CSE544 Data Management

Lectures 13 Parallel Query Processing

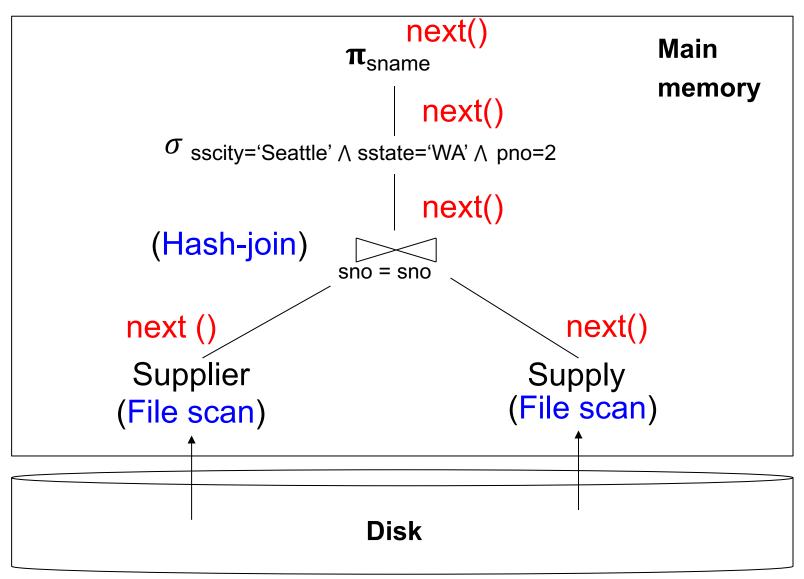
Announcements

 HW 4 is due this Friday There was a bug, Walter fixed it

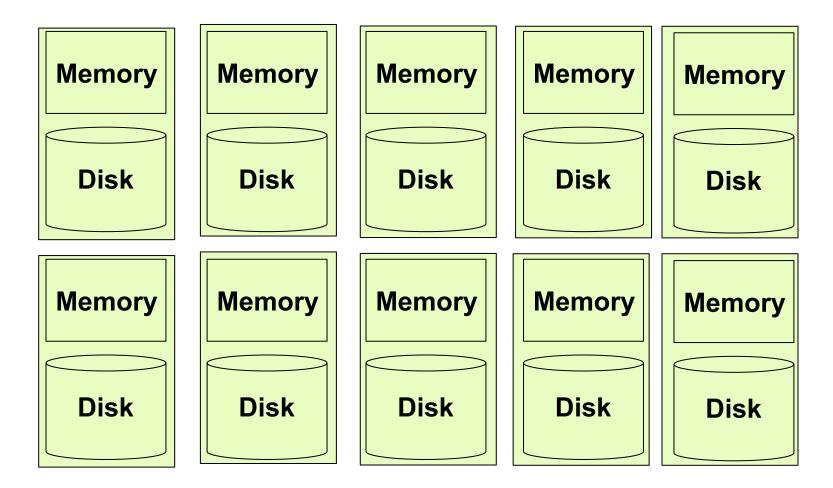
• Review 4, Snowflake, due for Monday

Project poster presentations next Friday

Serial Query Execution



What if we Have a Cluster and a Large Amount of Data?



Parallel Query Processing

- Clusters:
 - More servers → more likely to fit data in main memory
 - More servers \rightarrow more computing power
 - Clusters are now cheaply available in the cloud
- Multicores: the end of Moore's law

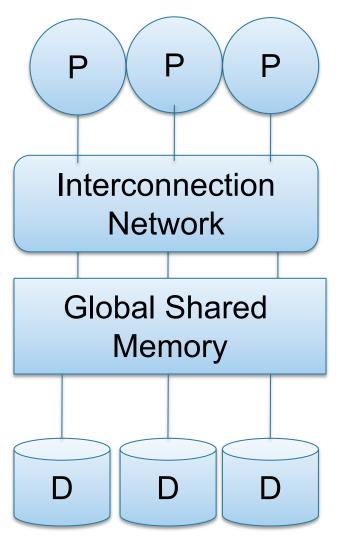
Architectures for Parallel Databases

• Shared memory

Shared disk

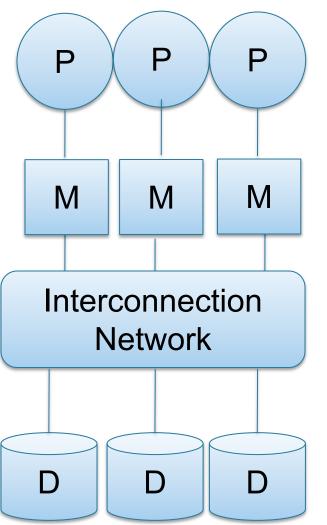
Shared nothing

Shared Memory



- SMP = symmetric multiprocessor
- Nodes share RAM and disk
- 10x ... 100x processors
- Example: SQL Server runs on a single machine and can leverage many threads to speed up a query
- Easy to use and program
- Expensive to scale

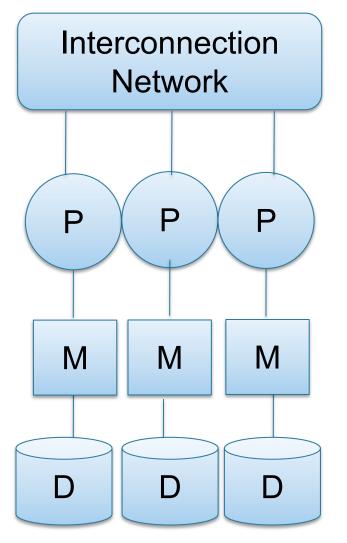
Shared Disk



- All nodes access same disks
- 10x processors
- Example: Oracle

- No more memory contention
- Harder to program
- Still hard to scale

Shared Nothing



- Cluster of commodity machines
- Called "clusters" or "blade servers"
- Each machine: own memory&disk
- Up to x1000-x10000 nodes
- Example: redshift, spark, snowflake

Because all machines today have many cores and many disks, shared-nothing systems typically run many "nodes" on a single physical machine.

