CSE544
 Data Management

Lectures 9-10
 Query Optimization

Announcements

- Project meetings this Friday
- HW3 is posted, due next Friday

Query Optimization Motivation

Today

- Discuss Query Optimization
- In parallel, discuss the paper How Good Are Query Optimizers, Really? VLDB'2015

What We Already Know

- There exists many logical plans...
- ... and for each, there exist many physical plans
- Optimizer chooses the logical/physical plan with the smallest estimated cost

Query Optimization

Three major components:

1. Cardinality and cost estimation
2. Search space
3. Plan enumeration algorithms

Cost Estimation

Goal: compute cost of an entire physical plan

- We know how to compute the cost given B, T :
- E.g. index join COST $=B(R)+T(R) B(S) / V(S, a)$

New Goal: estimate $T(R)$ for each intermediate R "Cardinality Estimation"

Cardinality Estimation

Problem: given statistics on base tables and a query, estimate size of the answer

Very difficult, because:

- Need to do it very fast
- Need to use very little memory

Statistics on Base Data

Statistics on base tables

- Number of tuples (cardinality)
- Number of physical pages
$T(R)$ $B(R)$
- Indexes, number of keys in the index $V(R, a)$
- Histogram on single attribute (1d)
- Histogram on two attributes (2d)

Computed periodically, often using sampling
[How good are they]

Assumptions

- Uniformity
- Independence
- Containment of values
- Preservation of values

Size Estimation

Projection: output size same as input size $T(\Pi(R))=T(R)$

Selection: size decrease by selectivity factor θ

$$
T\left(\sigma_{\text {pred }}(R)\right)=T(R)^{*} \theta_{\text {pred }}
$$

Uniformity assumption

Selectivity Factors

- $A=c$

$$
/^{*} \sigma_{\mathrm{A}=\mathrm{c}}(\mathrm{R}) * /
$$

- Selectivity $=1 / V(R, A)$
- $c 1<A<c 2 \quad /^{*} \sigma_{c 1<A<c 2}(R)^{*} /$
- Selectivity $=(c 2-c 1) /(\max (R, A)-\min (R, A))$

Multiple predicates: independence assumption

- $A=c$ and $B=d$
/* $\sigma_{A=c}$ and $B=d(R) * /$
- Selectivity $=1 / V(R, A) * 1 / V(R, B)$

Estimating Result Sizes

Join $R \bowtie_{\text {R.A=S.B }} S$

- Take product of cardinalities of R and S
- Apply this selectivity factor:

1/ (MAX (V(R,A), V(S,B))

- Why? Will explain next...

Assumptions

- Containment of values: if $\mathrm{V}(\mathrm{R}, \mathrm{A}) \leq \mathrm{V}(\mathrm{S}, \mathrm{B})$, then the set of A values of R is included in the set of B values of S
- Note: this indeed holds when A is a foreign key in R, and B is a key in S
- Preservation of values: for any other attribute C , $V\left(R \bowtie_{A=B} S, C\right)=V(R, C) \quad(o r V(S, C))$
- This is only needed higher up in the plan

Selectivity of $R \bowtie_{A=B} S$

Assume $\mathrm{V}(\mathrm{R}, \mathrm{A}) \leq \mathrm{V}(\mathrm{S}, \mathrm{B})$

- Each tuple t in R joins with $T(S) / V(S, B)$ tuples in S
- Hence $T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / V(S, B)$

In general:
$T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / \max (V(R, A), V(S, B))$

Computing the Cost of a Plan

- Estimate cardinality in a bottom-up fashion
- Cardinality is the size of a relation (nb of tuples)
- Compute size of all intermediate relations in plan
- Estimate cost by using the estimated cardinalities
- Extensive example next...

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

$\Pi_{\text {sname }}$
$\sigma_{\text {pno }}=2 \wedge$ scity='Seattle' \wedge sstate='WA
$\operatorname{sid}=\operatorname{sid}$

Supply

```
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
    and y.pno = 2
    and x.scity = 'Seattle'
    and x.sstate = 'WA'
```


Supplier

```
T(Supply) = 10000
B(Supply) = 100
V(Supply, pno)=2500
```

```
T (Supplier) \(=1000\)
\(B(\) Supplier \()=100\)
\(V(\) Supplier, scity \()=20\)
\(\mathrm{M}=11\)
\(V(\) Supplier, state \()=10\)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Logical Query Plan 1}
\(\Pi_{\text {sname }}\)
Estimate
(why?)
\(\sigma_{\mathrm{pno}}=2 \wedge\) scity='Seattle' \(\wedge\) sstate='WA'
\(\mathrm{T}=10000\)
```

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = 'Seattle'
and x.sstate = 'WA'

```

\section*{Supplier}
\[
\begin{aligned}
& \mathrm{T}(\text { Supply })=10000 \\
& \mathrm{~B}(\text { Supply })=100 \\
& \mathrm{~V}(\text { Supply, pno })=2500
\end{aligned}
\]
```

T (Supplier) $=1000$
$B($ Supplier $)=100$
$V($ Supplier, scity $)=20$
$M=11$
$V($ Supplier, state $)=10$

