
CSE544
Data Management

Lectures 6-8
Query Execution

CSE 544 - Winter 2020 1

Announcements

• Review 2 due on Wednesday (Ch. 1&2 only)

• Friday: both HW2 and project proposals due

• Next Friday: will meet with each team to
discuss the project proposals

CSE 544 - Winter 2020 2

Outline

• Architecture of a DBMS

• Steps involved in processing a query

• Main Memory Operators

• Storage

• External Memory Operators
CSE 544 - Winter 2020 3

Architecture of DBMS

CSE 544 - Winter 2020 4

Warning: it will be confusing…

DBMS are monoliths: all components must work
together and cannot be isolated

• Good news:
– Hole system has rich functionality and is efficient

• Bad news:
– Hard to discuss components in isolation
– Impossible to use components in isolation

5

Multiple Processes

CSE 544 - Winter 2020 6

Why Multiple Processes

• DBMS listens to requests from clients

• Each request = one SQL command

• Need to handle multiple requests
concurrently,
hence, multiple processes

CSE 544 - Winter 2020 7

Process Models

• Process per DBMS worker

• Thread per DBMS worker

• Process pool

Discuss pro/cons for each model
CSE 544 - Winter 2020 8

Outline

• Architecture of a DBMS

• Steps involved in processing a query

• Main Memory Operators

• Storage

• External Memory Operators
CSE 544 - Winter 2020 9

Query Optimization

CSE 544 - Winter 2020 10

Lifecycle of a Query

11

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

Example Database Schema

CSE 544 - Winter 2020 12

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

CREATE VIEW NearbySupp AS
SELECT sno, sname
FROM Supplier
WHERE scity='Seattle' AND sstate='WA'

View: Suppliers in Seattle

Example Query

• Find the names of all suppliers in
Seattle who supply part number 2

CSE 544 - Winter 2020 13

SELECT sname FROM NearbySupp
WHERE sno IN (SELECT sno

FROM Supplies
WHERE pno = 2)

Lifecycle of a Query (1)
• Step 0: admission control

– User connects to the db with username, password
– User sends query in text format

• Step 1: Query parsing
– Parses query into an internal format
– Performs various checks using catalog:

Correctness, authorization, integrity constraints

• Step 2: Query rewrite
– View rewriting, flattening, decorrelation, etc.

CSE 544 - Winter 2020 14

View Rewriting, Flattening

CSE 544 - Winter 2020 15

View rewriting
= view inlining
= view expansion
Flattening
= unnesting

SELECT sname
FROM NearbySupp
WHERE sno IN (SELECT sno

FROM Supplies
WHERE pno = 2)

Original query:

View Rewriting, Flattening

CSE 544 - Winter 2020 16

View rewriting
= view inlining
= view expansion
Flattening
= unnesting

SELECT sname
FROM NearbySupp
WHERE sno IN (SELECT sno

FROM Supplies
WHERE pno = 2)

SELECT S.sname
FROM Supplier S, Supplies U
WHERE S.scity='Seattle' AND S.sstate='WA’
AND S.sno = U.sno
AND U.pno = 2;

Original query:

Rewritten query:

Decorrelation

CSE 544 - Winter 2020 17

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

Decorrelation

CSE 544 - Winter 2020 18

Correlation !

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Decorrelation

CSE 544 - Winter 2020 19

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

De-Correlation

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

Decorrelation

CSE 544 - Winter 2020 20

Un-nesting

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

EXCEPT = set difference

Decorrelation

CSE 544 - Winter 2020 21

Supply

ssstate=‘WA’

Supplier

sPrice > 100

−

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Finally…

psnopsno

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

Lifecycle of a Query (2)

• Step 3: Query optimization
– Find an efficient query plan for executing the

query
– We will spend two lectures on this topic

• A query plan is
– Logical query plan: an extended relational

algebra tree
– Physical query plan: with additional annotations

at each node
CSE 544 - Winter 2020 22

Relational Algebra Operators
• Union ∪, intersection ∩, difference -
• Selection σ
• Projection π
• Cartesian product ×, join ⨝
• (Rename ρ)
• Duplicate elimination δ
• Grouping and aggregation ɣ
• Sorting 𝛕

CSE 544 - Winter 2020 23

RA

Extended RA

Logical Query Plan

CSE 544 - Winter 2020 24

Suppliers Supplies

sno = sno

s sscity=‘Seattle’ Ùsstate=‘WA’ Ù pno=2

p sname

Query Block
• Most optimizers operate on individual query blocks

• A query block is an SQL query with no nesting
– Exactly one

• SELECT clause
• FROM clause

– At most one
• WHERE clause
• GROUP BY clause
• HAVING clause

CSE 544 - Winter 2020 25

Query Plan For A Block

CSE 544 - Winter 2020 26

p fields

g fields, sum/count/min/max(fields)

shaving-condition

swhere-condition

join condition

… …

SELECT-PROJECT-JOIN
Query

Physical Query Plan

CSE 544 - Winter 2020 27

Suppliers Supplies

sno = sno

s sscity=‘Seattle’ Ùsstate=‘WA’ Ù pno=2

p sname

(File scan) (Index lookup)

(Nested loop)

(On the fly)

(On the fly)

Physical plan=
Logical plan
+ choice of algorithms
+ choice of access path

Algorithm
Access path

Final Step in Query
Processing

• Step 4: Query execution
– How to synchronize operators
– How to pass data between operators