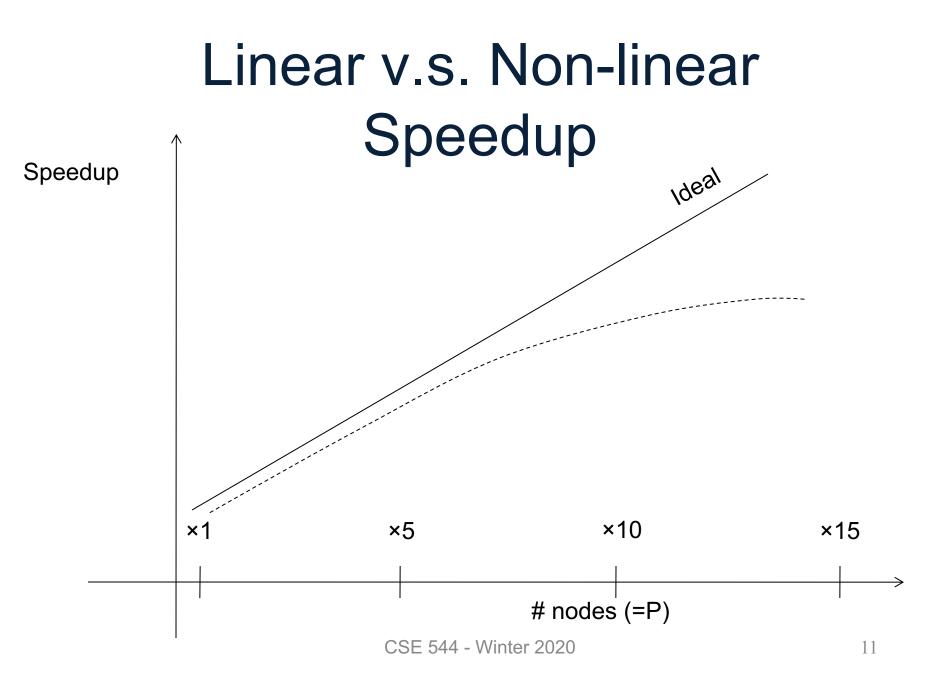
- Easy to maintain and scale
- Most difficult to administer and tune.

Performance Metrics

Nodes = processors = computers

- Speedup:
 - More nodes, same data → higher speed
- Scaleup:
 - More nodes, more data \rightarrow same speed

Warning: sometimes Scaleup is used to mean Speedup



Linear v.s. Non-linear Scaleup Batch Scaleup Ideal ×10 ×1 ×5 ×15 # nodes (=P) AND data size CSE 544 - Winter 2020 12

Why Sub-linear?

• Startup cost

- Cost of starting an operation on many nodes

- Interference
 - Contention for resources between nodes
- Skew

Slowest node becomes the bottleneck

Can we build a machine that achieves super-linear speedup?

Can we build a machine that achieves super-linear speedup?

 No! Brent's theorem: If we can run in time T(p) using p processors then we can run in time p*T(p) using 1 processor

Can we build a machine that achieves super-linear speedup?

- No! Brent's theorem: If we can run in time T(p) using p processors then we can run in time p*T(p) using 1 processor
- Superlinear means $p^{T}(p) \rightarrow 0$;

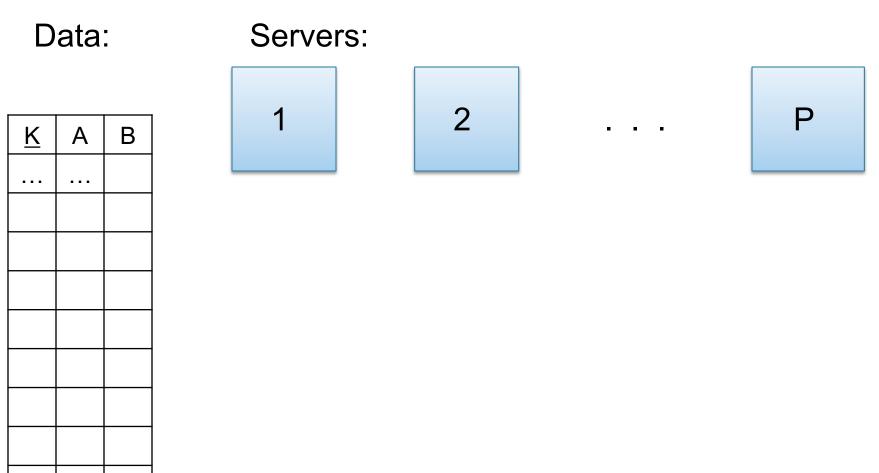
Can we build a machine that achieves super-linear speedup?

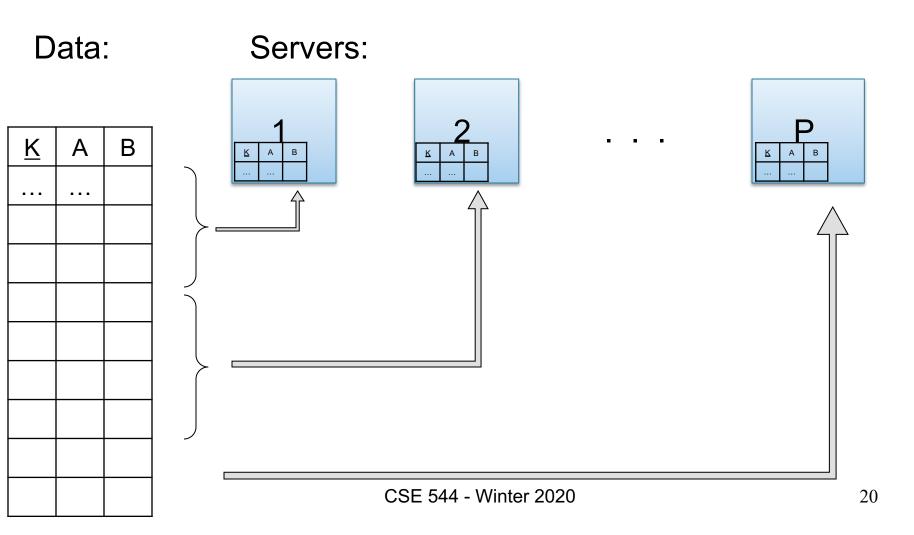
- No! Brent's theorem: If we can run in time T(p) using p processors then we can run in time p*T(p) using 1 processor
- Superlinear means $p^{T}(p) \rightarrow 0$;
- Then we can run in ≈ 0 time by simulating p ≈ ∞ processors

