CSE544 Data Management

Lectures 9-10 Query Optimization

1

Announcements

• Project meetings this Friday

• HW3 is posted, due next Friday

Query Optimization Motivation

Today

Discuss Query Optimization

 In parallel, discuss the paper How Good Are Query Optimizers, Really? VLDB'2015

What We Already Know

• There exists many logical plans...

 ... and for each, there exist many physical plans

 Optimizer chooses the logical/physical plan with the smallest <u>estimated</u> cost

Query Optimization

Three major components:

- 1. Cardinality and cost estimation
- 2. Search space
- 3. Plan enumeration algorithms

Cost Estimation

Goal: compute cost of an entire physical plan

We know how to compute the cost given B, T:
 – E.g. index join COST = B(R)+T(R)B(S)/V(S,a)

New Goal: estimate T(R) for each intermediate R "Cardinality Estimation"

Cardinality Estimation

Problem: given statistics on base tables and a query, estimate size of the answer

Very difficult, because:

- Need to do it very fast
- Need to use very little memory

Statistics on Base Data

Statistics on base tables

- Number of tuples (cardinality)
 T(R)
- Number of physical pages
- Indexes, number of keys in the index V(R,a)
- Histogram on single attribute (1d)
- Histogram on two attributes (2d)

Computed periodically, often using sampling

B(R)

[How good are they]

Assumptions

• Uniformity

• Independence

Containment of values

Preservation of values

Size Estimation

Projection: output size same as input size $T(\Pi(R)) = T(R)$

Selection: size decreases by <u>selectivity factor</u> θ T($\sigma_{pred}(R)$) = T(R) * θ_{pred}

Uniformity assumption

Selectivity Factors

- A = c /* $\sigma_{A=c}(R)$ */ - Selectivity = 1/V(R,A)
- c1 < A < c2 /* $\sigma_{c1 < A < c2}(R)$ */ - Selectivity = (c2 - c1)/(max(R,A) - min(R,A))

Multiple predicates: *independence assumption*

• A = c and B = d /* $\sigma_{A=c and B=d}(R)$ */

– Selectivity = 1/V(R,A) * 1/V(R,B)

Estimating Result Sizes

- Join R ⋈_{R.A=S.B} S
- Take product of cardinalities of R and S
- Apply this selectivity factor: 1/ (MAX(V(R,A), V(S,B))
- Why? Will explain next...

Assumptions

- <u>Containment of values</u>: if V(R,A) ≤ V(S,B), then the set of A values of R is included in the set of B values of S
 - Note: this indeed holds when A is a foreign key in R, and B is a key in S
- Preservation of values: for any other attribute C, V(R ⋈_{A=B} S, C) = V(R, C) (or V(S, C))

- This is only needed higher up in the plan

Selectivity of $R \bowtie_{A=B} S$

Assume $V(R,A) \leq V(S,B)$

- Each tuple t in R joins with T(S)/V(S,B) tuples in S
- Hence $T(R \bowtie_{A=B} S) = T(R) T(S) / V(S,B)$

In general:

 $T(R \bowtie_{A=B} S) = T(R) T(S) / max(V(R,A),V(S,B))$

Computing the Cost of a Plan

- Estimate <u>cardinality</u> in a bottom-up fashion
 - Cardinality is the <u>size</u> of a relation (nb of tuples)
 - Compute size of *all* intermediate relations in plan
- Estimate <u>cost</u> by using the estimated cardinalities
- Extensive example next...

Simplifications

We considered only IO cost; in general we need IO+CPU

 We assumed that all index pages were in memory: sometimes we need to add the cost of fetching index pages from disk

Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Histograms

Employee(<u>ssn</u>, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{age=48}$ (Empolyee) = ? $\sigma_{age>28 \text{ and } age<35}$ (Empolyee) = ?

Histograms

Employee(<u>ssn</u>, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{age=48}$ (Empolyee) = ? $\sigma_{age>28 \text{ and } age<35}$ (Empolyee) = ?

CSE 544 - Winter 2020
Histograms

Employee(<u>ssn</u>, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{age=48}$ (Empolyee) = ? $\sigma_{age>28 \text{ and } age<35}$ (Empolyee) = ?

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	200	800	5000	12000	6500	500

Histograms

Employee(<u>ssn</u>, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{age=48}$ (Empolyee) = ? $\sigma_{age>28 \text{ and } age<35}$ (Empolyee) = ?