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Estimated (why?) _ogical Query Plan 1
 $\Pi_{\text {sname }}$

$\sigma_{\text {pno }}=2 \wedge$ scity='Seattle' \wedge sstate='WA

$$
T=10000
$$

$$
\operatorname{sid}=\operatorname{sid}
$$

Supply

T (Supply) $=10000$
B(Supply) $=100$
$\mathrm{V}($ Supply, pno) $=2500$

```
SELECT sname
```

SELECT sname
FROM Supplier x, Supply y
FROM Supplier x, Supply y
WHERE x.sid = y.sid
WHERE x.sid = y.sid
and y.pno = 2
and y.pno = 2
and x.scity = 'Seattle'
and x.scity = 'Seattle'
and x.sstate = 'WA'

```
    and x.sstate = 'WA'
```


Supplier

```
\(\mathrm{T}(\) Supplier \()=1000\)
\(B\) (Supplier) \(=100\)
\(V(\) Supplier, scity \()=20\)
\(\mathrm{M}=11\)
\(V(\) Supplier, state \()=10\)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Logical Query Plan 2}
\(\Pi_{\text {sname }}\)

```

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = 'Seattle'
and x.sstate = 'WA'

```


\section*{Supply}
\(\sigma_{\text {scity }}=\) 'Seattle' \(\wedge\) sstate='WA'

\section*{Supplier}
\[
\begin{aligned}
& \mathrm{T}(\text { Supplier })=1000 \\
& \mathrm{~B}(\text { Supplier })=100 \\
& \text { V(Supplier, scity) }=20 \\
& \text { V(Supplier, state })=10
\end{aligned}
\]

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Logical Query Plan 2}

```

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = 'Seattle'
and x.sstate = 'WA'

```


\section*{Supply}
\(\sigma_{\text {scity }}=\) 'Seattle' \(\wedge\) sstate='WA'

\section*{Supplier}
\[
\begin{aligned}
& \mathrm{T}(\text { Supplier })=1000 \\
& \text { B(Supplier) }=100 \\
& \text { V(Supplier, scity) }=20 \\
& \text { V(Supplier, state })=10
\end{aligned}
\]

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Logical Query Plan 2}
    \(\sigma_{\mathrm{pno}=2}\)

\section*{Supply}
\(T(\) Supply \()=10000\)
\(B\) (Supply) \(=100\)
\(\mathrm{V}(\) Supply, pno) \(=2500\)
```

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = 'Seattle'
and x.sstate = 'WA'

```
                                    Very wrong!
                                    Why?
    \(\sigma_{\text {scity }}=\) 'Seattle' \(\wedge\) sstate='WA'

\section*{Supplier}
```

T (Supplier) $=1000$
$B($ Supplier $)=100$
$V($ Supplier, scity $)=20$
$M=11$
$V($ Supplier, state $)=10$

```

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Logical Query Plan 2}

```

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = 'Seattle'
and x.sstate = 'WA'

```

Very wrong! Why?

\section*{Supply}
\(T(\) Supply \()=10000\)
\(B\) (Supply) \(=100\)
\(\mathrm{V}(\) Supply, pno) \(=2500\)
\(\sigma_{\text {scity }}=\) 'Seattle' \(\wedge\) sstate='WA'

\section*{Supplier}
\[
\begin{aligned}
& \mathrm{T}(\text { Supplier })=1000 \\
& \text { B(Supplier) }=100 \\
& \text { V(Supplier, scity) }=20 \\
& \text { V(Supplier, state })=10
\end{aligned}
\]

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Logical Query Plan 2}


\section*{Supplier}
\[
\begin{aligned}
& \mathrm{T}(\text { Supply })=10000 \\
& \mathrm{~B}(\text { Supply })=100 \\
& \mathrm{~V}(\text { Supply, pno })=2500
\end{aligned}
\]

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Physical Plan 1}

\[
T<1
\]
\(\sigma_{\mathrm{pno}}=2 \wedge\) scity='Seattle' \(\wedge\) sstate='WA'
\[
T=10000
\]
Total cost:

Scan

> Supply

Scan Supplier
\[
\begin{aligned}
& \mathrm{T}(\text { Supply })=10000 \\
& \mathrm{~B}(\text { Supply })=100 \\
& \mathrm{~V}(\text { Supply, pno })=2500
\end{aligned}
\]
\[
\begin{array}{l|l}
\text { T(Supplier) }=1000 & \\
\text { B(Supplier) }=100 & \\
\text { V(Supplier, scity) }=20 & \mathrm{M}=11 \\
\text { V(Supplier, state) }=10 &
\end{array}
\]

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Physical Plan 1}

\[
T<1
\]
\(\sigma_{\mathrm{pno}}=2 \wedge\) scity='Seattle' \(\wedge\) sstate='WA'
\[
T=10000
\]
Supply
\(T(\) Supply \()=10000\)
\(B\) (Supply) \(=100\)
\(\mathrm{V}(\) Supply, pno \()=2500\)

Scan Supplier
\[
\begin{aligned}
& \mathrm{T}(\text { Supplier })=1000 \\
& \mathrm{~B}(\text { Supplier })=100 \\
& \text { V(Supplier, scity) }=20 \\
& \text { V(Supplier, state })=10
\end{aligned}
\]

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Physical Plan 2 \\ \(\Pi_{\text {sname }}\)}


Cost of Supply(pno) = Cost of Supplier(scity) = Total cost:
\(\begin{array}{ll}\text { Unclustered } \\ \text { index lookup }\end{array} \quad \sigma_{\text {pno }}=2\) Supply(pno)
\(T(\) Supply \()=10000\)
\(B\) (Supply) \(=100\)
\(\mathrm{V}(\) Supply, pno \()=2500\)
\(\sigma_{\text {sstate }}={ }^{\prime} W A^{\prime}\)
\(\mathrm{T}=50\)
\(\sigma_{\text {scity }}=\) 'Seattle' Supplier

Unclustered index lookup
Supplier(scity)

T (Supplier) \(=1000\)
\(B(\) Supplier \()=100\)
\(V(\) Supplier, scity \()=20\)
\(\mathrm{M}=11\)
\(V(\) Supplier, state \()=10\)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Physical Plan 2 \\ \(\Pi_{\text {sname }}\)}

Cost of Supply(pno) = 4 Cost of Supplier(scity) = Total cost:
\(\begin{aligned} & \text { Unclustered } \\ & \text { index lookup }\end{aligned} \sigma_{\text {pno }}=2\) Supply(pno)

Supply
```

