CSES544
Data Management

Lectures 9-10
Query Optimization

CSE 544 - Winter 2020

Announcements

* Project meetings this Friday

« HW3 is posted, due next Friday

CSE 544 - Winter 2020

Query Optimization Motivation

Query
optimization<

SQL query

| - < Declarative query

[Parse & Rewrite Query]

—

[Select Logical Plan

U

Select Physical PIan}

} Logical
plan

Recall physical and
logical data independence

Physical

[Query E‘xecution}

plan

Today

 Discuss Query Optimization

* In parallel, discuss the paper
How Good Are Query Optimizers,
Really? VLDB’'2015

CSE 544 - Winter 2020

What We Already Know

* There exists many logical plans...

* ... and for each, there exist many
physical plans

* Optimizer chooses the logical/physical
plan with the smallest estimated cost

CSE 544 - Winter 2020

Query Optimization

Three major components:

1. Cardinality and cost estimation

2. Search space

3. Plan enumeration algorithms

CSE 544 - Winter 2020

Cost Estimation

Goal: compute cost of an entire physical plan

* We know how to compute the cost given B, T:
— E.g. index join COST = B(R)+T(R)B(S)/V(S,a)

New Goal: estimate T(R) for each intermediate R
“Cardinality Estimation”

CSE 544 - Winter 2020 7

Cardinality Estimation

Problem: given statistics on base tables
and a query, estimate size of the answer

Very difficult, because:

* Need to do it very fast
* Need to use very little memory

CSE 544 - Winter 2020

Statistics on Base Data

Statistics on base tables

* Number of tuples (cardinality) T(R)
« Number of physical pages B(R)
* Indexes, number of keys in the index V(R,a)

* Histogram on single attribute (1d)
« Histogram on two attributes (2d)

Computed periodically, often using sampling

CSE 544 - Winter 2020

[How good are they]

Assumptions

* Uniformity
* Independence
« Containment of values

 Preservation of values

CSE 544 - Winter 2020

10

Size Estimation

Projection: output size same as input size
T(NM(R)) = T(R)

Selection: size decreases by selectivity factor 6
T(Gpred(R)) = T(R) . epred

Uniformity assumption

CSE 544 - Winter 2020 11

Selectivity Factors

- A=c I* 0pce(R) */
— Selectivity = 1/V(R,A)

e c1<A<c2 [* GC1<A<CZ(R)*/
— Selectivity = (c2 — c1)/(max(R,A) - min(R,A))

Multiple predicates: independence assumption
e A= C and B = d /* OA=C and B=d(R) */
— Selectivity = 1/V(R,A) * 1/V(R,B)

12

Estimating Result Sizes

JOINR Mga_gg S

« Take product of cardinalities of R and S

* Apply this selectivity factor:
1/ (MAX(V(R,A), V(S,B))

« Why? Will explain next...

CSE 544 - Winter 2020

13

Assumptions

« Containment of values: if V(R,A) < V(S,B), then the
set of A values of R is included in the set of B values

of S

— Note: this indeed holds when A is a foreign key in R, and B
isakeyinS

* Preservation of values: for any other attribute C,
V(R [><]A=B Sa C) = V(R’ C) (Or V(S’ C))
— This is only needed higher up in the plan

CSE 544 - Winter 2020

14

Selectivity of R DXly_g S

Assume V(R,A) = V(S,B)
« Each tuple tin R joins with T(S)/V(S,B) tuples

InS
 Hence T(R X5 S)=T(R) T(S) / V(S,B)

In general:
T(R X5 S) = T(R) T(S) / max(V(R,A),V(S,B))

CSE 544 - Winter 2020 15

Computing the Cost of a Plan

« Estimate cardinality in a bottom-up fashion

— Cardinality is the size of a relation (nb of tuples)
— Compute size of all intermediate relations in plan

» Estimate cost by using the estimated
cardinalities

« Extensive example next...