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	200	800	5000	12000	6500	500

Estimate = 1200 Estimate = 1*80 + 5*500 = 2580

Types of Histograms

• How should we determine the bucket boundaries in a histogram ?

Types of Histograms

• How should we determine the bucket boundaries in a histogram ?

- Eq-Width
- Eq-Depth
- Compressed
- V-Optimal histograms

Employee(ssn, name, age) Histograms

Eq-width:

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	200	800	5000	12000	6500	500

Eq-depth:

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	1800	2000	2100	2200	1900	1800

Compressed: store separately highly frequent values: (48,1900)

V-Optimal Histograms

- Defines bucket boundaries in an optimal way, to minimize the error over all point queries
- Computed rather expensively, using dynamic programming
- Modern databases systems use Voptimal histograms or some variations

Discuss the paper

• Why do they use the IMDB database instead of TPC-H?

 Do cardinality estimators typically under- or over-estimate?

From cardinality to cost: how critical is that?

Single Table Estimation

	median	90th	95th	max
PostgreSQL	1.00	2.08	6.10	207
DBMS A	1.01	1.33	1.98	43.4
DBMS B	1.00	6.03	30.2	104000
DBMS C	1.06	1677	5367	20471
HyPer	1.02	4.47	8.00	2084

Table 1: Q-errors for base table selections

Discuss histograms v.s. samples

Single Table Estimation

- 1d Histograms: accurate for selection on a single equality or range predicate; poor for multiple predicates; useless for LIKE
- Samples: great for correlations, or predicates like LIKE; poor for low selectivity predicates: estimate is 0, then use "magic constants"

Joins (0 to 6)

Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes the error distribution of all subexpressions with a particular size (over all queries in the workload)

CSE 544 - Winter 2020

TPC-H v.s. Real Data (IMDB)

1e+05

1e+07

cost [log scale]

1e+03

1e+05

1e+07

Yet Another Difficulties

- SQL Queries are often issued from applications
- Optimized once using *prepare* statement, executed often
- The constants in the query are not know until execution time: optimized plan may be suboptimal

```
select
 o_year, sum(case when nation = 'BRAZIL' then volume else 0 end) / sum(volume)
from
(select YEAR(o orderdate) as o year,
        I_extendedprice * (1 - I_discount) as volume,
            n2.n name as nation
 from part, supplier, lineitem, orders,
    customer, nation n1, nation n2, region
 where p partkey = I partkey and s suppkey = I suppkey
  and I_orderkey = o_orderkey and o_custkey = c_custkey
  and c nationkey = n1.n nationkey
  and n1.n_regionkey = r_regionkey
  and r name = 'AMERICA'
  and s nationkey = n2.n nationkey
                                                           Optimize without
                                                           knowing C1, C2
  and o orderdate between '1995-01-01'
  and '1996-12-31'
  and p_type = 'ECONOMY ANODIZED STEEL'
 and s_acctbal \leq C1 and l_extendedprice \leq C2) as all_nations
group by o year order by o year
```

Jayant Haritsa, ICDE'2019 tutorial

CSE 544 - Winter 2020

Discussion

- Cardinality estimation = open problem
- Histograms:
 - Small number of buckets (why?)
 - Updated only periodically (why?)
 - No 2d histograms (except db2) why?
- Samples:
 - Fail for low selectivity estimates
 - Useless for joins
- Cross-join correlation open problem

52

Query Optimization

Three major components:

- 1. Cardinality and cost estimation
- 2. Search space
 - Access path selection
 - Rewrite rules

3. Plan enumeration algorithms

Access Path

Access path: a way to retrieve tuples from a table

- A file scan, or
- An index *plus* a matching selection condition

Usually the access path implements a selection $\sigma_P(R)$, where the predicate P is called <u>search argument</u> SARG (see "architecture" paper)

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 \land scity='Seattle'

Supplier(sid,sname,scity,sstate) Selection condition: sid > 300 \land scity='Seattle' Indexes: clustered B+-tree on sid; B+-tree on scity

Supplier(sid,sname,scity,sstate) Selection condition: sid > 300 ^ scity='Seattle' Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20 Max(Supplier, sid) = 1000, Min(Supplier,sid) =1 B(Supplier) = 100, T(Supplier) = 1000

Which access path should we use?