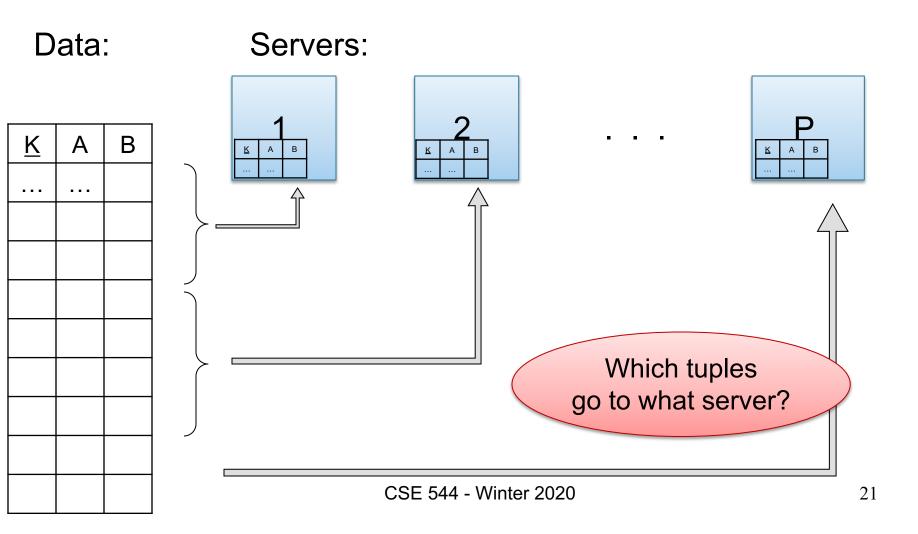
Parallel Query Execution Algorithms Basic principle: Data Distribution

 Distribute the n data on the p servers, such that each server only needs to process n/p data items.

Called *horizontal data partitioning*







- Block Partition, a.k.a. Round Robin:
 Partition tuples arbitrarily s.t. size(R₁)≈ ... ≈ size(R_P)
- Hash partitioned on attribute A:
 - Tuple t goes to chunk i, where $i = h(t.A) \mod P + 1$
- Range partitioned on attribute A:
 - Partition the range of A into $-\infty = v_0 < v_1 < ... < v_P = \infty$
 - Tuple t goes to chunk i, if $v_{i-1} < t.A < v_i$

Parallel Algorithm

Selection σ

• Join 🖂

• Group by **y**

Parallel Selection

Compute $\sigma_{A=v}(R)$, or $\sigma_{v1 < A < v2}(R)$

- Block partitioned:
 - All servers do the work
- Hash partitioned:
 - Only one server does work
- Range partitioned
 - Some servers do the work

Parallel GroupBy

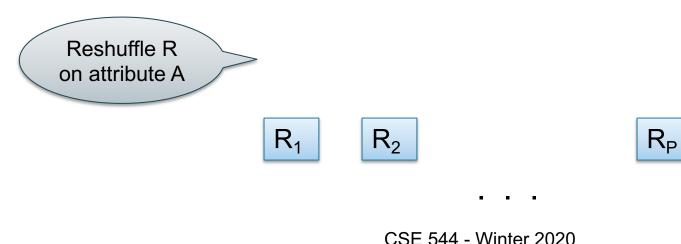
Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$ How do we compute in each case:

• R is hash-partitioned on A

• R is hash-partitioned on K

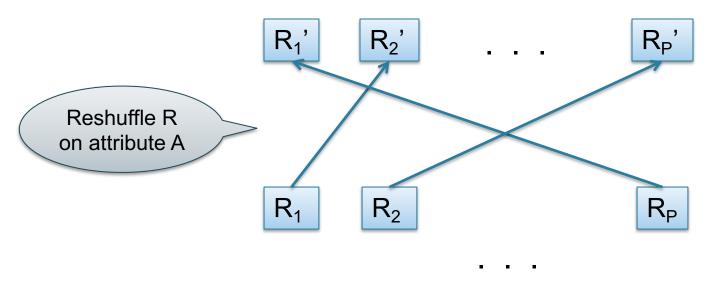
Data: R(K, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

Data: R(K, A, B, C) Query: $\gamma_{A,sum(C)}(R)$



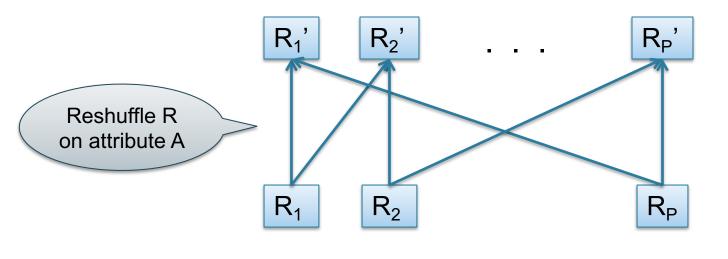
Data: R(K, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