CSE 544 - Winter 2020 16

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

sSname

SELECT sname

FROM Supplier x, Supply y

WHERE x.sid = y.sid
and y.pno = 2

O pno=2 Ascity="Seattle’ A sstate="WA and x.sclty = “Seattle’
and x.sstate = ‘WA’
/ sid = sid\
Supply Supplier

T(Supplier) = 1000

T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20 M =1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

sname

Estimated
(why?)

T=10000

c)-pno=2 Ascity='Seattle’ A sstate="WA

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

N

Supply

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier

T(Supplier) = 1000

B(Supplier) = 100

V(Supplier, scity) = 20 M — 1 1
V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

ogical Query Plan 1

sname

Estimated
(why?)

SELECT sname
T <1 FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2

O pno=2 Ascity="Seattle’ A sstate="WA and x.sclty = “Seattle’
and x.sstate = ‘WA’

T =10000
e
/ sid = sid\
Supply Supplier

T(Supplier) = 1000

T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20 M =1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Loglcal Query Plan 2

sname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T

r =9 SC|ty- SeaTIe Asstate="WA

Supply Supplier

T(Supplier) = 1000

T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20 M =1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Loglcal Query Plan 2

sname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

o

r =9 SC|ty- SeaTIe Asstate="WA

Supply Supplier

T(Supplier) = 1000

T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20 M =1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Loglcal Query Plan 2

sname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

/ sid = snd\
Very wrong!
Why?

r =9 SC|ty- SeaTIe Asstate="WA

Supply Supplier

T(Supplier) = 1000

T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20 M =1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

Loglcal Query Plan 2

oy

r i
Supply

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

sname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Very wrong!
Why?

SC|ty- SeaTIe Asstate="WA

Supplier

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

11

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Loglcal Query Plan 2

sname

Different

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

estimate ®

- Sld sid
Very wrong!
Why?

r =9 SC|ty— SeaTIe Asstate="WA

Supply Supplier

T(Supplier) = 1000

T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20 M =1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PhyS|CaI Plan 1

sname

T <1

c)-pno=2 Ascity='Seattle’ A sstate="WA

T =10000
Total cost:
o
sid = sid
Block nested loop joi
Scan S | S]
upply “an Supplier

Supplier) = 1000
T(Supply) = 10000 Supplier) = 100

T(
B(
B(Supply) = 100 V(Supplier, scity) = 20 M :1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PhyS|CaI Plan 1

sname

T <1

c)-pno=2 Ascity='Seattle’ A sstate="WA

T=10000

Total cost: 100+100*100/10 = 1100

=
sid = sid

Block nested loop joi

Scan

Supply Sean - Supplier

Supplier) = 1000
T(Supply) = 10000 Supplier) = 100

T(
B(
B(Supply) = 100 V(Supplier, scity) = 20 M :1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 2

sname

T=4

=
T= A/ sid = sid\
M

ain memory join

Unclustered Gp 0=2
index lookup r

Supply(pno)

Supply

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Cost of Supply(pno) =
Cost of Supplier(scity) =
Total cost:

T=5

0-sstate=‘WA’

1= 50

O-c~‘,c:ity|=‘SeattIe’ Unclustered

index lookup
SU ppl ier Supplier(scity)
T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

M=11

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 2

sname

T=4

=
T= A/ sid = sid\
M

ain memory join

Unclustered Gp 0=2
index lookup r

Supply(pno)

Supply

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Cost of Supply(pno) = 4
Cost of Supplier(scity) =
Total cost:

T=5

0-sstate=‘WA’

1= 50

O-c~‘,c:ity|=‘SeattIe’ Unclustered

index lookup
SU ppl ier Supplier(scity)
T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

M=11

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 2

sname

T=4

<
T= ‘/ sid = sid\
M

ain memory join

Unclustered Gp o=2
index lookup r

Supply(pno)

Supply

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

T=5

0-sstate=‘WA’

1= 50

O-c~‘,c:ity|=‘SeattIe’ Unclustered

index lookup
Su ppl Ier Supplier(scity)
T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