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno)=2500

```
\(\sigma_{\text {sstate }}={ }^{\prime} W A^{\prime}\) \(\mathrm{T}=50\)
\(\sigma_{\text {scity }}=\) 'Seattle' Supplier

Unclustered index lookup
Supplier(scity)

T (Supplier) \(=1000\)
\(B(\) Supplier \()=100\)
\(V(\) Supplier, scity \()=20\)
\(M=11\)
\(V(\) Supplier, state \()=10\)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Physical Plan 2 \\ \(\Pi_{\text {sname }}\)}

Cost of Supply(pno) = 4 Cost of Supplier(scity) \(=50\) Total cost: 54
\(\begin{array}{ll}\text { Unclustered } \\ \text { index lookup }\end{array} \quad \sigma_{\text {pno }}=2\) Supply(pno)

Supply
```

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno)=2500

```
\(\sigma_{\text {sstate }}={ }^{\prime} W A^{\prime}\) \(\mathrm{T}=50\)
\(\sigma_{\text {scity }}=\) 'Seattle' Supplier

Unclustered index lookup
Supplier(scity)

T (Supplier) \(=1000\)
\(B(\) Supplier \()=100\)
\(V(\) Supplier, scity \()=20\)
\(M=11\)
\(V(\) Supplier, state \()=10\)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Physical Plan 3}
\(\Pi_{\text {sname }}\)
\[
T=4
\]

Cost of Supply(pno) = Cost of Index join = Total cost:
\(\begin{aligned} & \text { Unclustered } \\ & \text { index lookup }\end{aligned} \quad \sigma_{\text {pno }}=2\)
Supply(pno)

\section*{Supply}

\section*{Supplier}
\[
\begin{aligned}
& \mathrm{T}(\text { Supplier })=1000 \\
& \text { B(Supplier) }=100 \\
& \text { V(Supplier, scity) }=20 \\
& \text { V(Supplier, state })=10
\end{aligned}
\]

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Physical Plan 3}
\(\Pi_{\text {sname }}\)
\[
T=4
\]

Cost of Supply(pno) = 4
Cost of Index join = Total cost:
\(\begin{array}{ll}\text { Unclustered } \\ \text { index lookup }\end{array} \quad \sigma_{\text {pno }}=2\)
Supply(pno)

\section*{Supply}

\section*{Supplier}
\[
\begin{aligned}
& \mathrm{T}(\text { Supplier })=1000 \\
& \text { B(Supplier) }=100 \\
& \text { V(Supplier, scity) }=20 \\
& \text { V(Supplier, state) }=10
\end{aligned}
\]

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Physical Plan 3}
\(\Pi_{\text {sname }}\)
\[
T=4
\]

Unclustered \(\sigma_{\text {pno }}=2\)
Supply(pno)

\section*{Supply}

Cost of Supply(pno) = 4 Cost of Index join = 4 Total cost: 8
\(T(\) Supply \()=10000\)
\(B(\) Supply \()=100\)
\(V(\) Supply, pno \()=2500\)

\section*{Supplier}
\[
\begin{aligned}
& \mathrm{T}(\text { Supplier })=1000 \\
& \mathrm{~B}(\text { Supplier })=100 \\
& \text { V(Supplier, scity) }=20 \\
& \text { V(Supplier, state) }=10
\end{aligned}
\]

\section*{Simplifications}
- We considered only IO cost; in general we need IO+CPU
- We assumed that all index pages were in memory: sometimes we need to add the cost of fetching index pages from disk

\section*{Histograms}
- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

\section*{Histograms}

\section*{Employee(ssn, name, age)}
\(\mathrm{T}(\) Employee \()=25000, \mathrm{~V}(\) Empolyee, age \()=50\) \(\min (\) age \()=19, \max (\) age \()=68\)
\[
\sigma_{\text {age }=48}(\text { Empolyee })=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\text { Empolyee })=?
\]

\section*{Histograms}

\section*{Employee(ssn, name, age)}
\(\mathrm{T}(\) Employee \()=25000, \mathrm{~V}(\) Empolyee, age \()=50\) \(\min (\) age \()=19, \max (\) age \()=68\) \(\sigma_{\text {age }=48}(\) Empolyee \()=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\) Empolyee \()=?\)


Estimate \(=25000 / 50=500\) Estimate \(=25000 * 6 / 50=3000\)

\section*{Histograms}

\section*{Employee(ssn, name, age)}
\(\mathrm{T}(\) Employee \()=25000, \mathrm{~V}(\) Empolyee, age \()=50\) \(\min (\) age \()=19, \max (\) age \()=68\)