• R is block-partitioned or hash-partitioned on K

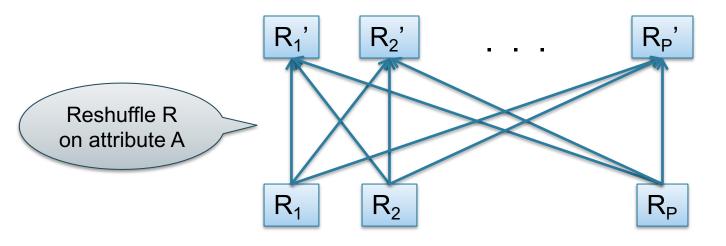


CSE 544 - Winter 2020

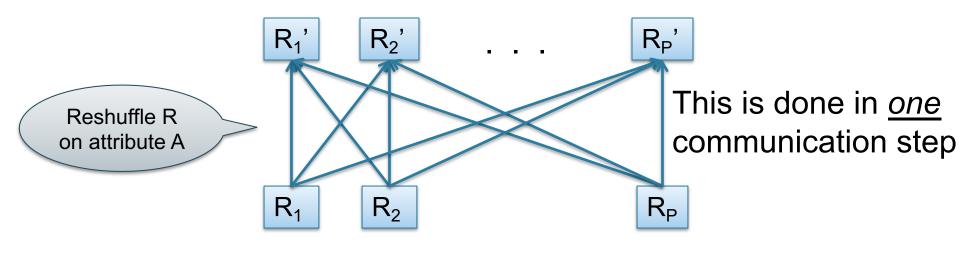
Data: R(K, A, B, C) Query: $\gamma_{A,sum(C)}(R)$



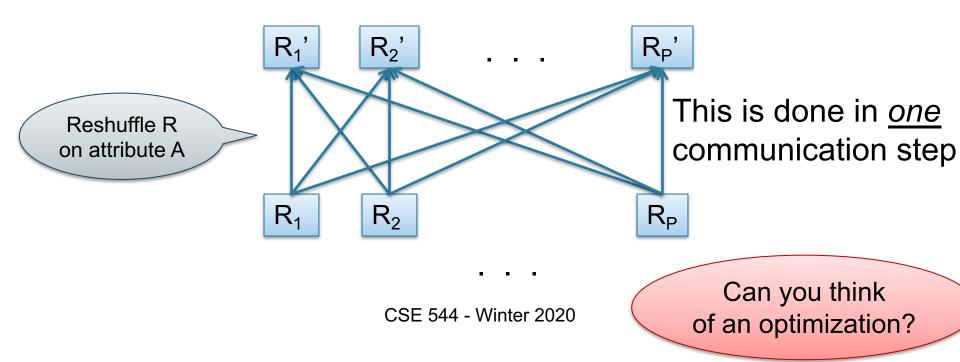
Data: R(K, A, B, C) Query: $\gamma_{A,sum(C)}(R)$



Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$



Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$



Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

• Step 0: [Optimization] each server i computes a local group-by: $T_i = \gamma_{A,sum(C)}(R_i)$

Data: R(<u>K</u>, A, B, C)

Query: $\gamma_{A,sum(C)}(R)$

- Step 0: [Optimization] each server i computes a local group-by: $T_i = \gamma_{A,sum(C)}(R_i)$
- Step 1: partitions tuples in T_i using hash function h(A): T_{i,1}, T_{i,2}, ..., T_{i,p} then send fragment T_{i,i} to server j

Data: R(<u>K</u>, A, B, C)

Query: $\gamma_{A,sum(C)}(R)$

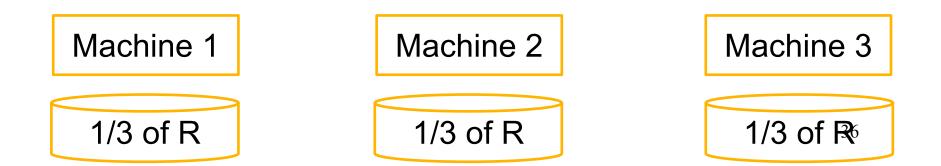
- Step 0: [Optimization] each server i computes a local group-by: $T_i = \gamma_{A,sum(C)}(R_i)$
- Step 1: partition tuples in T_i using hash function h(A): T_{i,1}, T_{i,2}, ..., T_{i,p} then send fragment T_{i,i} to server j
- Step 2: receive fragments, union them, then group-by $R_{j}' = T_{1,j} \cup \ldots \cup T_{p,j}$ Answer_j = $\gamma_{A, sum(B)}(R_{j}')$

