
CSE544
Data Management

Lectures 9-10
Query Optimization

CSE 544 - Winter 2020 1

Announcements

• Project meetings this Friday

• HW3 is posted, due next Friday

CSE 544 - Winter 2020 2

Query Optimization Motivation

3

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

Declarative query
Recall physical and
logical data independence

Today

• Discuss Query Optimization

• In parallel, discuss the paper
How Good Are Query Optimizers,
Really? VLDB’2015

CSE 544 - Winter 2020 4

What We Already Know

• There exists many logical plans...

• ... and for each, there exist many
physical plans

• Optimizer chooses the logical/physical
plan with the smallest estimated cost

CSE 544 - Winter 2020 5

Query Optimization

CSE 544 - Winter 2020 6

Three major components:

1. Cardinality and cost estimation

2. Search space

3. Plan enumeration algorithms

Cost Estimation

Goal: compute cost of an entire physical plan

• We know how to compute the cost given B, T:
– E.g. index join COST = B(R)+T(R)B(S)/V(S,a)

New Goal: estimate T(R) for each intermediate R
“Cardinality Estimation”

CSE 544 - Winter 2020 7

Cardinality Estimation

Problem: given statistics on base tables
and a query, estimate size of the answer

Very difficult, because:
• Need to do it very fast
• Need to use very little memory

CSE 544 - Winter 2020 8

Statistics on Base Data
Statistics on base tables
• Number of tuples (cardinality) T(R)
• Number of physical pages B(R)
• Indexes, number of keys in the index V(R,a)
• Histogram on single attribute (1d)
• Histogram on two attributes (2d)

Computed periodically, often using sampling

CSE 544 - Winter 2020 9

Assumptions

• Uniformity

• Independence

• Containment of values

• Preservation of values
CSE 544 - Winter 2020 10

[How good are they]

Size Estimation

Projection: output size same as input size
T(Π(R)) = T(R)

Selection: size decreases by selectivity factor θ
T(σpred(R)) = T(R) * θpred

Uniformity assumption

CSE 544 - Winter 2020 11

Selectivity Factors
• A = c /* σA=c(R) */

– Selectivity = 1/V(R,A)

• c1 < A < c2 /* σc1<A<c2(R)*/
– Selectivity = (c2 – c1)/(max(R,A) - min(R,A))

Multiple predicates: independence assumption
• A = c and B = d /* σA=c and B=d(R) */

– Selectivity = 1/V(R,A) * 1/V(R,B)

12

Estimating Result Sizes

Join R ⋈R.A=S.B S

• Take product of cardinalities of R and S

• Apply this selectivity factor:
1/ (MAX(V(R,A), V(S,B))

• Why? Will explain next...

CSE 544 - Winter 2020 13

Assumptions
• Containment of values: if V(R,A) ≤ V(S,B), then the

set of A values of R is included in the set of B values
of S
– Note: this indeed holds when A is a foreign key in R, and B

is a key in S

• Preservation of values: for any other attribute C,
V(R ⨝A=B S, C) = V(R, C) (or V(S, C))
– This is only needed higher up in the plan

CSE 544 - Winter 2020 14

Selectivity of R ⨝A=B S

Assume V(R,A) ≤ V(S,B)
• Each tuple t in R joins with T(S)/V(S,B) tuples

in S

• Hence T(R ⨝A=B S) = T(R) T(S) / V(S,B)

In general:
T(R ⨝A=B S) = T(R) T(S) / max(V(R,A),V(S,B))

CSE 544 - Winter 2020 15

Computing the Cost of a Plan

• Estimate cardinality in a bottom-up fashion
– Cardinality is the size of a relation (nb of tuples)
– Compute size of all intermediate relations in plan

• Estimate cost by using the estimated
cardinalities

• Extensive example next...

CSE 544 - Winter 2020 16

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

Estimated
(why?)

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Estimated
(why?)