M=11

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

shname
T=4 l
O scity="Seattle’ A sstate="WA' Cost of Supply(pno) =
Cost of Index join =
Total cost:
=7
Clustered
Index join
Unclustered Gp 0=2
index lookup r
Supply(pno)
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M :1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

sname
T=4 l

Cost of Supply(pno) = 4
Cost of Index join =

O-c~‘,c:ity=‘Sea’tIe’ Asstate="WA
Total cost:

=
Clustered
Index join

index lookup
Supply(pno)

Supply Supplier

Unclustered Gprozz

T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M =1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

sname
T=4 l

Cost of Supply(pno) = 4
Cost of Index join = 4

O-c~‘,c:ity=‘Sea’tIe’ Asstate="WA
Total cost: 8

=
Clustered
Index join

index lookup
Supply(pno)

Supply Supplier

Unclustered Gprozz

T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M =1 1
V(Supply, pno) = 2500 V(Supplier, state) = 10

Simplifications

* We considered only IO cost; in general we
need I0+CPU

* We assumed that all index pages were Iin
memory: sometimes we need to add the cost
of fetching index pages from disk

CSE 544 - Winter 2020 33

Histograms

« Statistics on data maintained by the
RDBMS

e Makes size estimation much more

accurate (hence, cost estimations are
more accurate)

CSE 544 - Winter 2020

34

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

O-age=48(EmpO|yee) =7 O-age>28 and age<35(EmpO|yee) =7

CSE 544 - Winter 2020 35

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

O-age=48(EmpO|yee) =7 O-age>28 and age<35(EmpO|yee) =7

$ $

Estimate = 25000 / 50 = 500 Estimate = 25000 * 6 /50 = 3000

CSE 544 - Winter 2020

Histograms

Employee(ssn, name, age)
T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

O-age=48(EmpO|yee) =7 O-age>28 and age<35(EmpO|yee) =7

Age:

0..20

20..29

30-39

40-49

50-59

> 60

Tuples

200

800

5000

12000

6500

500

CSE 544 - Winter 2020

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

O-age=48(EmpO|yee) =7 O-age>28 and age<35(EmpO|yee) =7

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

N

Estimate = 1200 Estimate = 1*80 + 5*500 = 2580

Types of Histograms

* How should we determine the bucket
boundaries in a histogram ?

CSE 544 - Winter 2020

39

Types of Histograms

How should we determine the bucket
boundaries in a histogram ?

Eqg-Width

Eqg-Depth
Compressed
V-Optimal histograms

CSE 544 - Winter 2020

40

Employee(ssn, name, age)

Histograms
Eg-width:

Age: 0..20 20..29 30-39 40-49 50-59 > 60
Tuples 200 800 5000 12000 6500 500
Eqg-depth:

Age: 0..20 20..29 30-39 40-49 50-59 > 60
Tuples 1800 2000 2100 2200 1900 1800

Compressed: store separately highly frequent values: (48,1900)

V-Optimal Histograms

» Defines bucket boundaries in an optimal

way, to minimize the error over all point
gueries

« Computed rather expensively, using
dynamic programming

 Modern databases systems use V-
optimal histograms or some variations

CSE 544 - Winter 2020 42

[How good are they]

Discuss the paper

* Why do they use the IMDB database
instead of TPC-H?

* Do cardinality estimators typically
under- or over-estimate?

* From cardinality to cost: how critical is
that?

CSE 544 - Winter 2020 43

[How good are they]

Single Table Estimation

median | 90th | 95th max
PostgreSQL 1.00 | 2.08 | 6.10 207
DBMS A 1.01 | 1.33 | 1.98 43.4
DBMS B 1.00 | 6.03 | 30.2 | 104000
DBMS C 1.06 | 1677 | 5367 | 20471
HyPer 1.02 | 447 | 8.00 2084

Table 1: Q-errors for base table selections

[Discuss histograms v.s. samples 1

44

[How good are they]

Single Table Estimation

* 1d Histograms: accurate for selection
on a single equality or range predicate;

poor for multiple predicates; useless for
LIKE

« Samples: great for correlations, or
predicates like LIKE; poor for low
selectivity predicates: estimate is 0O,
then use "magic constants”