Supplier(sid,sname,scity,sstate) Selection condition: sid > 300 \land scity='Seattle' Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20 Max(Supplier, sid) = 1000, Min(Supplier,sid) =1 B(Supplier) = 100, T(Supplier) = 1000

Which access path should we use?

1. Sequential scan: cost = 100

Supplier(sid,sname,scity,sstate) Selection condition: sid > 300 \land scity='Seattle' Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20 Max(Supplier, sid) = 1000, Min(Supplier,sid) =1 B(Supplier) = 100, T(Supplier) = 1000

Which access path should we use?

- 1. Sequential scan: cost = 100
- 2. Index scan on sid: cost = 7/10 * 100 = 70

Supplier(sid,sname,scity,sstate) Selection condition: sid > 300 \land scity='Seattle' Indexes: clustered B+-tree on sid; B+-tree on scity

V(Supplier,scity) = 20 Max(Supplier, sid) = 1000, Min(Supplier,sid) =1 B(Supplier) = 100, T(Supplier) = 1000

Which access path should we use?

- 1. Sequential scan: cost = 100
- 2. Index scan on sid: cost = 7/10 * 100 = 70
- 3. Index scan on scity: cost = 1000/20 = 50

Rewrite Rules

- The optimizer's search space is defined by the set of rewrite rules that it implements
- More rewrite rules means that more plans are being explored

Relational Algebra Laws

• Selections

- Commutative: $\sigma_{c1}(\sigma_{c2}(R))$ same as $\sigma_{c2}(\sigma_{c1}(R))$
- Cascading: $\sigma_{c1 \land c2}(R)$ same as $\sigma_{c2}(\sigma_{c1}(R))$
- Projections
 - Cascading
- Joins
 - Commutative : $R \bowtie S$ same as $S \bowtie R$
 - Associative: $R \bowtie (S \bowtie T)$ same as $(R \bowtie S) \bowtie T$

Selections and Joins

R(A, B), S(C,D)

 $\sigma_{A=v}(R(A,B) \bowtie_{B=C} S(C,D)) =$

Selections and Joins

R(A, B), S(C,D)

$$\sigma_{A=v}(R(A,B) \bowtie_{B=C} S(C,D)) = (\sigma_{A=v}(R(A,B))) \bowtie_{B=C} S(C,D)$$

The simplest optimizers use <u>only</u> this rule Called <u>heuristic-based opimtizer</u> In general: <u>cost-based optimizer</u> Group-by and Join

R(A, B), S(C,D)

 $\gamma_{A, sum(D)}(R(A,B) \bowtie_{B=C} S(C,D)) =$

Group-by and Join

R(A, B), S(C,D)

 $\gamma_{A, \text{ sum}(D)}(R(A,B) \bowtie_{B=C} S(C,D)) =$ $\gamma_{A, \text{ sum}(D)}(R(A,B) \bowtie_{B=C} (\gamma_{C, \text{ sum}(D)}S(C,D)))$

These are very powerful laws. They were introduced only in the 90's.

Key / Foreign-Key

Select x.pno, x.quantity From Supply x, Supplier y Where x.sid = y.sid

Select x.pno, x.quantity From Supply x, Supplier y Where x.sid = y.sid

Select x.pno, x.quantity From Supply x

Key / Foreign-Key

Select x.pno, x.quantity From Supply x, Supplier y Where x.sid = y.sid

What constraints do we need for correctness?

Select x.pno, x.quantity From Supply x

Select x.pno, x.quantity From Supply x, Supplier y Where x.sid = y.sid

What constraints do we need for correctness?

Select x.pno, x.quantity From Supply x

1. Suppier.sid = key

Select x.pno, x.quantity From Supply x, Supplier y Where x.sid = y.sid

What constraints do we need for correctness?

Select x.pno, x.quantity From Supply x

- 1. Suppier.sid = key
- 2. Supply.sid = foreign key

Key / Foreign-Key

Select x.pno, x.quantity From Supply x, Supplier y Where x.sid = y.sid

What constraints do we need for correctness?

