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Announcements

• HW 4 is due this Friday
There was a bug, Walter fixed it

• Review 4, Snowflake, due for Monday

• Project poster presentations next Friday
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Serial Query Execution
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What if we Have a Cluster
and a Large Amount of Data?
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Parallel Query Processing

• Clusters:
– More servers à more likely to fit data in 

main memory
– More servers à more computing power
– Clusters are now cheaply available in the 

cloud
• Multicores: the end of Moore’s law
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Architectures for Parallel 
Databases

• Shared memory

• Shared disk

• Shared nothing
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Shared Memory
• SMP = 

symmetric multiprocessor
• Nodes share RAM and disk
• 10x … 100x processors

• Example: SQL Server runs on 
a single machine and can 
leverage many threads to 
speed up a query

• Easy to use and program
• Expensive to scale
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Shared Disk
• All nodes access same disks
• 10x processors

• Example: Oracle

• No more memory contention

• Harder to program
• Still hard to scale
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Shared Nothing
• Cluster of commodity machines
• Called "clusters" or "blade servers”
• Each machine: own memory&disk
• Up to x1000-x10000 nodes
• Example: redshift, spark, snowflake

Because all machines today have many 
cores and many disks, shared-nothing 
systems typically run many "nodes” on a 
single physical machine.

• Easy to maintain and scale
• Most difficult to administer and tune.
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Performance Metrics
Nodes = processors = computers

• Speedup: 
– More nodes, same data è higher speed

• Scaleup:
– More nodes, more data è same speed

Warning: sometimes Scaleup is used to mean Speedup



Linear v.s. Non-linear 
Speedup
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# nodes (=P)

Speedup

×1 ×5 ×10 ×15

Ideal



Linear v.s. Non-linear Scaleup
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Batch
Scaleup

×1 ×5 ×10 ×15

Ideal



Why Sub-linear?

• Startup cost
– Cost of starting an operation on many nodes

• Interference
– Contention for resources between nodes

• Skew
– Slowest node becomes the bottleneck
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Super-linear Speedup?

Can we build a machine that achieves 
super-linear speedup?
• No! Brent’s theorem: If we can run in 

time T(p) using p processors then we 
can run in time p*T(p) using 1 processor

• Superlinear means p*T(p) à 0;
• Then we can run in ≈ 0 time by 

simulating p ≈ ∞ processors
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Parallel Query
Execution Algorithms

Basic principle: Data Distribution

• Distribute the n data on the p servers, 
such that each server only needs to 
process n/p data items.

• Called horizontal data partitioning
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Horizontal Data Partitioning
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Horizontal Data Partitioning
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Horizontal Data Partitioning
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Horizontal Data Partitioning
• Block Partition, a.k.a. Round Robin: 

– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP) 

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1

• Range partitioned on attribute A:
– Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi
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Parallel Algorithm

• Selection σ

• Join ⨝

• Group by ɣ
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Parallel Selection

Compute σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers do the work

• Hash partitioned:
– Only one server does work

• Range partitioned
– Some servers do the work
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Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
How do we compute in each case:

• R is hash-partitioned on A

• R is hash-partitioned on K
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Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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Reshuffle R
on attribute A
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This is done in one
communication step

Can you think
of an optimization?



Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• Step 0: [Optimization] each server i computes a local group-by:  

Ti = γA,sum(C)(Ri)

• Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

• Step 2:  receive fragments, union them,  then group-by 
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj =  γA, sum(B) (Rj’)
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Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• Step 0: [Optimization] each server i computes a local group-by:  
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• Step 1: partition tuples in Ti using hash function h(A):
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• Step 2:  receive fragments, union them,  then group-by 
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Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, sum(b) as sumb
FROM R WHERE c > 0
GROUP BY a 

Example Query with Group By

36



Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R37

SELECT a, sum(b) as sumb FROM R   WHERE c > 0 GROUP BY a 



Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

σc>0

scan

σc>0

scan
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Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

σc>0

scan

g a, sum(b)→b

σc>0

scan

g a, sum(b)→b
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Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a
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Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→sumb

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→ sumb

σc>0
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g a, sum(b)→b

hash on a

g a, sum(b)→ sumb
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Basic Parallel GroupBy

Can we apply the local optimization to:
• Sum?
• Count?
• Avg?
• Max?
• Median?
YES
• Compute partial aggregates before shuffling
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Basic Parallel GroupBy

Can we apply the local optimization to:
• Sum?
• Count?
• Avg?
• Max?
• Median?