45

[How good are they]

Joins (0to 6

T PostgreSQL DBMS A DBMS B DBMS C HyPer
H [[0 . 3 . 1 T H :
§ tes — = C |
T O T i i £ ¢ P
£ v : : P P o
= : i ' i [' H : ' i
O _ [} ! :] | . ! s . 1 H f .
‘q>-, 1e2 I ; ! i | ' 1 . I H i ! i H H ! !
° T i T ‘|‘ : T T . i i
T i 1 . 3] ’ H . H 1]
T ek 1 P | | i N | i * ‘_l_l
2 1 -t- — 1 ! (I | + L] 1 : |- il |
> 4 1 . 1 f— H
:1e2- i ‘ \ B " '
g LT LT . 4 | :
: ' LT ‘ it T
S 164 : T ! | i ,
() i T ! ! 1 ! '
g L 1 .
S 95th percentile I H J i .
¢1) M l i - . i
e6 -1 75th percentile : :
median b - : .
25th percentile - 1 A . T
5th percentile 1 (
168 I | I L] | L] 1 L] I L] L] 1 I | I I L] 1 L] | I I L] I I I

I L] I : |
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5
number of joins

Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes
the error distribution of all subexpressions with a particular size (over all queries in the workload)

CSE 544 - Winter 2020 46

[How good are they]

TPC-H v.s. Real Data (IMDB)

TPC-H 10
B

TPC-H 8

TPC-H 5

JOB 25c

JOB 17b

JOB 16d

JOB 6a

| |
QN - <
(0] (0]

1e2 -

™~

« Uonewnsalono [eeos foj] uonewnsesspun -

47

CSE 544 - Winter 2020

[How good are they]

Cardinalities to Cost

PostgreSQL estimates true cardinalities
Postgres . .
. . cost fe4s 3, e . o ...
» Cardinality B ,
0 3%
1 .

estimation creates |

(b)

|9pOW 1S02 pJepuels

largest errors

 Complex or
simple cost
models don't differ

No 1/0,
keep only
CPU

runtime [ms] [log scale]
n

|9pow 1509 paun]

much

Their own
simple
formula

(e) ()

a|dwis

|9pow 1509

T T I 1 1
1e+05 1e+07 1e+03 1e+05 1e+07
cost [log scale]

Yet Another Difficulties

« SQL Queries are often issued from
applications

* Optimized once using prepare
statement, executed often

* The constants in the query are not know
until execution time: optimized plan may
be suboptimal

CSE 544 - Winter 2020 49

Jayant Haritsa, ICDE’2019 tutorial

select
o_year, sum(case when nation = 'BRAZIL' then volume else 0 end) / sum(volume)
from
(select YEAR(o _orderdate) as o_year,
| _extendedprice * (1 - |_discount) as volume,
n2.n_name as nation
from part, supplier, lineitem, orders,
customer, nation n1, nation n2, region
where p_partkey = | partkey and s_suppkey = | _suppkey
and |_orderkey = o_orderkey and o_custkey = c_custkey
and c_nationkey = n1.n_nationkey
and n1.n_regionkey = r_regionkey
and r_name = 'AMERICA’
and s_nationkey = n2.n_nationkey
and o_orderdate between '1995-01-01"
and '1996-12-31’
and p_type ='ECONOMY ANODIZED STEEL'
and s_acctbal = C1 and | _extendedprice < C2) as all_nations
group by o_year order by o_year

Optimize without
knowing C1, C2

CSE 544 - Winter 2020 50

Jayant Haritsa, ICDE'2019 tutorial

QueryTemplate

Plan Diagran

LINEITEM.L EXTENDEDPRICE

an Diag | Reduced Plan Diag

100

80

60 -

40

20

Comp Cost Diag Comp Card Diag Exec Cost Diag Exec Card Diag = SelLog
QTD: DB2 9 opp U 100 g8 30apl