\(\sigma_{\text {age }=48}(\) Empolyee \()=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\) Empolyee \()=?\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Age: & 0.20 & 20.29 & \(30-39\) & \(40-49\) & \(50-59\) & \(>60\) \\
\hline Tuples & 200 & 800 & 5000 & 12000 & 6500 & 500 \\
\hline
\end{tabular}

\section*{Histograms}

\section*{Employee(ssn, name, age)}
\(\mathrm{T}(\) Employee \()=25000, \mathrm{~V}(\) Empolyee, age \()=50\) \(\min (\) age \()=19, \max (\) age \()=68\) \(\sigma_{\text {age }=48}(\) Empolyee \()=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\) Empolyee \()=?\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Age: & \(0 . .20\) & \(20 . .29\) & \(30-39\) & \(40-49\) & \(50-59\) & \(>60\) \\
\hline Tuples & 200 & 800 & 5000 & 12000 & 6500 & 500 \\
\hline
\end{tabular}

Estimate \(=1200\) Estimate \(=1 * 80+5 * 500=2580\)

\section*{Types of Histograms}
- How should we determine the bucket boundaries in a histogram?

\section*{Types of Histograms}
- How should we determine the bucket boundaries in a histogram?
- Eq-Width
- Eq-Depth
- Compressed
- V-Optimal histograms

\section*{Employee(ssn, name, age)}

\section*{Histograms}

Eq-width:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Age: & \(0 . .20\) & \(20 . .29\) & \(30-39\) & \(40-49\) & \(50-59\) & \(>60\) \\
\hline Tuples & 200 & 800 & 5000 & 12000 & 6500 & 500 \\
\hline
\end{tabular}

Eq-depth:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Age: & \(0 . .20\) & \(20 . .29\) & \(30-39\) & \(40-49\) & \(50-59\) & \(>60\) \\
\hline Tuples & 1800 & 2000 & 2100 & 2200 & 1900 & 1800 \\
\hline
\end{tabular}

Compressed: store separately highly frequent values: \((48,1900)\)

\section*{V-Optimal Histograms}
- Defines bucket boundaries in an optimal way, to minimize the error over all point queries
- Computed rather expensively, using dynamic programming
- Modern databases systems use Voptimal histograms or some variations
[How good are they]

\section*{Discuss the paper}
- Why do they use the IMDB database instead of TPC-H?
- Do cardinality estimators typically under- or over-estimate?
- From cardinality to cost: how critical is that?
[How good are they]

\section*{Single Table Estimation}
\begin{tabular}{l|r|r|r|r} 
& median & 90th & 95 th & max \\
\hline PostgreSQL & 1.00 & 2.08 & 6.10 & 207 \\
DBMS A & 1.01 & 1.33 & 1.98 & 43.4 \\
DBMS B & 1.00 & 6.03 & 30.2 & 104000 \\
DBMS C & 1.06 & 1677 & 5367 & 20471 \\
HyPer & 1.02 & 4.47 & 8.00 & 2084
\end{tabular}

Table 1: Q-errors for base table selections
Discuss histograms v.s. samples
[How good are they]

\section*{Single Table Estimation}
- 1d Histograms: accurate for selection on a single equality or range predicate; poor for multiple predicates; useless for LIKE
- Samples: great for correlations, or predicates like LIKE; poor for low selectivity predicates: estimate is 0 , then use "magic constants"

\section*{[How good are they]}

\section*{Joins (0 to 6)}


Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes the error distribution of all subexpressions with a particular size (over all queries in the workload)

\section*{[How good are they]}

\section*{TPC-H v.s. Real Data (IMDB)}

[How good are they]

\section*{Cardinalities to Cost}
- Cardinality estimation creates largest errors
- Complex or simple cost No I/O,
keep only
CPU models don't differ much



\section*{Yet Another Difficulties}
- SQL Queries are often issued from applications
- Optimized once using prepare statement, executed often
- The constants in the query are not know until execution time: optimized plan may be suboptimal

Jayant Haritsa, ICDE'2019 tutorial
```