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

T = 4

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

T = 4

Different
estimate L

Physical Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100/10 * 100 = 1000

Physical Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100+100*100/10 = 1100

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’∧sstate=‘WA’

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’∧sstate=‘WA’

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’∧sstate=‘WA’

Simplifications

• We considered only IO cost; in general we
need IO+CPU

• We assumed that all index pages were in
memory: sometimes we need to add the cost
of fetching index pages from disk

CSE 544 - Winter 2020 33

Histograms

• Statistics on data maintained by the
RDBMS

• Makes size estimation much more
accurate (hence, cost estimations are
more accurate)

CSE 544 - Winter 2020 34

Histograms

CSE 544 - Winter 2020 35

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Histograms

CSE 544 - Winter 2020

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Estimate = 25000 / 50 = 500 Estimate = 25000 * 6 / 50 = 3000

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Histograms

CSE 544 - Winter 2020

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Histograms
Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Estimate = 1200 Estimate = 1*80 + 5*500 = 2580

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Types of Histograms

• How should we determine the bucket
boundaries in a histogram ?

CSE 544 - Winter 2020 39

Types of Histograms

• How should we determine the bucket
boundaries in a histogram ?

• Eq-Width
• Eq-Depth
• Compressed
• V-Optimal histograms

CSE 544 - Winter 2020 40

Histograms

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Employee(ssn, name, age)

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 1800 2000 2100 2200 1900 1800

Eq-width:

Eq-depth:

Compressed: store separately highly frequent values: (48,1900)

V-Optimal Histograms

• Defines bucket boundaries in an optimal
way, to minimize the error over all point
queries

• Computed rather expensively, using
dynamic programming

• Modern databases systems use V-
optimal histograms or some variations

CSE 544 - Winter 2020 42

Discuss the paper

• Why do they use the IMDB database
instead of TPC-H?

• Do cardinality estimators typically
under- or over-estimate?

• From cardinality to cost: how critical is
that?

CSE 544 - Winter 2020 43

[How good are they]

Single Table Estimation

44

[How good are they]

Discuss histograms v.s. samples

Single Table Estimation

• 1d Histograms: accurate for selection
on a single equality or range predicate;
poor for multiple predicates; useless for
LIKE

• Samples: great for correlations, or
predicates like LIKE; poor for low
selectivity predicates: estimate is 0,
then use ”magic constants”

45

[How good are they]

Joins (0 to 6)

CSE 544 - Winter 2020 46

[How good are they]

TPC-H v.s. Real Data (IMDB)

CSE 544 - Winter 2020 47

[How good are they]

Cardinalities to Cost

• Cardinality
estimation creates
largest errors

• Complex or
simple cost
models don’t differ
much

48

[How good are they]

Their own
simple
formula

Postgres
cost

No I/O,
keep only

CPU

Yet Another Difficulties

• SQL Queries are often issued from
applications

• Optimized once using prepare
statement, executed often

• The constants in the query are not know
until execution time: optimized plan may
be suboptimal

CSE 544 - Winter 2020 49

CSE 544 - Winter 2020 50

Jayant Haritsa, ICDE’2019 tutorial

select
o_year, sum(case when nation = 'BRAZIL' then volume else 0 end) / sum(volume)

from
(select YEAR(o_orderdate) as o_year,

l_extendedprice * (1 - l_discount) as volume,
n2.n_name as nation

from part, supplier, lineitem, orders,
customer, nation n1, nation n2, region

where p_partkey = l_partkey and s_suppkey = l_suppkey
and l_orderkey = o_orderkey and o_custkey = c_custkey
and c_nationkey = n1.n_nationkey
and n1.n_regionkey = r_regionkey
and r_name = 'AMERICA’
and s_nationkey = n2.n_nationkey
and o_orderdate between '1995-01-01'
and '1996-12-31’
and p_type = 'ECONOMY ANODIZED STEEL'
and s_acctbal ≤ C1 and l_extendedprice ≤ C2) as all_nations

group by o_year order by o_year

Optimize without
knowing C1, C2

CSE 544 - Winter 2020 51

Jayant Haritsa, ICDE’2019 tutorial

Different optimal
plans for different

C1, C2

Discussion

• Cardinality estimation = open problem
• Histograms:

– Small number of buckets (why?)
– Updated only periodically (why?)
– No 2d histograms (except db2) why?