SUPPLIER.S ACCTEAL

CSE 544 - Winter 2020

of Plans: 7

Different optimal
plans for different
C1, C2

Gini Coeff: 0.83

P13

[Parameter - Operator Dif]

[Regenerate Diagram

].m

(Reset View

J.m

P19

2
B 22
B rzs

P24

B2

29.60 %
1769 %
847 %
473 %
4.19%
4.02%
285%
249 %
243 %
238 %
238 %
163 %
156 %
130 %
127 %
121 %
1.06 %
091 %
082 %
0.76 %
071 %
0.71 %
0.71 %
0.62 %
0.58 %

~

51

Discussion

Cardinality estimation = open problem

Histograms:

— Small number of buckets (why?)

— Updated only periodically (why?)

— No 2d histograms (except db2) why?

Samples:
— Fail for low selectivity estimates
— Useless for joins

Cross-join correlation — open problem

52

Query Optimization

Three major components:

1. Cardinality and cost estimation

2. Search space
— Access path selection
— Rewrite rules

3. Plan enumeration algorithms

CSE 544 - Winter 2020

53

Access Path

Access path: a way to retrieve tuples from a table

A file scan, or

* An index plus a matching selection condition

Usually the access path implements a selection op(R),

where the predicate P is called search argument SARG
(see “architecture” paper)

CSE 544 - Winter 2020

54

Access Path Selection

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 A scity="'Seattle’

95

Access Path Selection

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 A scity="'Seattle’
Indexes: clustered B+-tree on sid; B+-tree on scity

56

Access Path Selection

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 A scity="'Seattle’
Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20
Max(Supplier, sid) = 1000, Min(Supplier,sid) =1
B(Supplier) = 100, T(Supplier) = 1000

Which access path should we use?

Y

Access Path Selection

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 A scity="'Seattle’
Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20
Max(Supplier, sid) = 1000, Min(Supplier,sid) =1
B(Supplier) = 100, T(Supplier) = 1000

Which access path should we use?

1. Sequential scan: cost = 100

58

Access Path Selection

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 A scity="'Seattle’
Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20
Max(Supplier, sid) = 1000, Min(Supplier,sid) =1
B(Supplier) = 100, T(Supplier) = 1000

Which access path should we use?

1. Sequential scan: cost = 100
2. Index scan on sid: cost=7/10 * 100 =70

59

Access Path Selection

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 A scity="'Seattle’
Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20
Max(Supplier, sid) = 1000, Min(Supplier,sid) =1
B(Supplier) = 100, T(Supplier) = 1000

Which access path should we use?

1. Sequential scan: cost = 100
2. Index scan on sid: cost=7/10 * 100 =70
3. Index scan on scity: cost = 1000/20 = 50

60

Rewrite Rules

* The optimizer’s search space is defined by
the set of rewrite rules that it implements

* More rewrite rules means that more plans are
being explored

CSE 544 - Winter 2020 61

Relational Algebra Laws

« Selections
— Commutative: o.4(c.2(R)) same as 6.,(c.4(R))
— Cascading: o.1..2(R) same as c.,(c.1(R))

* Projections
— Cascading

e Joins
— Commutative : R Ssameas S x R
— Associative: R« (Sx T)sameas (Rx S) x T

CSE 544 - Winter 2020

62

Selections and Joins

R(A, B), S(C,D)

Oa-v(R(A,B) D g-c S(C,D)) =

CSE 544 - Winter 2020

63

Selections and Joins

R(A, B), S(C,D)

Oa-v(R(A,B) D g-c S(C,D)) =

(Oa=v (R(A,B))) > ¢ S(C,D)

The simplest optimizers use only this rule
Called heuristic-based opimtizer
In general: cost-based optimizer

CSE 544 - Winter 2020

64

Group-by and Join

R(A, B), S(C,D)

Ya, sum@)(R(A,B) > g_¢c S(C,D)) =

CSE 544 - Winter 2020

?

65

Group-by and Join

R(A, B), S(C,D)

Ya, sum@)(R(A,B) > g_¢c S(C,D)) =
Ya, sum@)(R(A,B) > 5_¢ (Yc, sumd)S(C,D)))

These are very powerful laws.
They were introduced only in the 90’s.