YES: for distributive and algebraic only
44CSE 544 - Winter 2020

Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) = 

sum(B)/count(B)
median(B)



Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the new runtime?
• Half (each server holds ½ as many chunks)

If we double both P and size of R, what is the runtime?
• Same (the chunk size at each server remains the same)
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Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the new runtime?
• Half (each server holds ½ as many chunks)

If we double both P and size of R, what is the runtime?
• Same (the chunk size at each server remains the same)
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Parallel Join:  R ⋈A=B S

• Data: R(K1,A, C), S(K2, B, D)
• Query: R(K1,A,C) ⋈ S(K2,B,D)
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Parallel Join:  R ⋈A=B S

• Data: R(K1,A, C), S(K2, B, D)
• Query: R(K1,A,C) ⋈ S(K2,B,D)
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R1, S1 R2, S2 RP, SP .  .  .
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Initially, both R and S are horizontally partitioned on K1 and K2



Parallel Join:  R ⋈A=B S

• Data: R(K1,A, C), S(K2, B, D)
• Query: R(K1,A,C) ⋈ S(K2,B,D)
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R’1, S’1 R’2, S’2 R’P, S’P .  .  .

R1, S1 R2, S2 RP, SP .  .  .

Reshuffle R on R.A
and S on S.B
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Parallel Join:  R ⋈A=B S

• Data: R(K1,A, C), S(K2, B, D)
• Query: R(K1,A,C) ⋈ S(K2,B,D)
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R’1, S’1 R’2, S’2 R’P, S’P .  .  .

R1, S1 R2, S2 RP, SP .  .  .

Each server computes
the join locally
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Initially, both R and S are horizontally partitioned on K1 and K2

Reshuffle R on R.A
and S on S.B



Parallel Join:  R ⋈A=B S

Partitioned-Hash-Join:
• Step 1

– Every server holding a chunk of R 
reshuffles it using a hash function h(t.A)

– Every server holding a chunk of S 
reshuffles it using a hash function h(t.B)

• Step 2: 
– Each server computes a join locally
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Optimization for Small Relations

When joining R and S
• If |R| >> |S|

– Leave R where it is
– Replicate entire S relation across nodes

• Also called a small join or a broadcast join
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Broadcast Join
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Data: R(A, B), S(C, D)
Query: R(A,B) ⋈B=C S(C,D)

.  .  .
SR1 R2 RP 



Broadcast Join
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Data: R(A, B), S(C, D)
Query: R(A,B) ⋈B=C S(C,D)

.  .  .
SR1 R2 RP 

Keep R in place

Broadcast S



Broadcast Join
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Broadcast Join
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Data: R(A, B), S(C, D)
Query: R(A,B) ⋈B=C S(C,D)

R1, S R2, S RP, S

.  .  .
SR1 R2 RP 

Keep R in place

Broadcast S



Broadcast Join
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Data: R(A, B), S(C, D)
Query: R(A,B) ⋈B=C S(C,D)

R1, S R2, S RP, S

.  .  .

Keep R in place

S

Why would you want to do this?

R1 R2 RP 

Broadcast S



Skew Join

R(A,B) ⋈B=C S(C,D) 
• Problem: skewed values C in S
• Preprocessing: identify the heavy hitter 

values C  (i.e. occur > threshold times)
• Partition S into Slight and Sheavy

• Use partition hash-join for R ⋈ Slight

• Use broadcast join for R ⋈ Sheavy
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Example Query Execution

SELECT * 

FROM Order o, Line i

WHERE o.item = i.item

AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oLine i

Find all orders from today, along with the items ordered
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Order(oid, item, date), Line(item, …)



Query Execution
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Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)



Query Execution
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Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Line i

Order(oid, item, date), Line(item, …)



Query Execution
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Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all 
lines where hash(item) = 1

contains all orders and all 
lines where hash(item) = 2

contains all orders and all 
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)



Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

SELECT * 
FROM R, S, T 
WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 

Example 2
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σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T
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Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

Broadcasting S and T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T
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