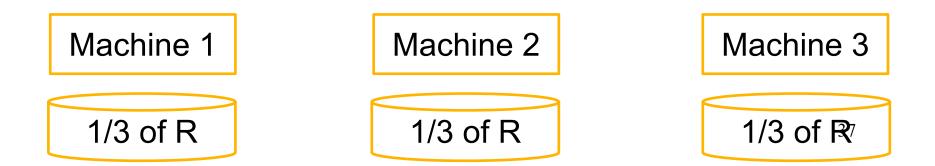
Example Query with Group By

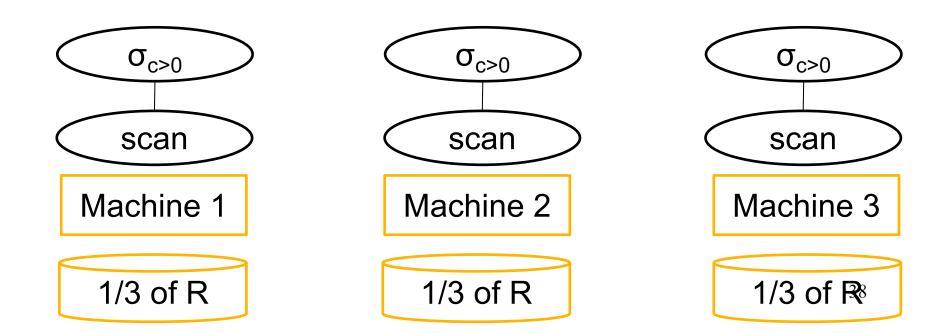
SELECT a, sum(b) as sumb

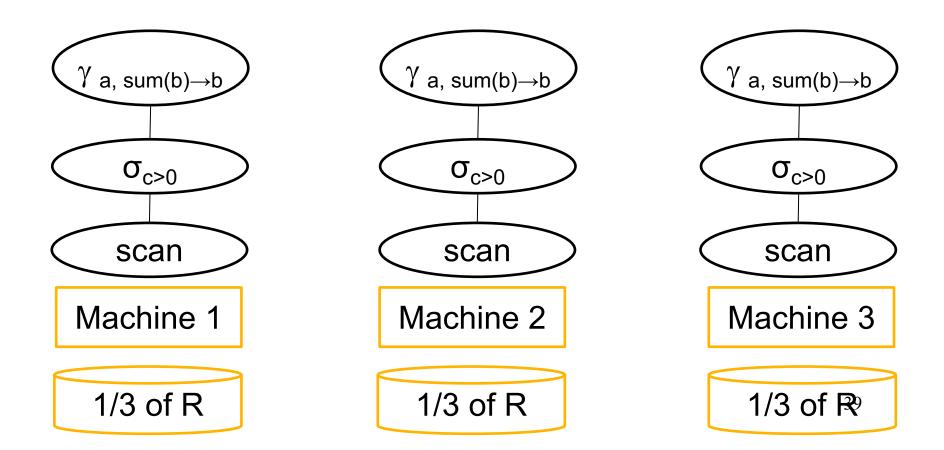
FROM R WHERE c > 0

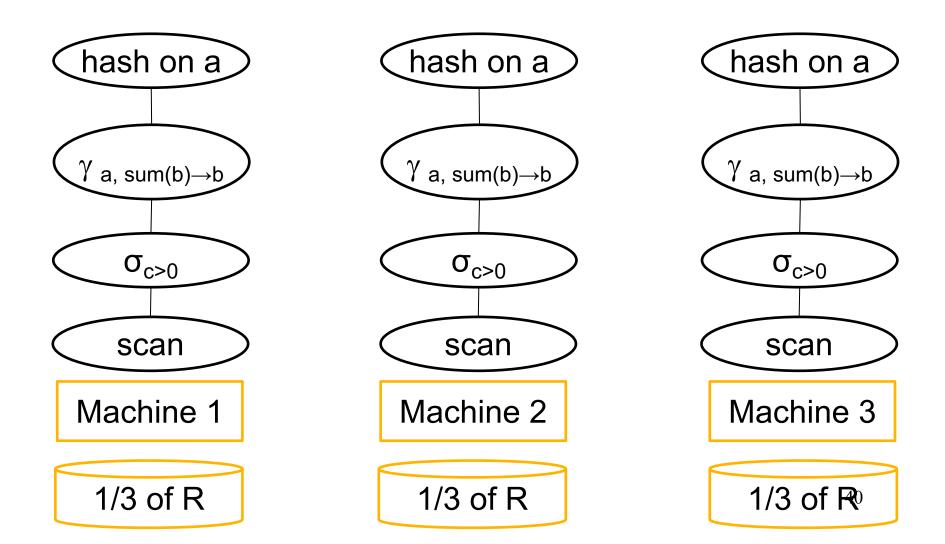
GROUP BY a

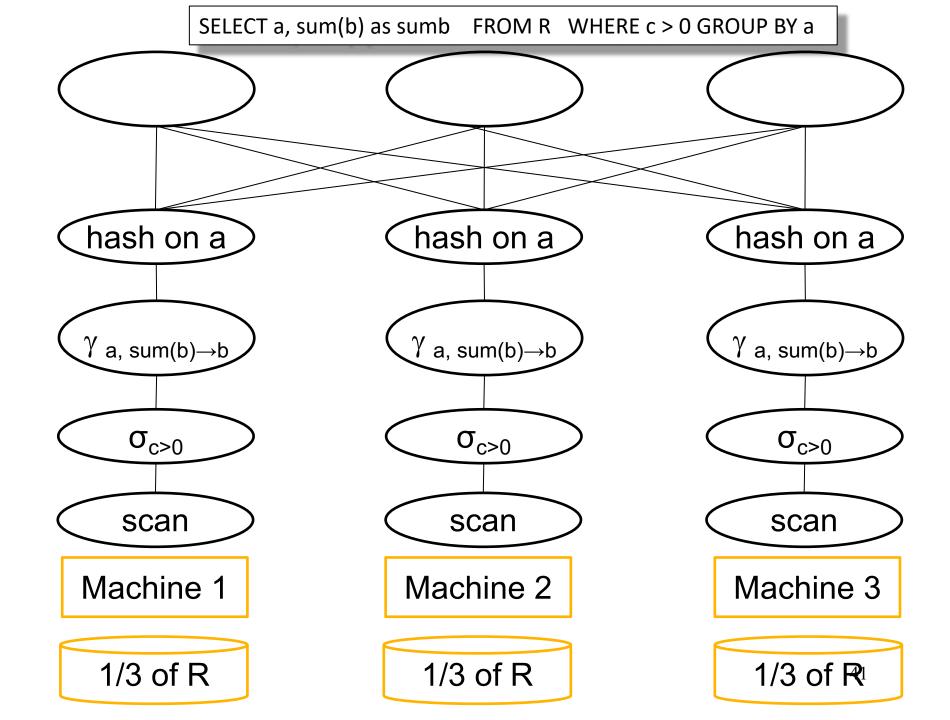


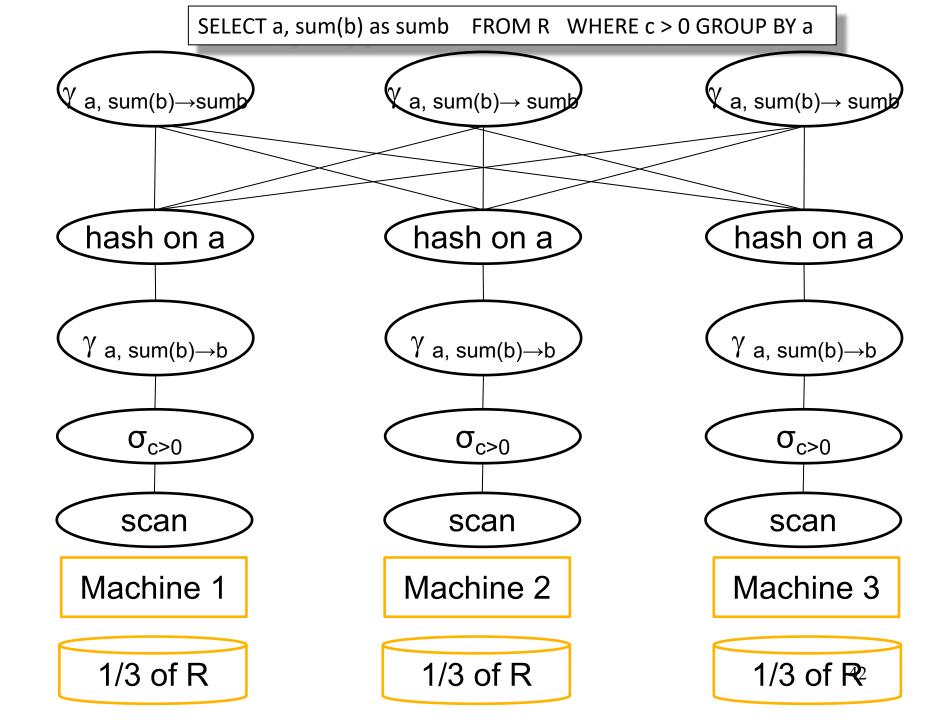












Basic Parallel GroupBy

Can we apply the local optimization to:

- Sum?
- Count?
- Avg?
- Max?
- Median?

Basic Parallel GroupBy

Can we apply the local optimization to:

•	Sum?	Distributive	Algebraic	Holistic
•	Count?			
•	Avg?	sum(a ₁ +a ₂ ++a ₉)= sum(sum(a ₁ +a ₂ +a ₃)+	avg(B) =	modian(P)
•	Max?	sum(a ₄ +a ₅ +a ₆)+ sum(a ₇ +a ₈ +a ₉))	sum(B)/count(B)	median(B)
•	Median?			

YES: for distributive and algebraic only

Speedup and Scaleup

Consider the query $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the new runtime?

If we double both P and size of R, what is the runtime?

Speedup and Scaleup

Consider the query $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the new runtime?

• Half (each server holds 1/2 as many chunks)

If we double both P and size of R, what is the runtime?

• Same (the chunk size at each server remains the same)

Speedup and Scaleup