• Samples:
– Fail for low selectivity estimates
– Useless for joins

• Cross-join correlation – open problem 52

Query Optimization

CSE 544 - Winter 2020 53

Three major components:

1. Cardinality and cost estimation

2. Search space
– Access path selection
– Rewrite rules

3. Plan enumeration algorithms

Access Path
Access path: a way to retrieve tuples from a table

• A file scan, or

• An index plus a matching selection condition

Usually the access path implements a selection σP(R),
where the predicate P is called search argument SARG
(see “architecture” paper)

CSE 544 - Winter 2020 54

Access Path Selection

55

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 Ù scity=‘Seattle’
Indexes: clustered B+-tree on sid; B+-tree on scity

Access Path Selection

56

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 Ù scity=‘Seattle’
Indexes: clustered B+-tree on sid; B+-tree on scity

Access Path Selection

57

Which access path should we use?

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 Ù scity=‘Seattle’
Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20
Max(Supplier, sid) = 1000, Min(Supplier,sid) =1
B(Supplier) = 100, T(Supplier) = 1000

Access Path Selection

58

Which access path should we use?

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 Ù scity=‘Seattle’
Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20
Max(Supplier, sid) = 1000, Min(Supplier,sid) =1
B(Supplier) = 100, T(Supplier) = 1000

1. Sequential scan: cost = 100

Access Path Selection

59

Which access path should we use?

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 Ù scity=‘Seattle’
Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20
Max(Supplier, sid) = 1000, Min(Supplier,sid) =1
B(Supplier) = 100, T(Supplier) = 1000

1. Sequential scan: cost = 100
2. Index scan on sid: cost = 7/10 * 100 = 70

Access Path Selection

60

Which access path should we use?

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 Ù scity=‘Seattle’
Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20
Max(Supplier, sid) = 1000, Min(Supplier,sid) =1
B(Supplier) = 100, T(Supplier) = 1000

1. Sequential scan: cost = 100
2. Index scan on sid: cost = 7/10 * 100 = 70
3. Index scan on scity: cost = 1000/20 = 50

Rewrite Rules

• The optimizer’s search space is defined by
the set of rewrite rules that it implements

• More rewrite rules means that more plans are
being explored

CSE 544 - Winter 2020 61

Relational Algebra Laws
• Selections

– Commutative: sc1(sc2(R)) same as sc2(sc1(R))
– Cascading: sc1Ùc2(R) same as sc2(sc1(R))

• Projections
– Cascading

• Joins
– Commutative : R ⋈ S same as S ⋈ R
– Associative: R ⋈ (S ⋈ T) same as (R ⋈ S) ⋈ T

CSE 544 - Winter 2020 62

Selections and Joins

CSE 544 - Winter 2020 63

σA=v(R(A,B) ⨝ B=C S(C,D)) =
(σA=v (R(A,B))) ⨝ B=C S(C,D)

R(A, B), S(C,D)

Selections and Joins

CSE 544 - Winter 2020 64

σA=v(R(A,B) ⨝ B=C S(C,D)) =
(σA=v (R(A,B))) ⨝ B=C S(C,D)

The simplest optimizers use only this rule
Called heuristic-based opimtizer
In general: cost-based optimizer

R(A, B), S(C,D)

Group-by and Join

CSE 544 - Winter 2020 65

gA, sum(D)(R(A,B) ⨝ B=C S(C,D)) = ?