select
o_year, sum(case when nation = 'BRAZIL' then volume else 0 end) / sum(volume)
from
(select YEAR(o_orderdate) as o_year,
I_extendedprice * (1 - I_discount) as volume,
n2.n_name as nation
from part, supplier, lineitem, orders,
customer, nation n1, nation n2, region
where p_partkey = I_partkey and s_suppkey = I_suppkey
and l_orderkey = o_orderkey and o_custkey = c_custkey
and c_nationkey = n1.n_nationkey
and n1.n_regionkey = r_regionkey
and r_name = 'AMERICA'
and s_nationkey = n2.n_nationkey
and o_orderdate between '1995-01-01'
and '1996-12-31'
and p_type = 'ECONOMY ANODIZED STEEL'
and s_acctbal \leq C1 and I_extendedprice \leq C2) as all_nations
group by o_year order by o_year

```

\section*{Jayant Haritsa, ICDE'2019 tutorial}


\section*{Discussion}
- Cardinality estimation = open problem
- Histograms:
- Small number of buckets (why?)
- Updated only periodically (why?)
- No 2d histograms (except db2) why?
- Samples:
- Fail for low selectivity estimates
- Useless for joins
- Cross-join correlation - open problem

\section*{Query Optimization}

Three major components:
1. Cardinality and cost estimation
2. Search space
- Access path selection
- Rewrite rules
3. Plan enumeration algorithms

\section*{Access Path}

Access path: a way to retrieve tuples from a table
- A file scan, or
- An index plus a matching selection condition

Usually the access path implements a selection \(\sigma_{P}(R)\), where the predicate \(P\) is called search argument SARG (see "architecture" paper)

\section*{Access Path Selection}

Supplier(sid,sname,scity,sstate) Selection condition: sid > 300 ^ scity=‘Seattle’

\section*{Access Path Selection}

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 ^ scity=‘Seattle’ Indexes: clustered B+-tree on sid; B+-tree on scity

\section*{Access Path Selection}

Supplier(sid,sname,scity,sstate)
Selection condition: sid > \(300 \wedge\) scity='Seattle’ Indexes: clustered B+-tree on sid; B+-tree on scity

V (Supplier,scity) \(=20\)
\(\operatorname{Max}(\) Supplier, sid \()=1000, \operatorname{Min}(\) Supplier,sid \()=1\)
\(B(\) Supplier \()=100, T(\) Supplier \()=1000\)
Which access path should we use?

\section*{Access Path Selection}

Supplier(sid,sname,scity,sstate)
Selection condition: sid > \(300 \wedge\) scity='Seattle’ Indexes: clustered B+-tree on sid; B+-tree on scity

V (Supplier,scity) \(=20\)
Max(Supplier, sid) = 1000, \(\operatorname{Min}(\) Supplier,sid \()=1\)
\(B(\) Supplier \()=100, T(\) Supplier \()=1000\)
Which access path should we use?
1. Sequential scan: cost \(=100\)

\section*{Access Path Selection}

Supplier(sid,sname,scity,sstate)
Selection condition: sid > \(300 \wedge\) scity='Seattle’ Indexes: clustered B+-tree on sid; B+-tree on scity

V (Supplier,scity) \(=20\)
\(\operatorname{Max}(\) Supplier, sid) \(=1000, \operatorname{Min}(\) Supplier,sid \()=1\)
\(B(\) Supplier \()=100, T(\) Supplier \()=1000\)
Which access path should we use?
1. Sequential scan: cost \(=100\)
2. Index scan on sid: cost \(=7 / 10 * 100=70\)

\section*{Access Path Selection}

Supplier(sid,sname,scity,sstate)
Selection condition: sid > \(300 \wedge\) scity=‘Seattle’ Indexes: clustered B+-tree on sid; B+-tree on scity

V (Supplier,scity) \(=20\)
\(\operatorname{Max}(\) Supplier, sid) \(=1000, \operatorname{Min}(\) Supplier,sid \()=1\)
\(B(\) Supplier \()=100, T(\) Supplier \()=1000\)
Which access path should we use?
1. Sequential scan: cost \(=100\)
2. Index scan on sid: cost \(=7 / 10 * 100=70\)
3. Index scan on scity: cost \(=1000 / 20=50\)

\section*{Rewrite Rules}
- The optimizer's search space is defined by the set of rewrite rules that it implements
- More rewrite rules means that more plans are being explored

\section*{Relational Algebra Laws}
- Selections
- Commutative: \(\sigma_{\mathrm{c} 1}\left(\sigma_{\mathrm{c} 2}(\mathrm{R})\right)\) same as \(\sigma_{\mathrm{c} 2}\left(\sigma_{\mathrm{c} 1}(\mathrm{R})\right)\)
- Cascading: \(\sigma_{\mathrm{c} 1 \wedge \mathrm{c} 2}(\mathrm{R})\) same as \(\sigma_{\mathrm{c} 2}\left(\sigma_{\mathrm{c} 1}(\mathrm{R})\right)\)
- Projections
- Cascading
- Joins
- Commutative : \(R \bowtie S\) same as \(S \bowtie R\)
- Associative: \(R \bowtie(S \bowtie T)\) same as \((R \bowtie S) \bowtie T\)

\section*{Selections and Joins}

R(A, B), S(C,D)
\[
\sigma_{A=v}\left(R(A, B) \bowtie_{B=c} S(C, D)\right)=
\]

\section*{Selections and Joins}
\(R(A, B), S(C, D)\)
\[
\begin{gathered}
\sigma_{A=v}\left(R(A, B) \bowtie_{B=C} S(C, D)\right)= \\
\left(\sigma_{A=v}(R(A, B))\right) \bowtie_{B=C} S(C, D)