Consider the query $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the new runtime?

• Half (each server holds 1/2 as many chunks)

If we double both P and size of R, what is the runtime?

• Same (the chunk size at each server remains the same)

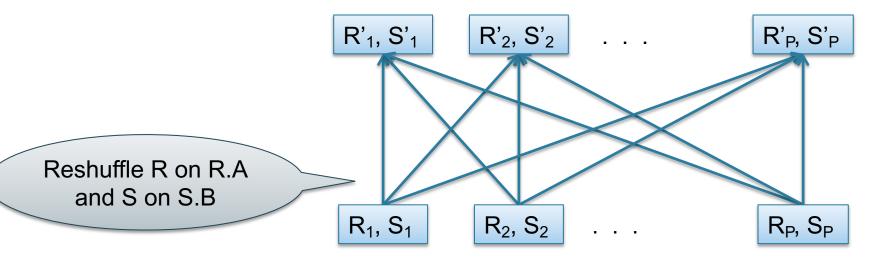
But only if data is without skew! – discuss later

- Data: R(<u>K1</u>,A, C), S(<u>K2</u>, B, D)
- Query: R(<u>K1</u>,A,C) ⋈ S(<u>K2</u>,B,D)

- Data: R(<u>K1</u>,A, C), S(<u>K2</u>, B, D)
- Query: R(<u>K1</u>,A,C) ⋈ S(<u>K2</u>,B,D)

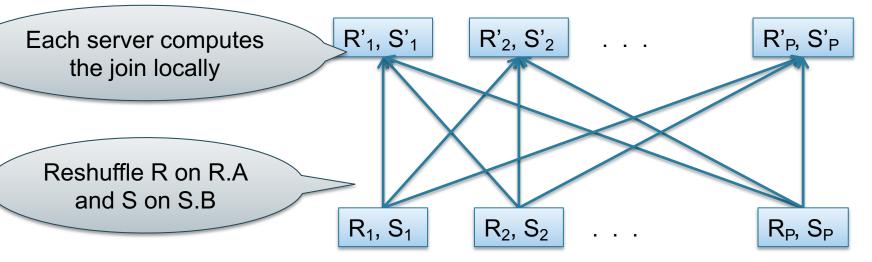
Initially, both R and S are horizontally partitioned on K1 and K2

- Data: R(<u>K1</u>,A, C), S(<u>K2</u>, B, D)
- Query: $R(\underline{K1}, A, C) \bowtie S(\underline{K2}, B, D)$



Initially, both R and S are horizontally partitioned on K1 and K2

- Data: R(<u>K1</u>,A, C), S(<u>K2</u>, B, D)
- Query: R(<u>K1</u>,A,C) ⋈ S(<u>K2</u>,B,D)



Initially, both R and S are horizontally partitioned on K1 and K2

Partitioned-Hash-Join:

- Step 1
 - Every server holding a chunk of R reshuffles it using a hash function h(t.A)
 - Every server holding a chunk of S reshuffles it using a hash function h(t.B)
- Step 2:
 - Each server computes a join locally