• Standard approach:
– Iterator interface and
– Pipelined execution or
– Intermediate result materialization

CSE 544 - Winter 2020 28

Outline

• Architecture of a DBMS

• Steps involved in processing a query

• Main Memory Operators

• Storage

• External Memory Operators
CSE 544 - Winter 2020 29

Multiple Processes

CSE 544 - Winter 2020 30

Physical Operators

• For each operator, several algorithms
• Main memory or external memory
• Examples:

– Main memory hash join
– External memory merge join
– External memory partitioned hash join
– Sort-based group by
– Hash-based group by

CSE 544 - Winter 2020 31

⨝

ɣ

Main Memory Algorithms
Logical operator:
Supplier ⨝sid=sid Supply

Three algorithms:
1. Nested Loops
2. Hash-join
3. Merge-join

CSE 544 - Winter 2020 32

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

1. Nested Loop Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 33

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for x in Supplier do
for y in Supply do

if x.sid = y.sid
then output(x,y)

1. Nested Loop Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 34

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for x in Supplier do
for y in Supply do

if x.sid = y.sid
then output(x,y)

If |R|=|S|=n,
what is the runtime?

1. Nested Loop Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 35

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for x in Supplier do
for y in Supply do

if x.sid = y.sid
then output(x,y)

If |R|=|S|=n,
what is the runtime?

O(n2)

BRIEF Review of Hash Tables
0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(x) = x mod 10
A (naïve) hash function:

503 103

76 666

48

503

Duplicates OK
WHY ??

Operations:

find(103) = ??
insert(488) = ??

BRIEF Review of Hash Tables

• insert(k, v) = inserts a key k with value v

• Many values for one key
– Hence, duplicate k’s are OK

• find(k) = returns the list of all values v
associated to the key k

CSE 544 - Winter 2020 37

2. Hash Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 38

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

2. Hash Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 39

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

If |R|=|S|=n,
what is the runtime?

2. Hash Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 40

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

If |R|=|S|=n,
what is the runtime?

O(n)

2. Hash Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 41

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for y in Supply do
insert(y.sid, y)

for x in Supplier do
????

Change join order

2. Hash Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 42

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for y in Supply do
insert(y.sid, y)

for x in Supplier do
for y in find(x.sid) do

output(x,y);

Change join order

2. Hash Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 43

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for y in Supply do
insert(y.sid, y)

for x in Supplier do
for y in find(x.sid) do

output(x,y);

Change join order

If |R|=|S|=n,
what is the runtime?

2. Hash Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 44

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for y in Supply do
insert(y.sid, y)

for x in Supplier do
for y in find(x.sid) do

output(x,y);

Change join order

If |R|=|S|=n,
what is the runtime?

O(n)
But can be O(n2) why?

2. Hash Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 45

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for y in Supply do
insert(y.sid, y)

for x in Supplier do
for y in find(x.sid) do

output(x,y);

Change join order

Why would we change the order?

If |R|=|S|=n,
what is the runtime?

O(n)
But can be O(n2) why?

2. Hash Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 46

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for y in Supply do
insert(y.sid, y)

for x in Supplier do
for y in find(x.sid) do

output(x,y);

If |R|=|S|=n,
what is the runtime?

O(n)
But can be O(n2) why?

Change join order

Why would we change the order?

When |Supply| << |Supplier|

3. Merge Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 47

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Sort(Supplier); Sort(Supply);
x = Supplier.first();
y = Supply.first();
while y != NULL do
case:
x.sid < y.sid: ???
x.sid = y.sid: ???
x.sid > y.sid: ???

3. Merge Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 48

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Sort(Supplier); Sort(Supply);
x = Supplier.first();
y = Supply.first();
while y != NULL do
case:
x.sid < y.sid: ???
x.sid = y.sid: ???
x.sid > y.sid: ???

3. Merge Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 49

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Sort(Supplier); Sort(Supply);
x = Supplier.first();
y = Supply.first();
while y != NULL do
case:
x.sid < y.sid: x = x.next()
x.sid = y.sid: ???
x.sid > y.sid: ???

3. Merge Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 50

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Sort(Supplier); Sort(Supply);
x = Supplier.first();
y = Supply.first();
while y != NULL do
case:
x.sid < y.sid: x = x.next()
x.sid = y.sid: output(x,y); y = y.next();
x.sid > y.sid: ???

3. Merge Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 51

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Sort(Supplier); Sort(Supply);
x = Supplier.first();
y = Supply.first();
while y != NULL do
case:
x.sid < y.sid: x = x.next()
x.sid = y.sid: output(x,y); y = y.next();
x.sid > y.sid: y = y.next();

3. Merge Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 52

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Sort(Supplier); Sort(Supply);
x = Supplier.first();
y = Supply.first();
while y != NULL do
case:
x.sid < y.sid: x = x.next()
x.sid = y.sid: output(x,y); y = y.next();
x.sid > y.sid: y = y.next();

If |R|=|S|=n,
what is the runtime?

3. Merge Join
Logical operator:
Supplier ⨝sid=sid Supply

CSE 544 - Winter 2020 53

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Sort(Supplier); Sort(Supply);
x = Supplier.first();
y = Supply.first();
while y != NULL do
case:
x.sid < y.sid: x = x.next()
x.sid = y.sid: output(x,y); y = y.next();
x.sid > y.sid: y = y.next();

If |R|=|S|=n,
what is the runtime?