Select x.pno, x.quantity From Supply x

- 1. Suppier.sid = key
- 2. Supply.sid = foreign key
- 3. Supply.sid NOT NULL
Semi-Join Reduction

Semi-join definition:

$$\mathsf{R} \ltimes \mathsf{S} = \Pi_{\operatorname{attr}(\mathsf{R})}(\mathsf{R} \bowtie \mathsf{S})$$

Basic law:

$$\Pi_{\text{attr}(R)}(R \bowtie S) = \Pi_{\text{attr}(R)}((R \bowtie S) \bowtie S)$$

• Example:

 $Q = R(A,B) \bowtie S(B,C)$

• Example:

 $Q = R(A,B) \bowtie S(B,C)$

• A semijoin reducer is:

 $R_1(A,B) = R(A,B) \ltimes S(B,C)$

• Example:

 $Q = R(A,B) \bowtie S(B,C)$

• A semijoin reducer is:

 $\mathsf{R}_1(\mathsf{A},\mathsf{B}) = \mathsf{R}(\mathsf{A},\mathsf{B}) \ltimes \mathsf{S}(\mathsf{B},\mathsf{C})$

• The rewritten query is:

 $Q = R_1(A,B) \bowtie S(B,C)$

Q(y,z,u) = R(a', y), S(y,z), T(z,u), K(u,b')

$$Q(y,z,u) = R(a', y), S(y,z), T(z,u), K(u,b')$$

Semi-join reducer:

Q(y,z,u) = R(a', y), S(y,z), T(z,u), K(u,b')

Semi-join reducer:

S'(y,z) :- S(y,z) ⋉ R('a', y) T'(z,u) :- T(z,u) ⋉ S'(y,z)

Q(y,z,u) = R(a', y), S(y,z), T(z,u), K(u,b')

Q(y,z,u) = R(a', y), S(y,z), T(z,u), K(u,b')

$$S'(y,z) := S(y,z) \ltimes R(a', y)$$

 $T'(z,u) := T(z,u) \ltimes S'(y,z)$
 $K'(u) := K(u,b') \ltimes T'(z,u)$
 $T''(z,u) := T'(z,u) \ltimes K'(u)$

Q(y,z,u) = R('a', y), S(y,z), T(z,u), K(u,'b')

$$S'(y,z) := S(y,z) \ltimes R(a', y)$$

 $T'(z,u) := T(z,u) \ltimes S'(y,z)$
 $K'(u) := K(u,b') \ltimes T'(z,u)$
 $T''(z,u) := T'(z,u) \ltimes K'(u)$
 $S''(y,z) := S'(y,z) \ltimes T''(z,u)$
 $R''(y) := R(a',y) \ltimes S''(y,z)$

Q(y,z,u) = R(a', y), S(y,z), T(z,u), K(u,b')

Semi-join reducer:

$$\begin{array}{l} S'(y,z) := S(y,z) \ltimes R(`a', y) \\ T'(z,u) := T(z,u) \ltimes S'(y,z) \\ K'(u) := K(u, `b') \ltimes T'(z,u) \\ T''(z,u) := T'(z,u) \ltimes K'(u) \\ S''(y,z) := S'(y,z) \ltimes T''(z,u) \\ R''(y) := R(`a',y) \ltimes S''(y,z) \end{array}$$

Reduced query:

Q(y,z,u) = R''(y), S''(y,z), T''(z,u), K''(u)

Search Space Challenges

- Search space is huge!
 - Many possible equivalent trees (logical)
 - Many implementations for each operator (physical)
 - Many access paths for each relation (physical)
- Cannot consider ALL plans
- Want a search space that includes low-cost plans
- Typical compromises:
 - Only left-deep plans
 - Only plans without cartesian products
 - Always push selections down to the leaves

Practice

- Database optimizers typically have a database of rewrite rules
- E.g. SQL Server is rumored to have about 500 rules
- Rules become complex as they need to serve specialized types of queries

[How good are they]

Figure 9: Cost distributions for 5 queries and different index configurations. The vertical green lines represent the cost of the optimal plan

[How good are they]

	PK	indexes	5	PK + FK indexes				
	median	95%	max	median	95%	max		
zig-zag	1.00	1.06	1.33	1.00	1.60	2.54		
left-deep	1.00	1.14	1.63	1.06	2.49	4.50		
right-deep	1.87	4.97	6.80	47.2	30931	738349		

 Table 2: Slowdown for restricted tree shapes in comparison to

 the optimal plan (true cardinalities)

Query Optimization

Three major components:

- 1. Cardinality and cost estimation
- 2. Search space
- 3. Plan enumeration algorithms

Two Types of Optimizers

- Heuristic-based optimizers:
 - Apply greedily rules that always improve plan
 - Typically: push selections down
 - Very limited: no longer used today
- Cost-based optimizers:
 - Use a cost model to estimate the cost of each plan
 - Select the "cheapest" plan
 - We focus on cost-based optimizers