R(A, B), S(C,D)

Group-by and Join

CSE 544 - Winter 2020 66

gA, sum(D)(R(A,B) ⨝ B=C S(C,D)) =
gA, sum(D)(R(A,B) ⨝ B=C (gC, sum(D)S(C,D)))

These are very powerful laws.
They were introduced only in the 90’s.

R(A, B), S(C,D)

Key / Foreign-Key

CSE 544 - Winter 2020 67

Select x.pno, x.quantity
From Supply x, Supplier y
Where x.sid = y.sid

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

?

Key / Foreign-Key

CSE 544 - Winter 2020 68

Select x.pno, x.quantity
From Supply x, Supplier y
Where x.sid = y.sid

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Select x.pno, x.quantity
From Supply x

Key / Foreign-Key

CSE 544 - Winter 2020 69

Select x.pno, x.quantity
From Supply x, Supplier y
Where x.sid = y.sid

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Select x.pno, x.quantity
From Supply x

What constraints do
we need for correctness?

Key / Foreign-Key

CSE 544 - Winter 2020 70

Select x.pno, x.quantity
From Supply x, Supplier y
Where x.sid = y.sid

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Select x.pno, x.quantity
From Supply x

1. Suppier.sid = key

What constraints do
we need for correctness?

Key / Foreign-Key

CSE 544 - Winter 2020 71

Select x.pno, x.quantity
From Supply x, Supplier y
Where x.sid = y.sid

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Select x.pno, x.quantity
From Supply x

1. Suppier.sid = key
2. Supply.sid = foreign key

What constraints do
we need for correctness?

Key / Foreign-Key

CSE 544 - Winter 2020 72

Select x.pno, x.quantity
From Supply x, Supplier y
Where x.sid = y.sid

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Select x.pno, x.quantity
From Supply x

1. Suppier.sid = key
2. Supply.sid = foreign key
3. Supply.sid NOT NULL

What constraints do
we need for correctness?

Semi-Join Reduction

CSE 544 - Winter 2020 73

Πattr(R)(R ⨝ S) = Πattr(R)((R ⋉ S) ⨝ S)

Basic law:

R ⋉ S = Πattr(R)(R ⨝ S)

Semi-join definition:

Example 1

• Example:

74

Q = R(A,B) ⨝ S(B,C)

Example 1

• Example:

• A semijoin reducer is:

75

Q = R(A,B) ⨝ S(B,C)

R1(A,B) = R(A,B) ⋉ S(B,C)

Example 1

• Example:

• A semijoin reducer is:

• The rewritten query is:

76

Q = R(A,B) ⨝ S(B,C)

R1(A,B) = R(A,B) ⋉ S(B,C)

Q = R1(A,B) ⨝ S(B,C)

Example 2

77

Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

Semi-join reducer:

Example 2

78

Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

S’(y,z) :- S(y,z) ⋉ R(‘a’, y)
T’(z,u) :- T(z,u) ⋉ S’(y,z)
K’(u) :- K(u,’b’) ⋉ T’(z,u)
T’’(z,u) :- T’(z,u) ⋉ K’(u)
S’’(y,z) :- S’(y,z) ⋉ T’’(z,u)
R’’(y) :- R(‘a’,y) ⋉ S’’(y,z)

Semi-join reducer:

Example 2

79

Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

S’(y,z) :- S(y,z) ⋉ R(‘a’, y)
T’(z,u) :- T(z,u) ⋉ S’(y,z)
K’(u) :- K(u,’b’) ⋉ T’(z,u)
T’’(z,u) :- T’(z,u) ⋉ K’(u)
S’’(y,z) :- S’(y,z) ⋉ T’’(z,u)
R’’(y) :- R(‘a’,y) ⋉ S’’(y,z)

Semi-join reducer:

Example 2

80

Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

S’(y,z) :- S(y,z) ⋉ R(‘a’, y)
T’(z,u) :- T(z,u) ⋉ S’(y,z)
K’(u) :- K(u,’b’) ⋉ T’(z,u)
T’’(z,u) :- T’(z,u) ⋉ K’(u)
S’’(y,z) :- S’(y,z) ⋉ T’’(z,u)
R’’(y) :- R(‘a’,y) ⋉ S’’(y,z)

Semi-join reducer:

Example 2

81

Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

S’(y,z) :- S(y,z) ⋉ R(‘a’, y)
T’(z,u) :- T(z,u) ⋉ S’(y,z)
K’(u) :- K(u,’b’) ⋉ T’(z,u)
T’’(z,u) :- T’(z,u) ⋉ K’(u)
S’’(y,z) :- S’(y,z) ⋉ T’’(z,u)
R’’(y) :- R(‘a’,y) ⋉ S’’(y,z)

Semi-join reducer:

Example 2

82

Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

S’(y,z) :- S(y,z) ⋉ R(‘a’, y)
T’(z,u) :- T(z,u) ⋉ S’(y,z)
K’(u) :- K(u,’b’) ⋉ T’(z,u)
T’’(z,u) :- T’(z,u) ⋉ K’(u)
S’’(y,z) :- S’(y,z) ⋉ T’’(z,u)
R’’(y) :- R(‘a’,y) ⋉ S’’(y,z)

Semi-join reducer:

Example 2

83

Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

S’(y,z) :- S(y,z) ⋉ R(‘a’, y)
T’(z,u) :- T(z,u) ⋉ S’(y,z)
K’(u) :- K(u,’b’) ⋉ T’(z,u)
T’’(z,u) :- T’(z,u) ⋉ K’(u)
S’’(y,z) :- S’(y,z) ⋉ T’’(z,u)
R’’(y) :- R(‘a’,y) ⋉ S’’(y,z)

Q(y,z,u) = R’’(y), S’’(y,z), T’’(z,u), K’’(u)

Semi-join reducer:

Reduced query:

Search Space Challenges
• Search space is huge!

– Many possible equivalent trees (logical)
– Many implementations for each operator (physical)
– Many access paths for each relation (physical)

• Cannot consider ALL plans
• Want a search space that includes low-cost plans

• Typical compromises:
– Only left-deep plans
– Only plans without cartesian products
– Always push selections down to the leaves

84

Practice

• Database optimizers typically have a
database of rewrite rules

• E.g. SQL Server is rumored to have
about 500 rules

• Rules become complex as they need to
serve specialized types of queries

CSE 544 - Winter 2020 85

Left-Deep Plans and
Bushy Plans

CSE 544 - Winter 2020 86

R3 R1 R2 R4R3 R1

R4

R2

Left-deep plan Bushy plan

CSE 544 - Winter 2020 87

[How good are they]

CSE 544 - Winter 2020 88

[How good are they]

Query Optimization

CSE 544 - Winter 2020 89

Three major components:

1. Cardinality and cost estimation

2. Search space

3. Plan enumeration algorithms

Two Types of Optimizers

• Heuristic-based optimizers:
– Apply greedily rules that always improve plan

• Typically: push selections down
– Very limited: no longer used today

• Cost-based optimizers:
– Use a cost model to estimate the cost of each plan
– Select the “cheapest” plan
– We focus on cost-based optimizers

CSE 544 - Winter 2020 90

Three Approaches to Search
Space Enumeration

• Complete plans

• Bottom-up plans

• Top-down plans

CSE 544 - Winter 2020 91

Complete Plans

CSE 544 - Winter 2020 92

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

⨝

SσA<40

R

⨝

T

⨝

S

σA<40

R

⨝

T

Why is this
search space
inefficient ?

R(A,B)
S(B,C)
T(C,D)

Bottom-up Partial Plans

CSE 544 - Winter 2020 93

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝σA<40

R S T

⨝

SσA<40

R

⨝

R S

⨝

SσA<40

R

⨝

T

…..

Why is this
better ?