O(n log(n))

Main Memory Algorithms

• Join ⨝:
– Nested loop join
– Hash join
– Merge join

• Selection σ
– “on-the-fly”
– Index-based selection (next lecture)

• Group by ɣ
– Hash–based
– Merge-based 54

Discuss in class

How Do We Combine Them?

CSE 544 - Winter 2020 55

⨝

⨝ ⨝

⨝

R

S T K

W

σ

σ

How Do We Combine Them?

The Iterator Interface

• open()

• next()

• close()
CSE 544 - Winter 2020 56

⨝

⨝ ⨝

⨝

R

S T K

W

σ

σ

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {
boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {
boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {
boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {
boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {
boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator c) {
this.p = p; this.c = c; c.open();
}

Tuple next () {
boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}

return in;
}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator c) {
this.p = p; this.c = c; c.open();
}

Tuple next () {

}

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator c) {
this.p = p; this.c = c; c.open();
}

Tuple next () {
boolean found = false;
Tuple r = null;
while (!found) {

r = c.next();
if (r == null) break;
found = p(r);

}

}

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator c) {
this.p = p; this.c = c; c.open();
}

Tuple next () {
boolean found = false;
Tuple r = null;
while (!found) {

r = c.next();
if (r == null) break;
found = p(r);

}
return r;

}

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator c) {
this.p = p; this.c = c; c.open();
}

Tuple next () {
boolean found = false;
Tuple r = null;
while (!found) {

r = c.next();
if (r == null) break;
found = p(r);

}
return r;

}
void close () { c.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

67

Operator q = parse(“SELECT ...”);
q = optimize(q);

q.open();
while (true) {
Tuple t = q.next();
if (t == null) break;
else printOnScreen(t);

}
q.close();

Query plan execution
interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

Pipelining

CSE 544 - Winter 2020 68

(Nested loop)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 544 - Winter 2020 69

(Nested loop)

(On the fly)

(On the fly) open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 544 - Winter 2020 70

(Nested loop)

(On the fly)

(On the fly) open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 544 - Winter 2020 71

(Nested loop)

(On the fly)

(On the fly) open()

open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 544 - Winter 2020 72

(Nested loop)

(On the fly)

(On the fly) open()

open()

open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 544 - Winter 2020 73

(Nested loop)

(On the fly)

(On the fly) open()

open()

open()

open() open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 544 - Winter 2020 74

(Nested loop)

(On the fly)

(On the fly) next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 544 - Winter 2020 75

(Nested loop)

(On the fly)

(On the fly) next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 544 - Winter 2020 76

(Nested loop)

(On the fly)

(On the fly) next()

next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 544 - Winter 2020 77

(Nested loop)

(On the fly)

(On the fly) next()

next()

next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 544 - Winter 2020 78

(Nested loop)

(On the fly)

(On the fly) next()

next()

next()

next() next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 544 - Winter 2020 79

(Nested loop)

(On the fly)

(On the fly) next()

next()

next()

next()
next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 544 - Winter 2020 80

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss hash-join
in class

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 544 - Winter 2020 81

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss hash-join
in class

Tuples from
here are
“blocked”

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

Pipelining

CSE 544 - Winter 2020 82

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss hash-join
in class

Tuples from
here are
pipelined

Tuples from
here are
“blocked”

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

Blocked Execution

CSE 544 - Winter 2020 83

(Merge Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss merge-join
in class

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

Blocked Execution

CSE 544 - Winter 2020 84

(Merge Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Blocked Blocked

Discuss merge-join
in class

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

Pipeline v.s. Blocking
• Pipeline

– A tuple moves all the way through up the query plan
– Advantages: speed
– Disadvantage: need all hash at the same time in

memory
• Blocking

– The entire result of the subplan is computed (and
stored to disk) before the first tuple is sent up the plan

– Advantage: saves memory
– Disadvantage: slower

85

Outline

• Architecture of a DBMS

• Steps involved in processing a query

• Main Memory Operators

• Storage

• External Memory Operators
CSE 544 - Winter 2020 86

Multiple Processes

CSE 544 - Winter 2020 87

The Mechanics of Disk
Mechanical characteristics:
• Rotation speed (5400RPM)
• Number of platters (1-30)
• Number of tracks (<=10000)
• Number of bytes/track(105)

88

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Unit of read or write:
disk block

Once in memory:
page

Typically: 4k or 8k or 16k

Data Storage

• DBMSs store data in files
• Most common organization is row-wise storage
• On disk, a file is split into

blocks
• Each block contains

a set of tuples

In the example, we have 4 blocks with 2 tuples each
89

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

block 1

block 2

block 3

Disk Access Characteristics
• Disk latency

– Time between when command is issued and when data is in
memory

– Equals = seek time + rotational latency
• Seek time = time for the head to reach cylinder

– 10ms – 40ms
• Rotational latency = time for the sector to rotate

• Rotation time = 10ms
• Average latency = 10ms/2

• Transfer time = typically 40MB/s

90Basic factoid: disks always read/write an entire block at a time

Buffer Management in a
DBMS

• Data must be in RAM for DBMS to operate on it!
• Table of <frame#, pageid> pairs is maintained

91

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

Buffer Manager

92

Needs to decide on page replacement policy

• LRU
• Clock algorithm

Both work well in OS, but not always in DB

Enables the higher levels of the
DBMS to assume that the
needed data is in main memory.

Arranging Pages on Disk
A disk is organized into blocks (a.k.a. pages)
• blocks on same track, followed by
• blocks on same cylinder, followed by
• blocks on adjacent cylinder

A file should (ideally) consists of sequential blocks on
disk, to minimize seek and rotational delay.