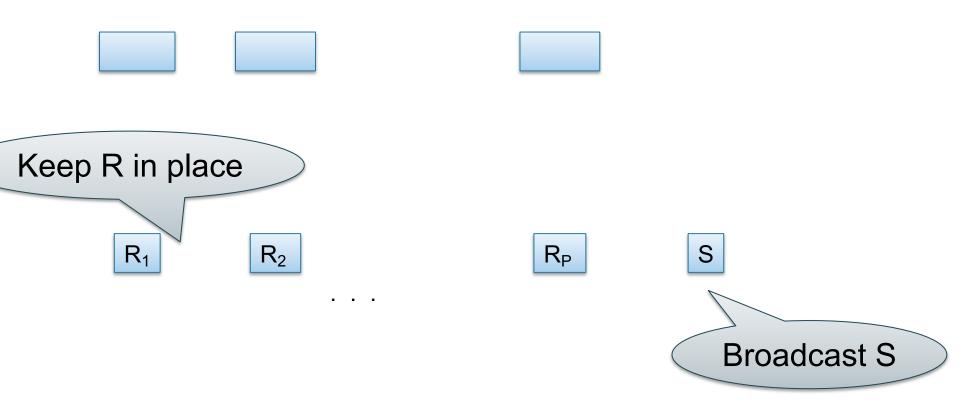
Optimization for Small Relations

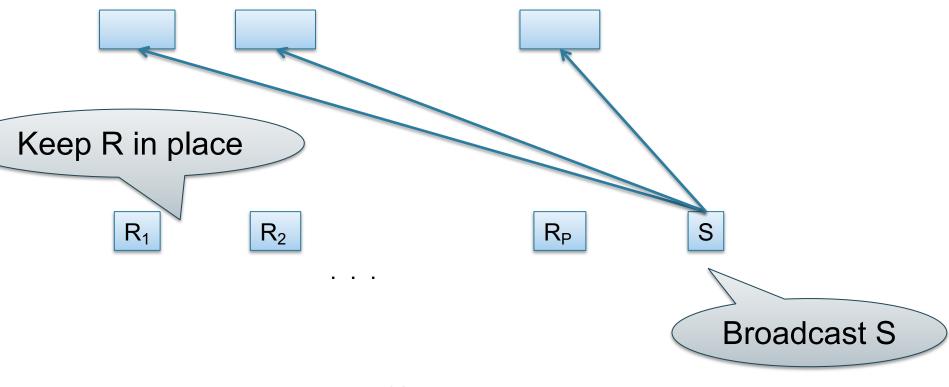
When joining R and S

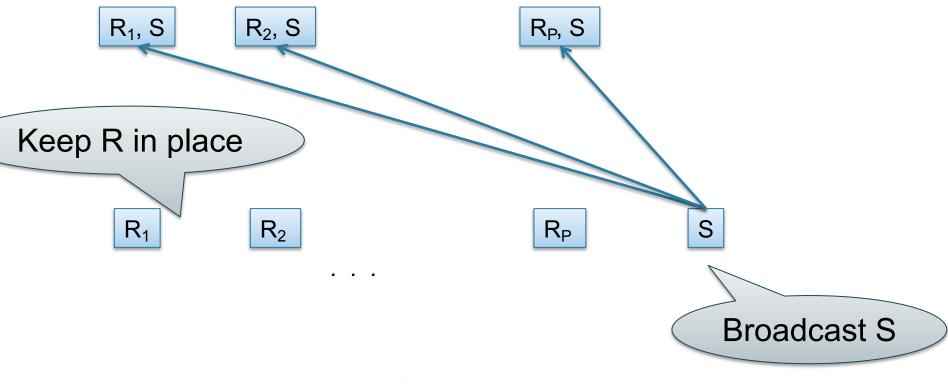
- If |R| >> |S|
 - Leave R where it is
 - Replicate entire S relation across nodes
- Also called a small join or a broadcast join

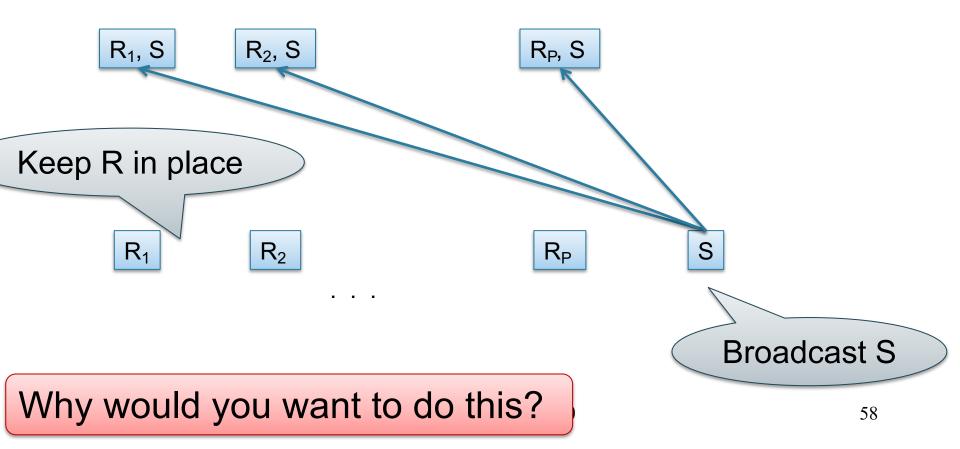
Broadcast Join

. . .









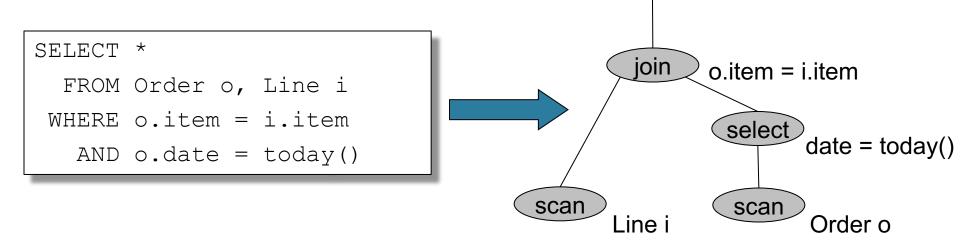
Skew Join

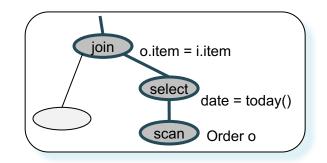
 $R(A,B) \bowtie_{B=C} S(C,D)$

- Problem: skewed values C in S
- Preprocessing: identify the heavy hitter values C (i.e. occur > threshold times)
- Partition S into S^{light} and S^{heavy}
- Use partition hash-join for R ⋈ S^{light}
- Use broadcast join for R ⋈ S^{heavy}