CSE 544 - Winter 2020 66

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Key / Foreign-Key

Select x.pno, x.quantity

From Supply x, Supplier y :ﬁ
Where x.sid = y.sid

CSE 544 - Winter 2020

67

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Key / Foreign-Key

Select x.pno, x.quantity

From Supply x, Supplier y :ﬁ
Where x.sid = y.sid

Select x.pno, x.quantity
From Supply x

CSE 544 - Winter 2020 68

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Key / Foreign-Key

Select x.pno, x.quantity

From Supply x, Supplier y :ﬁ
Where x.sid = y.sid

What constraints do Select x.pno, x.quantity
we need for correctness? | | From Supply x

CSE 544 - Winter 2020 69

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Key / Foreign-Key

Select x.pno, x.quantity

From Supply x, Supplier y :ﬁ
Where x.sid = y.sid

What constraints do Select x.pno, x.quantity
we need for correctness? | | From Supply x

1. Suppier.sid = key

CSE 544 - Winter 2020 70

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Key / Foreign-Key

Select x.pno, x.quantity

From Supply x, Supplier y C@

Where x.sid = y.sid

What constraints do Select x.pno, x.quantity
we need for correctness? | | From Supply x

1. Suppier.sid = key
2. Supply.sid = foreign key

CSE 544 - Winter 2020 71

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Key / Foreign-Key

Select x.pno, x.quantity

From Supply x, Supplier y C@
Where x.sid = y.sid

What constraints do Select x.pno, x.quantity
we need for correctness? | | From Supply x

1. Suppier.sid = key
2. Supply.sid = foreign key
3. Supply.sid NOT NULL

CSE 544 - Winter 2020 72

Semi-Join Reduction

Semi-join definition:

RxS= I_Iattr(R)(R > S)

Basic law:

I_Iattr(R)(R > S) = I_Iattr(R)((R X S) > S)

CSE 544 - Winter 2020

73

Example 1

« Example:

Q = R(A,B) < S(B,C)

74

Example 1

« Example:

Q = R(A,B) < S(B,C)

* A semijoin reducer is:
R4(A,B) = R(A,B) x S(B,C)

75

Example 1

« Example:

Q = R(A,B) < S(B,C)

* A semijoin reducer is:
R4(A,B) = R(A,B) x S(B,C)

* The rewritten query is:
Q = Ry(A,B) <t S(B,C)

76

Example 2

Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

Semi-join reducer:

77

Example 2

Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

Semi-join reducer:

S'(y,2) - S(y,2) x R('a’, y)

78

Example 2

Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

Semi-join reducer:

S'(y.2z) :- S(y,z) x R('a’, y)
T(z,u) :- T(z,u) x S'(y,z)

79

Example 2

Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

Semi-join reducer:

S'(y.2z) :- S(y,z) x R('a’, y)
T(z,u) :- T(z,u) x S'(y,z)
K'(u) :- K(u,’b’) x T'(z,u)

80

Example 2

Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

Semi-join reducer:

S'(y.z) :- S(v,z) x R("a’, y)
T(z,u) :- T(z,u) x S'(y,z)
K'(u) :- K(u,’b’) x T'(z,u)
T7(z,u) :- T'(z,u) x K'(u)

81

Example 2

Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

Semi-join reducer:

S'(y,z) - S(y,z) x R('a’, y)
T(z,u) :- T(z,u) x S'(y,z)
K'(u) :- K(u,’b’) x T'(z,u)
T7(z,u) :- T'(z,u) x K'(u)
S”(y,z) :- S'(y,z) x T"(z,u)
R™(y) - R((ay) x S™(y,z)

Example 2

Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)

Semi-join reducer:

S'(y.z) :- S(v,z) x R("a’, y)
T(z,u) :- T(z,u) x S'(y,z)
K'(u) :- K(u,’b’) x T'(z,u)
T7(z,u) :- T'(z,u) x K'(u)
S”(y,z) :- S'(y,z) x T"(z,u)
R™(y) - R('a',y) x S7(y,z)

Reduced query:

Q(y,z,u) = R"(y), S"(y,2), T"(z,u), K"(u)

83

Search Space Challenges

Search space is huge!