Three Approaches to Search Space Enumeration

Complete plans

Bottom-up plans

Top-down plans

Complete Plans

Bottom-up Partial Plans

CSE 544 - Winter 2020

Two Types of Plan Enumeration Algorithms

- Dynamic programming (in class)
 - Based on System R (aka Selinger) style optimizer[1979]
 - Limited to joins: *join reordering algorithm*
 - Bottom-up
- Rule-based algorithm (will not discuss)
 - Database of rules (=algebraic laws)
 - Usually: dynamic programming
 - Usually: top-down

System R Search Space (1979)

- Only left-deep plans
 - Enable dynamic programming for enumeration
 - Facilitate tuple pipelining from outer relation
- Consider plans with all "interesting orders"
- Perform cross-products after all other joins (heuristic)
- Only consider nested loop & sort-merge joins
- Consider both file scan and indexes
- Try to evaluate predicates early

System R Enumeration Algorithm

- Idea: use dynamic programming
- For each subset of {R1, ..., Rn}, compute the best plan for that subset
- In increasing order of set cardinality:
 - Step 1: for {R1}, {R2}, …, {Rn}
 - Step 2: for {R1,R2}, {R1,R3}, ..., {Rn-1, Rn}
 - ...
 - Step n: for {R1, …, Rn}
- It is a bottom-up strategy
- A subset of {R1, ..., Rn} is also called a *subquery*

- For each subquery Q ⊆{R1, ..., Rn} compute the following:
 - Size(Q)
 - A best plan for Q: Plan(Q)
 - The cost of that plan: Cost(Q)

- **Step 1**: Enumerate all single-relation plans
 - Consider selections on attributes of relation
 - Consider all possible access paths
 - Consider attributes that are not needed
 - Compute cost for each plan
 - Keep cheapest plan per "interesting" output order

- **Step 2**: Generate all two-relation plans
 - For each each single-relation plan from step 1
 - Consider that plan as outer relation
 - Consider every other relation as inner relation
 - Compute cost for each plan
 - Keep cheapest plan per "interesting" output order

- **Step 3**: Generate all three-relation plans
 - For each each two-relation plan from step 2
 - Consider that plan as outer relation
 - Consider every other relation as inner relation
 - Compute cost for each plan
 - Keep cheapest plan per "interesting" output order
- Steps 4 through n: repeat until plan contains all the relations in the query

Commercial Query Optimizers

DB2, Informix, Microsoft SQL Server, Oracle 8

- Inspired by System R
 - Left-deep plans and dynamic programming
 - Cost-based optimization (CPU and IO)
- Go beyond System R style of optimization
 - Also consider right-deep and bushy plans (e.g., Oracle and DB2)
 - Variety of additional strategies for generating plans (e.g., DB2 and SQL Server)

CSE 544 - Winter 2020

Other Query Optimizers

Randomized plan generation

- Genetic algorithm
- PostgreSQL uses it for queries with many joins
- Rule-based
 - **Extensible** collection of rules
 - Rule = Algebraic law with a direction
 - Algorithm for firing these rules
 - Generate many alternative plans, in some order
 - Prune by cost
 - Startburst (later DB2) and Volcano (later SQL Server)

	PK indexes					PK + FK indexes						
	PostgreSQL estimates			true cardinalities			PostgreSQL estimates			true cardinalities		
	median	95%	max	median	95%	max	median	95%	max	median	95%	max
Dynamic Programming	1.03	1.85	4.79	1.00	1.00	1.00	1.66	169	186367	1.00	1.00	1.00
Quickpick-1000	1.05	2.19	7.29	1.00	1.07	1.14	2.52	365	186367	1.02	4.72	32.3
Greedy Operator Ordering	1.19	2.29	2.36	1.19	1.64	1.97	2.35	169	186367	1.20	5.77	21.0

 Table 3: Comparison of exhaustive dynamic programming with the Quickpick-1000 (best of 1000 random plans) and the Greedy Operator Ordering heuristics. All costs are normalized by the optimal plan of that index configuration

Query Optimization: Conclusions

- Query optimizer = critical part of DBMS
- "Avoid a very bad plan" instead of "find the optimal plan"
- Size estimation + search space + algo
- Essential:
 - set-at-a-time language
 - order-independent

Next time: asymptotic complexity of query evaluation