For a sequential scan, pre-fetching several pages at a
time is a big win!

CSE 544 - Winter 2020 93

Issues

• Managing free blocks

• File Organization

• Represent the records inside a page

• Represent attributes inside the records
CSE 544 - Winter 2020 94

Managing Free Blocks

• Linked list of free blocks

• Directory of pages

• Bit map

CSE 544 - Winter 2020 95

File Organization

96

Header
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Linked list of pages:
Data
page

Data
page

Full pages

Pages with some free space

File Organization

97

Data
page

Data
page

Data
page

Better: directory of pages

Directory

Header

File Organization

• Bit map: store compactly the free/full
status of each page

CSE 544 - Winter 2020 98

Records into a Page
Issues to consider
• 1 page = fixed size (e.g. 8KB)
• Records:

– Fixed length
– Variable length

• Record id = RID
– Typically RID = (PageID, SlotNumber)

99

Records into a Page

100

Fixed-length records: packed representation

Rec 1 Rec 2 Rec N
Free space N

Problems ?

One page

Records into a Page

101

Free
space

Slot directory

Variable-length records

Record Formats: Fixed Length

• Information about field types same for all records
in a file; stored in system catalogs.

• Finding i’th field requires scan of record.
• Note the importance of schema information!

102

Base address (B)

L1 L2 L3 L4

pid name descr maker

Address = B+L1+L2

Product(pid, name, descr, maker)

Record Header

103

L1 L2 L3 L4

To schema
length

timestamp (e.g. for MVCC)

Need the header because:
• The schema may change

for a while new+old may coexist
• Records from different relations may coexist

header

pid name descr maker

Variable Length Records

104

L1 L2 L3 L4

Other header information

length

Place the fixed fields first: F1
Then the variable length fields: F2, F3, F4
Null values take 2 bytes only
Sometimes they take 0 bytes (when at the end)

header pid name descr maker

BLOB

• Binary large objects
• Supported by modern database systems
• E.g. images, sounds, etc.
• Storage: attempt to cluster blocks together

CLOB = character large object
• Supports only restricted operations

105

File Organizations

• Heap (random order) files: Suitable when typical
access is a file scan retrieving all records.

• Sequential file (sorted): Best if records must be
retrieved in some order, or by a `range’

• Indexe: Data structures to organize records via trees
or hashing.

106

Index

• An additional file, that allows fast access to
records in the data file given a search key

CSE 544 - Winter 2020 107

Index

• An additional file, that allows fast access to
records in the data file given a search key

• The index contains (key, value) pairs:
– Key = an attribute value (e.g., student ID or name)
– Value = a pointer to the record OR the record itself

CSE 544 - Winter 2020 108

Index

• An additional file, that allows fast access to
records in the data file given a search key

• The index contains (key, value) pairs:
– Key = an attribute value (e.g., student ID or name)
– Value = a pointer to the record OR the record itself

• Could have many indexes for one table

CSE 544 - Winter 2020 109

Key = means here search key

This Is Not A Key

Different keys:
• Primary key – uniquely identifies a tuple
• Key of the sequential file – how the data

file is sorted, if at all
• Index key – how the index is organized

CSE 544 - Winter 2020 110

Example 1:
Index on ID

10

20

50

200

220

240

420

800

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800
950

…

Index Student_ID on Student.ID

Index can be:
Dense = one entry per record
Sparse = one entry per block

112

Example 2:
Index on fName

Index Student_fName
on Student.fName

Student

Amy

Ann

Bob

Cho

…

…

…

…

…

…

Tom

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Data File Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Index can be:
Dense only

Index Organization
• Hash table

• B+ trees – most common
– They are search trees, but they are not

binary instead have higher fan-out
– Will discuss them briefly next

• Specialized indexes: bit maps, R-trees,
inverted index; won’t discuss

CSE 544 - Winter 2020 113

114

B+ Tree Index by Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 <= 80

20 < 40 <= 60

30 < 40 <= 40

CSE 544 - Winter 2020

Clustered vs Unclustered

Index entries
(Index File)

(Data file)

Data Records

Index entries

Data Records

CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

115CSE 544 - Winter 2020

Every table can have only one clustered and many unclustered indexes
Why?

116

Index Classification
• Clustered/unclustered

– Clustered = records close in index are close in data
• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data

CSE 544 - Winter 2020

117

Index Classification
• Clustered/unclustered

– Clustered = records close in index are close in data
• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data
• Primary/secondary

– Meaning 1:
• Primary = is over attributes that include the primary key
• Secondary = otherwise

– Meaning 2: means the same as clustered/unclustered

CSE 544 - Winter 2020

118

Index Classification
• Clustered/unclustered

– Clustered = records close in index are close in data
• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data
• Primary/secondary

– Meaning 1:
• Primary = is over attributes that include the primary key
• Secondary = otherwise

– Meaning 2: means the same as clustered/unclustered
• Organization B+ tree or Hash table

CSE 544 - Winter 2020

Getting Practical:
Creating Indexes in SQL

119

CREATE TABLE V(M int, N text, P int);

CSE 544 - Winter 2020

Getting Practical:
Creating Indexes in SQL

120

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N text, P int);

CREATE INDEX V2 ON V(P, M)

CSE 544 - Winter 2020

Getting Practical:
Creating Indexes in SQL

121

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N text, P int);

CREATE INDEX V2 ON V(P, M)

CSE 544 - Winter 2020

What does this mean?