— Many possible equivalent trees (logical)

— Many implementations for each operator (physical)
— Many access paths for each relation (physical)

Cannot consider ALL plans
Want a search space that includes low-cost plans

Typical compromises:

— Only left-deep plans

— Only plans without cartesian products

— Always push selections down to the leaves

84

Practice

» Database optimizers typically have a
database of rewrite rules

« E.g. SQL Server is rumored to have
about 500 rules

* Rules become complex as they need to
serve specialized types of queries

CSE 544 - Winter 2020 85

Left-Deep Plans and
Bushy Plans

N/N< \RZ / \
- /N / N

RS R1 R3 R
Left-deep plan Bushy plan

CSE 544 - Winter 2020 86

[How good are they]

JOB 6a JOB 13a

JOB 16d

JOB 17b

JOB 25¢

sexepul ou

>k

sexapul Md

A

sexapul 4 + Md

1 1 1 1 1 1 1 1
1 1e2 1e3 1e4 1 1e2 1e3 1e4

T 1
1 1e2 1e3 1e4

1 1 1 1
1 1e2 1e3 1e4

T 1 1
1 1e2 1e3 1e4d

cost relative to optimal FK plan [log scale]

Figure 9: Cost distributions for 5 queries and different index
configurations. The vertical green lines represent the cost of

the optimal plan

87

[How good are they]

PK indexes PK + FK indexes
median | 95% | max | median 95% max
zZ1g-zag 1.00 | 1.06 | 1.33 1.00 1.60 2.54
left-deep 1.00 | 1.14 | 1.63 1.06 2.49 4.50
right-deep 1.87 | 4.97 | 6.80 47.2 | 30931 | 738349

Table 2: Slowdown for restricted tree shapes in comparison to

the optimal plan (true cardinalities)

CSE 544 - Winter 2020

88

Query Optimization

Three major components:

1. Cardinality and cost estimation

2. Search space

3. Plan enumeration algorithms

CSE 544 - Winter 2020

89

Two Types of Optimizers

* Heuristic-based optimizers:

— Apply greedily rules that always improve plan
» Typically: push selections down

— Very limited: no longer used today

» Cost-based optimizers:
— Use a cost model to estimate the cost of each plan
— Select the “cheapest” plan
— We focus on cost-based optimizers

CSE 544 - Winter 2020 90

Three Approaches to Search
Space Enumeration

 Complete plans
* Bottom-up plans

* Top-down plans

CSE 544 - Winter 2020

91

Complete Plans

R(A,B) SELECT *
S(B,C) FROMR,S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40
D>
/ \ <
/ \ Why is this
/ \ 0A<40 search space
inefficient ?
GAI<40 \
R

CSE 544 - Winter 2020 92

Bottom-up Partial Plans

R(A,B) SELECT *

S(B,C) FROMR, S, T

T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40
Why is this / >
better ? \

o e ol M\S A
| / \ A<4O / \ AI<4O _____
S R S R

R

CSE 544 - Winter 2020 93

Top-down Partial Plans

R(A,B) SELECT *
S(B,C) FROMR, S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40
[X]\ / [X]\ O a<40
>
/ T / \ T SELECT R.A, T.D
SELECT * FROMR, S, T
FROMR, S WHERE R.B=S.B
WHERE R.B=S.B and S.C=T.C
and R.A<40 SELECT * S """
FROM R

WHERE R.A<40

CSE 544 - Winter 2020 94

Two Types of Plan
Enumeration Algorithms

* Dynamic programming (in class)
— Based on System R (aka Selinger) style
optimizer[1979]
— Limited to joins: join reordering algorithm
— Bottom-up

* Rule-based algorithm (will not discuss)
— Database of rules (=algebraic laws)
— Usually: dynamic programming
— Usually: top-down