Example Query Execution

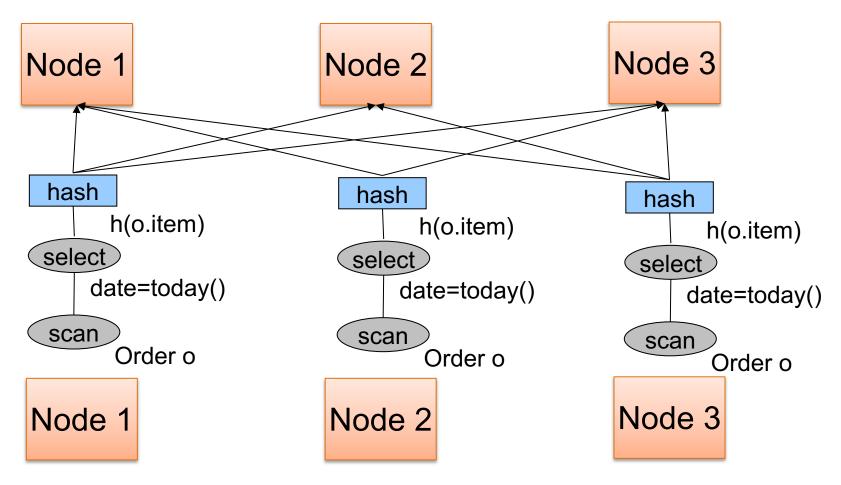
Find all orders from today, along with the items ordered

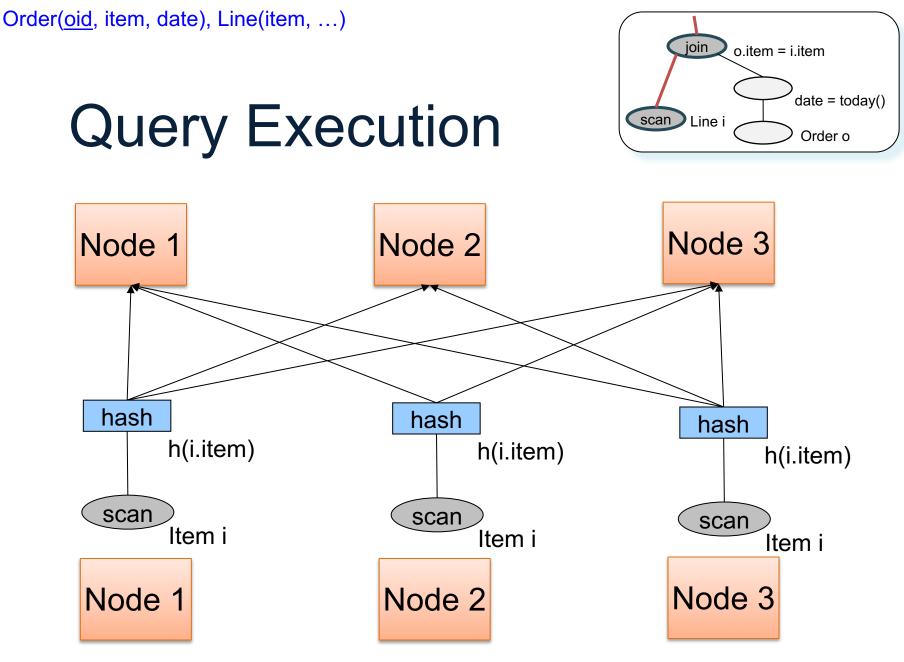


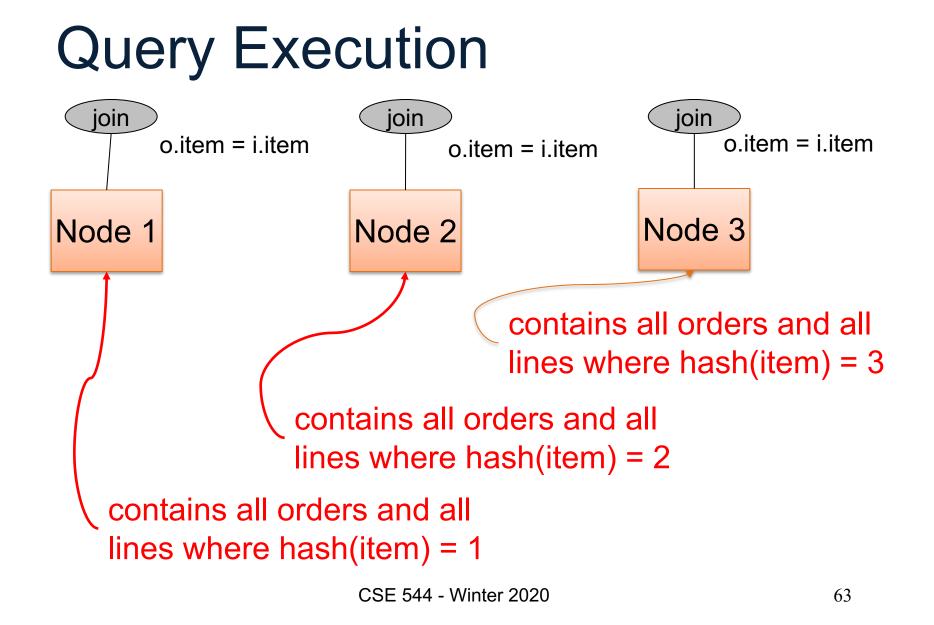


Query Execution

Order(oid, item, date), Line(item, ...)







Example 2

SELECT * FROM R, S, T WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