Getting Practical:
Creating Indexes in SQL

122

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N text, P int);

CREATE INDEX V2 ON V(P, M)

CSE 544 - Winter 2020

What does this mean?

select *
from V
where P=55 and M=77

Getting Practical:
Creating Indexes in SQL

123

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N text, P int);

CREATE INDEX V2 ON V(P, M)

CSE 544 - Winter 2020

What does this mean?

select *
from V
where P=55

select *
from V
where P=55 and M=77

Getting Practical:
Creating Indexes in SQL

124

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N text, P int);

CREATE INDEX V2 ON V(P, M)

CSE 544 - Winter 2020

What does this mean?

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

Getting Practical:
Creating Indexes in SQL

125

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N text, P int);

CREATE INDEX V2 ON V(P, M)

CSE 544 - Winter 2020

What does this mean?

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

yes

Getting Practical:
Creating Indexes in SQL

126

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N text, P int);

CREATE INDEX V2 ON V(P, M)

CSE 544 - Winter 2020

What does this mean?

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

yes

yes

Getting Practical:
Creating Indexes in SQL

127

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N text, P int);

CREATE INDEX V2 ON V(P, M)

CSE 544 - Winter 2020

What does this mean?

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

no

yes

yes

Getting Practical:
Creating Indexes in SQL

128

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N text, P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)
CSE 544 - Winter 2020

CREATE UNIQUE INDEX V4 ON V(N)

What does this mean?

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

no

yes

yes

Postgres: CLUSTER V4

Which Indexes?

• How many indexes could we create?

• Which indexes should we create?

CSE 544 - Winter 2020 129

Which Indexes?

• How many indexes could we create?

• Which indexes should we create?

This is called the Index Selection Problem

(not to be confused with the index selection operator!)

130

Index Selection Problem 1

131

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

CSE 544 - Winter 2020

Index Selection Problem 1

132

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

What indexes ?

CSE 544 - Winter 2020

Index Selection Problem 1

133

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

A: V(N) and V(P) (hash tables or B-trees)

CSE 544 - Winter 2020

Index Selection Problem 2

134

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 544 - Winter 2020

Index Selection Problem 2

135

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 544 - Winter 2020

A: definitely V(N) (must B-tree); unsure about V(P)

Index Selection Problem 3

136

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries:1000000 queries:
Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 544 - Winter 2020

Index Selection Problem 3

137

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries:1000000 queries:
Your workload is this

A: V(N, P)

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 544 - Winter 2020

How does this index differ from:
1. Two indexes V(N) and V(P)?
2. An index V(P, N)?

Index Selection Problem 4

138

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:
Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

What indexes ?
CSE 544 - Winter 2020

Index Selection Problem 4

139

V(M, N, P);

1000 queries: 100000 queries:
Your workload is this

A: V(N) secondary, V(P) primary index

CSE 544 - Winter 2020

SELECT *
FROM V
WHERE P>? and P<?

SELECT *
FROM V
WHERE N>? and N<?

Two typical kinds of queries
• Point queries
• Hash- or B+-tree

index
• Clustered or not

CSE 544 - Winter 2020 140

SELECT *
FROM Movie
WHERE year = ?

SELECT *
FROM Movie
WHERE year >= ? AND

year <= ?

• Range queries
• B+-tree index
• Clustered

To Cluster or Not

Remember:
• Rule of thumb:

Random reading 1-2% of file ≈
sequential scan entire file;

Range queries benefit mostly from
clustering because they may read more
than 1-2%

141CSE 544 - Winter 2020

142

Percentage tuples retrieved

Cost

0 100

SELECT *
FROM R
WHERE R.K>? and R.K<?

CSE 544 - Winter 2020

143

Percentage tuples retrieved

Cost

0 100

Sequential scan

CSE 544 - Winter 2020

SELECT *
FROM R
WHERE R.K>? and R.K<?

144

Percentage tuples retrieved

Cost

0 100

Sequential scan

Clustered index

CSE 544 - Winter 2020

SELECT *
FROM R
WHERE R.K>? and R.K<?

145

Percentage tuples retrieved

Cost

0 100

Sequential scan

Clustered index

Un
clu

st
er

ed
 in

de
x

CSE 544 - Winter 2020

SELECT *
FROM R
WHERE R.K>? and R.K<?

Outline

• Architecture of a DBMS

• Steps involved in processing a query

• Main Memory Operators

• Storage

• External Memory Operators
CSE 544 - Winter 2020 146

Architecture

CSE 544 - Winter 2020 147

Cost Parameters

• In database systems the data is on disk
• Parameters:

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a
– M = # pages available in main memory

• Cost = total number of I/Os
• Convention: writing the final result to disk is

not included
CSE 544 - Winter 2020 148

Cost Parameters

Supplier(sid,sname,scity,sstate)
Block size = 8KB

• B(Supplier) = 1,000,000 blocks = 8GB
• T(Supplier) = 50,000,000 records ~ 50 / block
• V(Supplier, sid) =
• V(Supplier, sname) =
• V(Supplier, scity) =
• V(Supplier, sstate) =
• M =

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Cost Parameters

Supplier(sid,sname,scity,sstate)
Block size = 8KB

• B(Supplier) = 1,000,000 blocks = 8GB
• T(Supplier) = 50,000,000 records ~ 50 / block
• V(Supplier, sid) = 50,000,000 why?
• V(Supplier, sname) =
• V(Supplier, scity) =
• V(Supplier, sstate) =
• M =