95

System R Search Space
(1979)

Only left-deep plans
— Enable dynamic programming for enumeration
— Facilitate tuple pipelining from outer relation

Consider plans with all “interesting orders”

Perform cross-products after all other joins
(heuristic)

Only consider nested loop & sort-merge joins
Consider both file scan and indexes
Try to evaluate predicates early %

System R Enumeration
Algorithm

ldea: use dynamic programming

For each subset of {R1, ..., Rn}, compute the best
plan for that subset

In increasing order of set cardinality:
— Step 1: for {R1}, {R2}, ..., {Rn}
— Step 2: for {R1,R2}, {R1,R3}, ..., {Rn-1, Rn}

— é’;ep n: for {R1, ..., Rn}
It is a bottom-up strategy
A subset of {R1, ..., Rn} is also called a subquery

CSE 544 - Winter 2020 97

Dynamic Programming Algo.

» For each subquery Q <{R1, ..., Rn}
compute the following:
— Size(Q)
— A best plan for Q: Plan(Q)
— The cost of that plan: Cost(Q)

CSE 544 - Winter 2020

98

Dynamic Programming Algo.

« Step 1: Enumerate all single-relation plans
— Consider selections on attributes of relation
— Consider all possible access paths
— Consider attributes that are not needed

— Compute cost for each plan

— Keep cheapest plan per “interesting” output order

CSE 544 - Winter 2020 99

Dynamic Programming Algo.

« Step 2: Generate all two-relation plans
— For each each single-relation plan from step 1
— Consider that plan as outer relation
— Consider every other relation as inner relation

— Compute cost for each plan

— Keep cheapest plan per “interesting” output order

CSE 544 - Winter 2020 100

Dynamic Programming Algo.

« Step 3. Generate all three-relation plans

— For each each two-relation plan from step 2

— Consider that plan as outer relation

— Consider every other relation as inner relation

— Compute cost for each plan

— Keep cheapest plan per “interesting” output order

« Steps 4 through n: repeat until plan contains

all the relations in the query 10

Commercial Query Optimizers

DB2, Informix, Microsoft SQL Server, Oracle 8

* Inspired by System R
— Left-deep plans and dynamic programming
— Cost-based optimization (CPU and 10)

Go beyond System R style of optimization

— Also consider right-deep and bushy plans (e.g., Oracle and
DB2)

— Variety of additional strategies for generating plans (e.g.,
DB2 and SQL Server)

CSE 544 - Winter 2020 102

Other Query Optimizers

 Randomized plan generation
— Genetic algorithm
— PostgreSQL uses it for queries with many joins

 Rule-based
— Extensible collection of rules
— Rule = Algebraic law with a direction

— Algorithm for firing these rules
» Generate many alternative plans, in some order
* Prune by cost

— Startburst (later DB2) and Volcano (later SQL Server)

CSE 544 - Winter 2020 103

[How good are they]

PK indexes PK + FK indexes
PostgreSQL estimates true cardinalities PostgreSQL estimates true cardinalities
median 95% max | median 95% max | median 95% max | median 95% max
Dynamic Programming 1.03 1.85 4.79 1.00 1.00 1.00 1.66 169 186367 1.00 1.00 1.00
Quickpick-1000 1.05 219 7.29 1.00 1.07 1.14 2.52 365 186367 1.02 472 323
Greedy Operator Ordering 1.19 229 236 1.19 1.64 1.97 235 169 186367 1.20 5.77 21.0

Table 3: Comparison of exhaustive dynamic programming with the Quickpick-1000 (best of 1000 random plans) and the Greedy
Operator Ordering heuristics. All costs are normalized by the optimal plan of that index configuration

CSE 544 - Winter 2020

104

Query Optimization: Conclusions

* Query optimizer = critical part of DBMS

* "Avoid a very bad plan” instead of “find the
optimal plan”

« Size estimation + search space + algo

« Essential:
— set-at-a-time language
— order-independent

Next time: asymptotic complexity of query

evaluation
105

