hash join: $R \bowtie S$

- Scan R, build buckets in main memory
- Then scan S, probe hash table to join

- Cost: B(R) + B(S)
- One pass algorithm when B(R) <= M

- Tuple-based nested loop R ⋈ S
- R is the outer relation, S is the inner relation

for each tuple r in R do

for each tuple s in S do

<u>if</u> r and s join <u>then</u> output (r,s)

• Cost: B(R) + T(R) B(S)

Page-at-a-time Refinement

for each page of tuples r in R do for each page of tuples s in S do for all pairs of tuples if r and s join then output (r,s)

• Cost: B(R) + B(R)B(S)

- We can be much more clever
- How would you compute the join in the following cases ? What is the cost ?

$$-$$
 B(R) = 1000, B(S) = 2, M = 4

$$-$$
 B(R) = 1000, B(S) = 3, M = 4

$$-$$
 B(R) = 1000, B(S) = 6, M = 4

Cost of block-based nested loop join

- Read S once:
 B(S)
- Outer loop runs B(S)/(M-2) times, each iteration reads the entire R: B(S)B(R)/(M-2)
- Total cost: B(S) + B(S)B(R)/(M-2)

Cost of block-based nested loop join

- Read S once:
- Outer loop runs B(S)/(M-2) times, each iteration reads the entire R:

B(S)B(R)/(M-2)

B(S)

• Total cost: B(S) + B(S)B(R)/(M-2)

B(S)

Cost of block-based nested loop join

- Read S once:
- Outer loop runs B(S)/(M-2) times, each iteration reads the entire R:

• Total cost:

Iterate over the smaller relation first!

B(S) + B(S)B(R)/(M-2)

B(S)B(R)/(M-2)

173

Sort-Merge Join

Sort-merge join: R ⋈ S

- Scan R and sort in main memory
- Scan S and sort in main memory
- Merge R and S
- Cost:

Sort-Merge Join

Sort-merge join: R ⋈ S

- Scan R and sort in main memory
- Scan S and sort in main memory
- Merge R and S
- Cost: B(R) + B(S)

Sort-Merge Join

Sort-merge join: R ⋈ S

- Scan R and sort in main memory
- Scan S and sort in main memory
- Merge R and S
- Cost: B(R) + B(S)
- One pass algorithm when B(S) + B(R) <= M

Product(name, department, quantity)

Grouping

γdepartment, sum(quantity) (Product)

In class: describe a one-pass algorithms.

Two-Pass Algorithms

 When data is larger than main memory, need two or more passes

- Two key techniques
 - Hashing
 - Sorting

Two Pass Algorithms Based on Hashing

• Idea: partition a relation R into buckets, on disk

Two Pass Algorithms Based on Hashing

• Idea: partition a relation R into buckets, on disk

- Idea: partition a relation R into buckets, on disk
- Each bucket has size approx. B(R)/M

- Idea: partition a relation R into buckets, on disk
- Each bucket has size approx. B(R)/M

• Does each bucket fit in main memory ?

- Idea: partition a relation R into buckets, on disk
- Each bucket has size approx. B(R)/M

- Does each bucket fit in main memory ?
- Yes when: $B(R)/M \le M$, i.e. $B(R) \le M^2$

Hash Based Algorithms for γ

- Recall: $\gamma(R) =$ grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket
- Cost: 3B(R)
- Assumption: $B(R) \le M^2$

Partitioned (Grace) Hash Join

R ⋈ S

- Step 1:
 - Hash S into M-1 buckets
 - Send all buckets to disk
- Step 2
 - Hash R into M-1 buckets
 - Send all buckets to disk
- Step 3
 - Join every pair of buckets

Partitioned Hash Join R

 $\mathsf{R} \bowtie \mathsf{S}$

Partition both relations using hash fn h

Partitioned Hash Join

R ⋈ S

- Read in partition of S, hash it using $h2 (\neq h)$
- Scan same partition of R, search for matches

Partitioned Hash Join

- Cost: 3B(R) + 3B(S)
- Assumption: $min(B(R), B(S)) \le M^2$

- Assume we have extra memory available
- Partition S into k buckets

 t buckets S₁, ..., S_t stay in memory
 k-t buckets S_{t+1}, ..., S_k to disk
- Partition R into k buckets
 - First t buckets join immediately with S
 - Rest k-t buckets go to disk
- Finally, join k-t pairs of buckets: (R_{t+1},S_{t+1}), (R_{t+2},S_{t+2}), ..., (R_k,S_k)

How to choose k and t?

• The first t buckets must fin in M: $t/k * B(S) \le M$

How to choose k and t?

- The first t buckets must fin in M:
- Need room for k-t additional pages:
- $t/k * B(S) \le M$ $k-t \le M$

How to choose k and t?

- The first t buckets must fin in M: $t/k * B(S) \le M$
- Need room for k-t additional pages: k-t ≤ M
- Thus: $t/k * B(S) + k-t \le M$

How to choose k and t?

- The first t buckets must fin in M: $t/k * B(S) \le M$
- Need room for k-t additional pages: k-t ≤ M
- Thus: $t/k * B(S) + k-t \le M$

Assuming t/k * $B(S) \gg k-t$: t/k = M/B(S)

- How many I/Os ?
- Cost of partitioned hash join: 3B(R) + 3B(S)
- Hybrid join saves 2 I/Os for a t/k fraction of buckets
- Hybrid join saves 2t/k(B(R) + B(S)) I/Os

Cost: (3-2t/k)(B(R) + B(S)) = (3-2M/B(S))(B(R) + B(S))

External Sorting

- Problem: Sort a file of size B with memory M
- Where we need this:
 - ORDER BY in SQL queries
 - Several physical operators
 - Bulk loading of B+-tree indexes.
- Will discuss only 2-pass sorting, for when $B \le M^2$

External Merge-Sort: Step 1

• Phase one: load M pages in memory, sort

External Merge-Sort: Step 2

- Merge M 1 runs into a new run
- Result: runs of length M (M 1) \approx M²

Assuming $B \leq M^2$, we are done

External Merge-Sort

- Cost:
 - -Read+write+read = 3B(R)
 - Assumption: $B(R) \le M^2$
- Other considerations

 In general, a lot of optimizations are possible

Two-Pass Algorithms Based on Sorting

Grouping: $\gamma_{a, sum(b)}$ (R)

Sort, then compute the sum(b) for each group of a's

- Step 1: sort chunks of size M, write
 cost 2B(R)
- Step 2: merge M-1 runs, combining groups by addition
 - cost B(R)
- Total cost: 3B(R), Assumption: $B(R) \le M^2$

Two-Pass Algorithms Based on Sorting

Join R ⋈ S

- Start by creating initial runs of length M, for R and S:
 - Cost: 2B(R)+2B(S)
- Merge (and join) M_1 runs from R, M_2 runs from S:
 - Cost: B(R)+B(S)
- Total cost: 3B(R)+3B(S)
- Assumption:
 - R has $M_1=B(R)/M$ runs, S has $M_2=B(S)/M$ runs
 - M₁ + M₂ \leq M
 - Hence: B(R)+B(S)≤ M^2

Summary of External Join Algorithms

- Block Nested Loop Join: B(R) + B(R)*B(S)/M
- Hybrid Hash Join: (3-2M/B(S))(B(R) + B(S)) Assuming t/k * B(S) >> k-t
- Sort-Merge Join: 3B(R)+3B(S)Assuming $B(R)+B(S) \le M^2$
- Index Nested Loop Join: B(R) + T(R)B(S)/V(S,a)
 Assuming R is clustered and S has clustered index on a