\end{gathered}
\]

The simplest optimizers use only this rule Called heuristic-based opimtizer In general: cost-based optimizer

\section*{Group-by and Join}

R(A, B), S(C,D)
\(\gamma_{A, \operatorname{sum}(D)}\left(R(A, B) \bowtie_{B=C} S(C, D)\right)=\)

\section*{Group-by and Join}
\(R(A, B), S(C, D)\)
\[
\begin{aligned}
& \gamma_{A, \operatorname{sum}(D)}\left(R(A, B) \bowtie_{B=C} S(C, D)\right)= \\
& \quad \gamma_{A, \operatorname{sum}(D)}\left(R(A, B) \bowtie_{B=C}\left(\gamma_{C, \operatorname{sum}(D)} S(C, D)\right)\right)
\end{aligned}
\]

These are very powerful laws.
They were introduced only in the 90's.

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

> Key / Foreign-Key

\section*{Select x.pno, x.quantity}

From Supply x, Supplier y
Where \(x . s i d=y . s i d\)

?

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

> Key / Foreign-Key

\section*{Select x.pno, x.quantity}

From Supply x, Supplier y
Where \(x . s i d=y . s i d\)


Select x.pno, x.quantity
From Supply \(x\)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Key / Foreign-Key

\section*{Select x.pno, x.quantity} From Supply x, Supplier y
Where \(\mathrm{x} . \mathrm{sid}=\mathrm{y}\). sid

\section*{What constraints do} we need for correctness?

Select x.pno, x.quantity
From Supply x

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Key / Foreign-Key

Select x.pno, x.quantity From Supply x, Supplier y
Where \(x . s i d=y . s i d\)

\section*{What constraints do} we need for correctness?

Select x.pno, x.quantity
From Supply x
1. Suppier.sid = key

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Key / Foreign-Key

Select x.pno, x.quantity From Supply x, Supplier y
Where \(x . s i d=y . s i d\)

\section*{What constraints do} we need for correctness?

Select x.pno, x.quantity
From Supply x
1. Suppier.sid = key
2. Supply.sid = foreign key

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Key / Foreign-Key

Select x.pno, x.quantity From Supply x, Supplier y
Where \(\mathrm{x} . \mathrm{sid}=\mathrm{y}\). sid

\section*{What constraints do} we need for correctness?

Select x.pno, x.quantity
From Supply x
1. Suppier.sid = key
2. Supply.sid = foreign key
3. Supply.sid NOT NULL

\section*{Semi-Join Reduction}

Semi-join definition:
\[
R \ltimes S=\Pi_{\operatorname{attr}(\mathrm{R})}(R \bowtie S)
\]

Basic law:
\[
\Pi_{\operatorname{attr}(R)}(R \bowtie S)=\Pi_{\operatorname{attr}(R)}((R \ltimes S) \bowtie S)
\]

\section*{Example 1}
- Example:
\[
\mathrm{Q}=\mathrm{R}(\mathrm{~A}, \mathrm{~B}) \bowtie \mathrm{S}(\mathrm{~B}, \mathrm{C})
\]

\section*{Example 1}
- Example:
\[
\mathrm{Q}=\mathrm{R}(\mathrm{~A}, \mathrm{~B}) \bowtie \mathrm{S}(\mathrm{~B}, \mathrm{C})
\]
- A semijoin reducer is:
\[
\mathrm{R}_{1}(\mathrm{~A}, \mathrm{~B})=\mathrm{R}(\mathrm{~A}, \mathrm{~B}) \propto \mathrm{S}(\mathrm{~B}, \mathrm{C})
\]

\section*{Example 1}
- Example:
\[
\mathrm{Q}=\mathrm{R}(\mathrm{~A}, \mathrm{~B}) \bowtie \mathrm{S}(\mathrm{~B}, \mathrm{C})
\]
- A semijoin reducer is:
\[
\mathrm{R}_{1}(\mathrm{~A}, \mathrm{~B})=\mathrm{R}(\mathrm{~A}, \mathrm{~B}) \propto \mathrm{S}(\mathrm{~B}, \mathrm{C})
\]
- The rewritten query is:
\[
\mathrm{Q}=\mathrm{R}_{1}(\mathrm{~A}, \mathrm{~B}) \bowtie \mathrm{S}(\mathrm{~B}, \mathrm{C})
\]

\section*{Example 2}
\(Q(y, z, u)=R\left({ }^{\prime} a^{\prime}, y\right), S(y, z), T(z, u), K\left(u, b^{\prime}\right)\)
Semi-join reducer:

\section*{Example 2}
\[
Q(y, z, u)=R\left(a^{\prime}, y\right), S(y, z), T(z, u), K\left(u,{ }^{\prime} b^{\prime}\right)
\]

Semi-join reducer:
\[
S^{\prime}(y, z):-S(y, z) \ltimes R\left({ }^{\prime} a^{\prime}, y\right)
\]

\section*{Example 2}
\(Q(y, z, u)=R\left({ }^{\prime} a^{\prime}, y\right), S(y, z), T(z, u), K\left(u,{ }^{\prime}{ }^{\prime}\right)\)
Semi-join reducer:
\[
\begin{aligned}
& S^{\prime}(y, z):-S(y, z) \ltimes R\left({ }^{\prime} a^{\prime}, y\right) \\
& T^{\prime}(z, u):-T(z, u) \ltimes S^{\prime}(y, z)
\end{aligned}
\]

\section*{Example 2}
\(Q(y, z, u)=R\left({ }^{\prime} a^{\prime}, y\right), S(y, z), T(z, u), K\left(u,{ }^{\prime}{ }^{\prime}\right)\)
Semi-join reducer:
\[
\begin{aligned}
& S^{\prime}(y, z):-S(y, z) \ltimes R\left({ }^{\prime} a^{\prime}, y\right) \\
& T^{\prime}(z, u):-T(z, u) \ltimes S^{\prime}(y, z) \\
& K^{\prime}(u):-K\left(u, b^{\prime}\right) \ltimes T^{\prime}(z, u)
\end{aligned}
\]

\section*{Example 2}
\(Q(y, z, u)=R\left({ }^{\prime} a^{\prime}, y\right), S(y, z), T(z, u), K\left(u,{ }^{\prime}{ }^{\prime}\right)\)
Semi-join reducer:
```