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Cost Parameters

Supplier(sid,sname,scity,sstate)
Block size = 8KB

• B(Supplier) = 1,000,000 blocks = 8GB
• T(Supplier) = 50,000,000 records ~ 50 / block
• V(Supplier, sid) = 50,000,000 why?
• V(Supplier, sname) = 40,000,000 meaning?
• V(Supplier, scity) =
• V(Supplier, sstate) =
• M =

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Cost Parameters

Supplier(sid,sname,scity,sstate)
Block size = 8KB

• B(Supplier) = 1,000,000 blocks = 8GB
• T(Supplier) = 50,000,000 records ~ 50 / block
• V(Supplier, sid) = 50,000,000 why?
• V(Supplier, sname) = 40,000,000 meaning?
• V(Supplier, scity) = 860
• V(Supplier, sstate) =
• M =

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Cost Parameters

Supplier(sid,sname,scity,sstate)
Block size = 8KB

• B(Supplier) = 1,000,000 blocks = 8GB
• T(Supplier) = 50,000,000 records ~ 50 / block
• V(Supplier, sid) = 50,000,000 why?
• V(Supplier, sname) = 40,000,000 meaning?
• V(Supplier, scity) = 860
• V(Supplier, sstate) = 50 why?
• M =

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Cost Parameters

Supplier(sid,sname,scity,sstate)
Block size = 8KB

• B(Supplier) = 1,000,000 blocks = 8GB
• T(Supplier) = 50,000,000 records ~ 50 / block
• V(Supplier, sid) = 50,000,000 why?
• V(Supplier, sname) = 40,000,000 meaning?
• V(Supplier, scity) = 860
• V(Supplier, sstate) = 50 why?
• M = 10,000,000 = 80GB why so little?

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Index Based Selection
Selection on equality: sa=v(R)
V(R, a) = # of distinct values of attribute a
Assumptions:
• Values are uniformly distributed
• Ignore the cost of reading the index (why?)

Cost of index-based selection:
• Clustered index on a: cost = B(R) / V(R,a)
• Unclustered index on a: cost = T(R) / V(R,a)

CSE 544 - Winter 2020 155

Index Based Selection
Selection on equality: sa=v(R)
V(R, a) = # of distinct values of attribute a
Assumptions:
• Values are uniformly distributed
• Ignore the cost of reading the index (why?)

Cost of index-based selection:
• Clustered index on a: cost = B(R) / V(R,a)
• Unclustered index on a: cost = T(R) / V(R,a)

CSE 544 - Winter 2020 156

Index Based Selection
Selection on equality: sa=v(R)
V(R, a) = # of distinct values of attribute a
Assumptions:
• Values are uniformly distributed
• Ignore the cost of reading the index (why?)

Cost of index-based selection:
• Clustered index on a: cost = B(R) / V(R,a)
• Unclustered index on a: cost = T(R) / V(R,a)

CSE 544 - Winter 2020 157

Index Based Selection
• Example:

• Table scan (assuming R is clustered)
– B(R) = 2,000 I/Os

• Index based selection
– If index is clustered: B(R)/V(R,a) = 100 I/Os
– If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

CSE 544 - Winter 2020 158

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection
• Example:

• Table scan (assuming R is clustered)
– B(R) = 2,000 I/Os

• Index based selection
– If index is clustered: B(R)/V(R,a) = 100 I/Os
– If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

CSE 544 - Winter 2020 159

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection
• Example:

• Table scan (assuming R is clustered)
– B(R) = 2,000 I/Os

• Index based selection
– If index is clustered: B(R)/V(R,a) = 100 I/Os
– If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

CSE 544 - Winter 2020 160

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection
• Example:

• Table scan (assuming R is clustered)
– B(R) = 2,000 I/Os

• Index based selection
– If index is clustered: B(R)/V(R,a) = 100 I/Os
– If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

CSE 544 - Winter 2020 161

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection
• Example:

• Table scan (assuming R is clustered)
– B(R) = 2,000 I/Os

• Index based selection
– If index is clustered: B(R)/V(R,a) = 100 I/Os
– If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

• Lesson
– Don’t build unclustered indexes when V(R,a) is small !

CSE 544 - Winter 2020 162

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

The 2% rule!

External Memory Joins

Recall standard main memory algorithms:
• Hash join
• Nested loop join
• Sort-merge join

Review in class
CSE 544 - Winter 2020 163

Index Nested Loop Join
R ⋈S

• Assume S has an index on the join attribute
• Iterate over R, for each tuple fetch corresponding

tuple(s) from S

• Cost:
– Assuming R is clustered
– If index on S is clustered: B(R) + T(R)B(S)/V(S,a)
– If index on S is unclustered: B(R) + T(R)T(S)/V(S,a)

CSE 544 - Winter 2020 164

One Pass Hash Join

Hash join: R ⋈ S
• Scan R, build buckets in main memory
• Then scan S, probe hash table to join

• Cost: B(R) + B(S)

• One pass algorithm when B(R) <= M
CSE 544 - Winter 2020 165

Nested Loop Joins
• Tuple-based nested loop R ⋈ S
• R is the outer relation, S is the inner relation

• Cost: B(R) + T(R) B(S)

CSE 544 - Winter 2020 166

for each tuple r in R do
for each tuple s in S do

if r and s join then output (r,s)

Page-at-a-time Refinement

• Cost: B(R) + B(R)B(S)

CSE 544 - Winter 2020 167

for each page of tuples r in R do
for each page of tuples s in S do

for all pairs of tuples
if r and s join then output (r,s)

Nested Loop Joins
• We can be much more clever

• How would you compute the join in the following
cases ? What is the cost ?