Top-down Partial Plans

CSE 544 - Winter 2020 94

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

T
⨝

S

⨝

T

…..

SELECT R.A, T.D
FROM R, S, T
WHERE R.B=S.B

and S.C=T.C

SELECT *
FROM R, S
WHERE R.B=S.B

and R.A < 40 SELECT *
FROM R
WHERE R.A < 40

Two Types of Plan
Enumeration Algorithms

• Dynamic programming (in class)
– Based on System R (aka Selinger) style

optimizer[1979]
– Limited to joins: join reordering algorithm
– Bottom-up

• Rule-based algorithm (will not discuss)
– Database of rules (=algebraic laws)
– Usually: dynamic programming
– Usually: top-down 95

System R Search Space
(1979)

• Only left-deep plans
– Enable dynamic programming for enumeration
– Facilitate tuple pipelining from outer relation

• Consider plans with all “interesting orders”
• Perform cross-products after all other joins

(heuristic)
• Only consider nested loop & sort-merge joins
• Consider both file scan and indexes
• Try to evaluate predicates early 96

System R Enumeration
Algorithm

• Idea: use dynamic programming
• For each subset of {R1, …, Rn}, compute the best

plan for that subset
• In increasing order of set cardinality:

– Step 1: for {R1}, {R2}, …, {Rn}
– Step 2: for {R1,R2}, {R1,R3}, …, {Rn-1, Rn}
– …
– Step n: for {R1, …, Rn}

• It is a bottom-up strategy
• A subset of {R1, …, Rn} is also called a subquery

CSE 544 - Winter 2020 97

Dynamic Programming Algo.

• For each subquery Q Í{R1, …, Rn}
compute the following:
– Size(Q)
– A best plan for Q: Plan(Q)
– The cost of that plan: Cost(Q)

CSE 544 - Winter 2020 98

Dynamic Programming Algo.

• Step 1: Enumerate all single-relation plans

– Consider selections on attributes of relation
– Consider all possible access paths
– Consider attributes that are not needed

– Compute cost for each plan

– Keep cheapest plan per “interesting” output order

CSE 544 - Winter 2020 99

Dynamic Programming Algo.

• Step 2: Generate all two-relation plans

– For each each single-relation plan from step 1
– Consider that plan as outer relation
– Consider every other relation as inner relation

– Compute cost for each plan

– Keep cheapest plan per “interesting” output order

CSE 544 - Winter 2020 100

Dynamic Programming Algo.

• Step 3: Generate all three-relation plans

– For each each two-relation plan from step 2
– Consider that plan as outer relation
– Consider every other relation as inner relation
– Compute cost for each plan
– Keep cheapest plan per “interesting” output order

• Steps 4 through n: repeat until plan contains
all the relations in the query 101

Commercial Query Optimizers
DB2, Informix, Microsoft SQL Server, Oracle 8

• Inspired by System R
– Left-deep plans and dynamic programming
– Cost-based optimization (CPU and IO)

• Go beyond System R style of optimization
– Also consider right-deep and bushy plans (e.g., Oracle and

DB2)
– Variety of additional strategies for generating plans (e.g.,

DB2 and SQL Server)
CSE 544 - Winter 2020 102

Other Query Optimizers
• Randomized plan generation

– Genetic algorithm
– PostgreSQL uses it for queries with many joins

• Rule-based
– Extensible collection of rules
– Rule = Algebraic law with a direction
– Algorithm for firing these rules

• Generate many alternative plans, in some order
• Prune by cost

– Startburst (later DB2) and Volcano (later SQL Server)

CSE 544 - Winter 2020 103

CSE 544 - Winter 2020 104

[How good are they]

Query Optimization: Conclusions

• Query optimizer = critical part of DBMS
• ”Avoid a very bad plan” instead of “find the

optimal plan”
• Size estimation + search space + algo
• Essential:

– set-at-a-time language
– order-independent

Next time: asymptotic complexity of query
evaluation

105