S'(y,z) :- S(y,z)\ltimesR('a', y)
T'(z,u) :- T(z,u)\ltimes \ltimes'(y,z)
K'(u) :- K(u,'b')\ltimes \'(z,u)
T'(z,u) :- T'(z,u)\ltimes K'(u)

```

\section*{Example 2}
\(Q(y, z, u)=R\left({ }^{\prime} a^{\prime}, y\right), S(y, z), T(z, u), K\left(u,{ }^{\prime}{ }^{\prime}\right)\)
Semi-join reducer:
```

S'(y,z) :- S(y,z)\ltimesR('a', y)
T'(z,u) :- T(z,u)\propto \&'(y,z)
K'(u) :- K(u,'b')\ltimes \ltimes'(z,u)
T'(z,u) :- T'(z,u)\ltimes K'(u)
S"(y,z):- S'(y,z)\propto \'(z,u)
R"(y) :- R('a',y)\ltimesS"(y,z)

```

\section*{Example 2}
\[
Q(y, z, u)=R\left(a^{\prime}, y\right), S(y, z), T(z, u), K\left(u,{ }^{\prime} b^{\prime}\right)
\]

Semi-join reducer:
```

S'(y,z) :- S(y,z)\ltimesR('a', y)
T'(z,u):- T(z,u)\propto \ltimes'(y,z)
K'(u) :- K(u,'b')\ltimes 仿(z,u)
T'(z,u) :- T'(z,u)\ltimes K'(u)
S"(y,z):- S'(y,z)\propto ^''(z,u)
R"(y) :- R('a',y)\ltimes S"(y,z)

```

Reduced query:
\(Q(y, z, u)=R^{\prime \prime}(y), S^{\prime \prime}(y, z), T^{\prime \prime}(z, u), K^{\prime \prime}(u)\)

\section*{Search Space Challenges}
- Search space is huge!
- Many possible equivalent trees (logical)
- Many implementations for each operator (physical)
- Many access paths for each relation (physical)
- Cannot consider ALL plans
- Want a search space that includes low-cost plans
- Typical compromises:
- Only left-deep plans
- Only plans without cartesian products
- Always push selections down to the leaves

\section*{Practice}
- Database optimizers typically have a database of rewrite rules
- E.g. SQL Server is rumored to have about 500 rules
- Rules become complex as they need to serve specialized types of queries

\section*{Left-Deep Plans and Bushy Plans}


\section*{[How good are they]}


Figure 9: Cost distributions for 5 queries and different index configurations. The vertical green lines represent the cost of the optimal plan
[How good are they]
\begin{tabular}{l|r|r|r|r|r|r} 
& \multicolumn{3}{|c|}{ PK indexes } & \multicolumn{3}{c}{ PK + FK indexes } \\
& median & \(95 \%\) & \(\max\) & median & \(95 \%\) & \(\max\) \\
\hline zig-zag & 1.00 & 1.06 & 1.33 & 1.00 & 1.60 & 2.54 \\
left-deep & 1.00 & 1.14 & 1.63 & 1.06 & 2.49 & 4.50 \\
right-deep & 1.87 & 4.97 & 6.80 & 47.2 & 30931 & 738349
\end{tabular}

Table 2: Slowdown for restricted tree shapes in comparison to the optimal plan (true cardinalities)

\section*{Query Optimization}

Three major components:
1. Cardinality and cost estimation
2. Search space
3. Plan enumeration algorithms

\section*{Two Types of Optimizers}
- Heuristic-based optimizers:
- Apply greedily rules that always improve plan
- Typically: push selections down
- Very limited: no longer used today
- Cost-based optimizers:
- Use a cost model to estimate the cost of each plan
- Select the "cheapest" plan
- We focus on cost-based optimizers

\section*{Three Approaches to Search Space Enumeration}
- Complete plans
- Bottom-up plans
- Top-down plans

\section*{Complete Plans}

R(A,B)
S(B,C)
T(C,D)
```