– B(R) = 1000, B(S) = 2, M = 4

– B(R) = 1000, B(S) = 3, M = 4

– B(R) = 1000, B(S) = 6, M = 4

CSE 544 - Winter 2020 168

Nested Loop Joins
• Block Nested Loop Join
• Group of (M-2) pages of S is called a “block”

CSE 544 - Winter 2020 169

for each (M-2) pages ps of S do
for each page pr of R do

for each tuple s in ps
for each tuple r in pr do

if r and s join then output(r,s)

Main memory
hash-join

(M-1)ps ⋈ pr

Nested Loop Joins

CSE 544 - Winter 2020 170

. . .
. . .

R & S
Hash table for block of S

(M-2 pages)

Input buffer for R Output buffer

. . .

Join Result

Nested Loop Joins
Cost of block-based nested loop join

• Read S once: B(S)

• Outer loop runs B(S)/(M-2) times,
each iteration reads the entire R: B(S)B(R)/(M-2)

• Total cost: B(S) + B(S)B(R)/(M-2)

CSE 544 - Winter 2020 171

Nested Loop Joins
Cost of block-based nested loop join

• Read S once: B(S)

• Outer loop runs B(S)/(M-2) times,
each iteration reads the entire R: B(S)B(R)/(M-2)

• Total cost: B(S) + B(S)B(R)/(M-2)

CSE 544 - Winter 2020 172

R ⋈ S
or

S ⋈ R
?

Nested Loop Joins
Cost of block-based nested loop join

• Read S once: B(S)

• Outer loop runs B(S)/(M-2) times,
each iteration reads the entire R: B(S)B(R)/(M-2)

• Total cost: B(S) + B(S)B(R)/(M-2)

Iterate over the smaller relation first!

CSE 544 - Winter 2020 173

R ⋈ S
or

S ⋈ R
?

Sort-Merge Join

Sort-merge join: R ⋈ S
• Scan R and sort in main memory
• Scan S and sort in main memory
• Merge R and S

• Cost:

CSE 544 - Winter 2020 174

Sort-Merge Join

Sort-merge join: R ⋈ S
• Scan R and sort in main memory
• Scan S and sort in main memory
• Merge R and S

• Cost: B(R) + B(S)

CSE 544 - Winter 2020 175

Sort-Merge Join

Sort-merge join: R ⋈ S
• Scan R and sort in main memory
• Scan S and sort in main memory
• Merge R and S

• Cost: B(R) + B(S)
• One pass algorithm when B(S) + B(R) <= M

CSE 544 - Winter 2020 176

Grouping

In class: describe a one-pass algorithms.

Cost=?

CSE 544 - Winter 2020 177

gdepartment, sum(quantity) (Product)

Product(name, department, quantity)

Two-Pass Algorithms

• When data is larger than main memory,
need two or more passes

• Two key techniques
– Hashing
– Sorting

CSE 544 - Winter 2020 178

Two Pass Algorithms
Based on Hashing

• Idea: partition a relation R into buckets, on disk

179

M main memory buffers DiskDisk

Relation R

INPUT

Partitions

1
2

M-1
. . .

1

2

B(R)

Two Pass Algorithms
Based on Hashing

• Idea: partition a relation R into buckets, on disk

180

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1
. . .

1

2

B(R)

Two Pass Algorithms
Based on Hashing

• Idea: partition a relation R into buckets, on disk

181

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1
. . .

1

2

B(R)

Two Pass Algorithms
Based on Hashing

• Idea: partition a relation R into buckets, on disk

182

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1
. . .

1

2

B(R)

Two Pass Algorithms
Based on Hashing

• Idea: partition a relation R into buckets, on disk

183

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1
. . .

1

2

B(R)

Two Pass Algorithms
Based on Hashing

• Idea: partition a relation R into buckets, on disk

184

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1
. . .

1

2

B(R)

Two Pass Algorithms
Based on Hashing

• Idea: partition a relation R into buckets, on disk

185

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1
. . .

1

2

B(R)

Two Pass Algorithms
Based on Hashing

• Idea: partition a relation R into buckets, on disk

186

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1
. . .

1

2

B(R)

Two Pass Algorithms
Based on Hashing

• Idea: partition a relation R into buckets, on disk

187

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1
. . .

1

2

B(R)

Two Pass Algorithms
Based on Hashing

• Idea: partition a relation R into buckets, on disk

188

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1
. . .

1

2

B(R)

bucket

Two Pass Algorithms
Based on Hashing

• Idea: partition a relation R into buckets, on disk
• Each bucket has size approx. B(R)/M

189

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1
. . .

1

2

B(R)

bucket

Two Pass Algorithms
Based on Hashing

• Idea: partition a relation R into buckets, on disk
• Each bucket has size approx. B(R)/M

190

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1
. . .

1

2

B(R)

• Does each bucket fit in main memory ?

bucket

Two Pass Algorithms
Based on Hashing

• Idea: partition a relation R into buckets, on disk
• Each bucket has size approx. B(R)/M

191

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1
. . .

1

2

B(R)

• Does each bucket fit in main memory ?
• Yes when: B(R)/M ≤ M, i.e. B(R) ≤ M2

bucket

Hash Based Algorithms for g

• Recall: g(R) = grouping and aggregation

• Step 1. Partition R into buckets
• Step 2. Apply g to each bucket

• Cost: 3B(R)
• Assumption: B(R) ≤ M2

192

Partitioned (Grace) Hash Join
R ⋈ S
• Step 1:

– Hash S into M-1 buckets
– Send all buckets to disk

• Step 2
– Hash R into M-1 buckets
– Send all buckets to disk

• Step 3
– Join every pair of buckets

CSE 544 - Winter 2020 193

Partitioned Hash Join R
R ⋈ S
• Partition both relations using hash fn h

CSE 544 - Winter 2020 194

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1

2

M-1
. . .

R ⋈ S
• Read in partition of S, hash it using h2 (¹ h)
• Scan same partition of R, search for matches

Partitions
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

Partitioned Hash Join

CSE 544 - Winter 2020 195

Partitioned Hash Join

• Cost: 3B(R) + 3B(S)
• Assumption: min(B(R), B(S)) ≤ M2

CSE 544 - Winter 2020 196

Hybrid Hash Join Algorithm
• Assume we have extra memory available

• Partition S into k buckets
t buckets S1 , …, St stay in memory
k-t buckets St+1, …, Sk to disk

• Partition R into k buckets
– First t buckets join immediately with S
– Rest k-t buckets go to disk

• Finally, join k-t pairs of buckets:
(Rt+1,St+1), (Rt+2,St+2), …, (Rk,Sk)

CSE 544 - Winter 2020 197

Hybrid Hash Join Algorithm
How to choose k and t ?
• The first t buckets must fin in M: t/k * B(S) ≤ M

CSE 544 - Winter 2020 198

Hybrid Hash Join Algorithm
How to choose k and t ?
• The first t buckets must fin in M: t/k * B(S) ≤ M
• Need room for k-t additional pages: k-t ≤ M

CSE 544 - Winter 2020 199

Hybrid Hash Join Algorithm
How to choose k and t ?
• The first t buckets must fin in M: t/k * B(S) ≤ M
• Need room for k-t additional pages: k-t ≤ M
• Thus: t/k * B(S) + k-t ≤ M

CSE 544 - Winter 2020 200

Hybrid Hash Join Algorithm
How to choose k and t ?
• The first t buckets must fin in M: t/k * B(S) ≤ M
• Need room for k-t additional pages: k-t ≤ M
• Thus: t/k * B(S) + k-t ≤ M

Assuming t/k * B(S) ≫ k-t: t/k = M/B(S)

CSE 544 - Winter 2020 201

Hybrid Hash Join Algorithm
• How many I/Os ?

• Cost of partitioned hash join: 3B(R) + 3B(S)

• Hybrid join saves 2 I/Os for a t/k fraction of buckets
• Hybrid join saves 2t/k(B(R) + B(S)) I/Os

Cost: (3-2t/k)(B(R) + B(S)) = (3-2M/B(S))(B(R) + B(S))

CSE 544 - Winter 2020 202

External Sorting
• Problem: Sort a file of size B with memory M

• Where we need this:
– ORDER BY in SQL queries
– Several physical operators
– Bulk loading of B+-tree indexes.

• Will discuss only 2-pass sorting, for when B ≤ M2

CSE 544 - Winter 2020 203

External Merge-Sort: Step 1
• Phase one: load M pages in memory, sort

CSE 544 - Winter 2020 204

DiskDisk

.
Size M pages

Main memory

Runs of length M
#Runs = B(R)/M

External Merge-Sort: Step 2

• Merge M – 1 runs into a new run
• Result: runs of length M (M – 1) » M2

CSE 544 - Winter 2020 205

DiskDisk

. .

.
. . .

Input M

Input 1

Input 2
. . . .

Output

Assuming B ≤ M2, we are done

Main memory

External Merge-Sort

• Cost:
– Read+write+read = 3B(R)
– Assumption: B(R) <= M2

• Other considerations
– In general, a lot of optimizations are

possible

CSE 544 - Winter 2020 206

Two-Pass Algorithms
Based on Sorting

Grouping: ga, sum(b) (R)

Sort, then compute the sum(b) for each group of a’s
• Step 1: sort chunks of size M, write

– cost 2B(R)
• Step 2: merge M-1 runs, combining groups by

addition
– cost B(R)

• Total cost: 3B(R), Assumption: B(R) ≤ M2

CSE 544 - Winter 2020 207

Two-Pass Algorithms
Based on Sorting

Join R ⋈ S

• Start by creating initial runs of length M, for R and S:
– Cost: 2B(R)+2B(S)

• Merge (and join) M1 runs from R, M2 runs from S:
– Cost: B(R)+B(S)

• Total cost: 3B(R)+3B(S)
• Assumption:

– R has M1=B(R)/M runs, S has M2=B(S)/M runs
– M1 + M2 ≤ M
– Hence: B(R)+B(S)≤ M2

CSE 544 - Winter 2020 208

Summary of External
Join Algorithms

• Block Nested Loop Join: B(R) + B(R)*B(S)/M

• Hybrid Hash Join: (3-2M/B(S))(B(R) + B(S))
Assuming t/k * B(S) >> k-t

• Sort-Merge Join: 3B(R)+3B(S)
Assuming B(R)+B(S) ≤ M2

• Index Nested Loop Join: B(R) + T(R)B(S)/V(S,a)
Assuming R is clustered and S has clustered index on a

CSE 544 - Winter 2020 209