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A <40

```


\section*{Bottom-up Partial Plans}
\(R(A, B)\)
\(S(B, C)\)
\(T(C, D)\)

Why is this better?

SELECT * FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A \(<40\)


\section*{Top-down Partial Plans}

R(A,B)
S(B,C)
T(C,D)
SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A \(<40\)


\section*{Two Types of Plan}

\section*{Enumeration Algorithms}
- Dynamic programming (in class)
- Based on System R (aka Selinger) style optimizer[1979]
- Limited to joins: join reordering algorithm
- Bottom-up
- Rule-based algorithm (will not discuss)
- Database of rules (=algebraic laws)
- Usually: dynamic programming
- Usually: top-down

\section*{System R Search Space (1979)}
- Only left-deep plans
- Enable dynamic programming for enumeration
- Facilitate tuple pipelining from outer relation
- Consider plans with all "interesting orders"
- Perform cross-products after all other joins (heuristic)
- Only consider nested loop \& sort-merge joins
- Consider both file scan and indexes
- Try to evaluate predicates early

\section*{System R Enumeration Algorithm}
- Idea: use dynamic programming
- For each subset of \(\{R 1, \ldots, R n\}\), compute the best plan for that subset
- In increasing order of set cardinality:
- Step 1: for \(\{R 1\},\{R 2\}, \ldots,\{R n\}\)
- Step 2: for \(\{R 1, R 2\},\{R 1, R 3\}, \ldots,\{R n-1, R n\}\)
- ...
- Step n: for \(\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}\)
- It is a bottom-up strategy
- A subset of \(\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}\) is also called a subquery

\section*{Dynamic Programming Algo.}
- For each subquery \(\mathrm{Q} \subseteq\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}\) compute the following:
- Size(Q)
- A best plan for Q: Plan(Q)
- The cost of that plan: \(\operatorname{Cost}(\mathrm{Q})\)

\section*{Dynamic Programming Algo.}
- Step 1: Enumerate all single-relation plans
- Consider selections on attributes of relation
- Consider all possible access paths
- Consider attributes that are not needed
- Compute cost for each plan
- Keep cheapest plan per "interesting" output order

\section*{Dynamic Programming Algo.}
- Step 2: Generate all two-relation plans
- For each each single-relation plan from step 1
- Consider that plan as outer relation
- Consider every other relation as inner relation
- Compute cost for each plan
- Keep cheapest plan per "interesting" output order

\section*{Dynamic Programming Algo.}
- Step 3: Generate all three-relation plans
- For each each two-relation plan from step 2
- Consider that plan as outer relation
- Consider every other relation as inner relation
- Compute cost for each plan
- Keep cheapest plan per "interesting" output order
- Steps 4 through \(\mathbf{n}\) : repeat until plan contains all the relations in the query

\section*{Commercial Query Optimizers}

DB2, Informix, Microsoft SQL Server, Oracle 8
- Inspired by System R
- Left-deep plans and dynamic programming
- Cost-based optimization (CPU and IO)
- Go beyond System R style of optimization
- Also consider right-deep and bushy plans (e.g., Oracle and DB2)
- Variety of additional strategies for generating plans (e.g., DB2 and SQL Server)

\section*{Other Query Optimizers}
- Randomized plan generation
- Genetic algorithm
- PostgreSQL uses it for queries with many joins
- Rule-based
- Extensible collection of rules
- Rule = Algebraic law with a direction
- Algorithm for firing these rules
- Generate many alternative plans, in some order
- Prune by cost
- Startburst (later DB2) and Volcano (later SQL Server)

\section*{[How good are they]}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{6}{|c|}{PK indexes} & \multicolumn{6}{|c|}{PK + FK indexes} \\
\hline & \multicolumn{3}{|l|}{PostgreSQL estimates} & \multicolumn{3}{|l|}{true cardinalities} & \multicolumn{3}{|l|}{PostgreSQL estimates} & \multicolumn{3}{|l|}{true cardinalities} \\
\hline & median & 95\% & max \\
\hline Dynamic Programming & 1.03 & 1.85 & 4.79 & 1.00 & 1.00 & 1.00 & 1.66 & 169 & 186367 & 1.00 & 1.00 & 1.00 \\
\hline Quickpick-1000 & 1.05 & 2.19 & 7.29 & 1.00 & 1.07 & 1.14 & 2.52 & 365 & 186367 & 1.02 & 4.72 & 32.3 \\
\hline Greedy Operator Ordering & 1.19 & 2.29 & 2.36 & 1.19 & 1.64 & 1.97 & 2.35 & 169 & 186367 & 1.20 & 5.77 & 21.0 \\
\hline
\end{tabular}

Table 3: Comparison of exhaustive dynamic programming with the Quickpick-1000 (best of 1000 random plans) and the Greedy Operator Ordering heuristics. All costs are normalized by the optimal plan of that index configuration

\section*{Query Optimization: Conclusions}
- Query optimizer = critical part of DBMS
- "Avoid a very bad plan" instead of "find the optimal plan"
- Size estimation + search space + algo
- Essential:
- set-at-a-time language
- order-independent

Next time: asymptotic complexity of query evaluation```

