
CSE544
Data Management

Lectures 16-18
Transactions: Concurrency Control

CSE 544 - Winter 2020 1

Announcmenets

• Poster presentations on Friday!

• Please arrive around 9:30 to set up

• There will be easels, and power cords for
laptops

• Pizza around 12pm
CSE 544 - Winter 2020 2

Transactions
• We use database transactions everyday

– Bank $$$ transfers
– Online shopping
– Signing up for classes

• Applications that talk to a DB must use
transactions in order to keep the
database consistent.

CSE 544 - Winter 2020 3

What’s the big deal?

CSE 544 - Winter 2020 4

Challenges

• Suppose we only serve one app at a time
– No problem…

• Suppose we execute apps concurrently
– What’s the problem?

• Want: multiple operations to be executed
atomically over the same DBMS

CSE 544 - Winter 2020 5

What can go wrong?
• Manager: balance budgets among projects

– Remove $10k from project A
– Add $7k to project B
– Add $3k to project C

• CEO: check company’s total balance
– SELECT SUM(money) FROM budget;

• This is called a dirty / inconsistent read
aka a WRITE-READ conflict

CSE 544 - Winter 2020 6

What can go wrong?
• App 1: SELECT inventory FROM products

WHERE pid = 1

• App 2: UPDATE products SET inventory = 0
WHERE pid = 1

• App 1: SELECT inventory * price FROM products
WHERE pid = 1

• This is known as an unrepeatable read
aka READ-WRITE conflict

CSE 544 - Winter 2020 7

What can go wrong?
Account 1 = $100
Account 2 = $100

Total = $200
• App 1:

– Set Account 1 = $200
– Set Account 2 = $0

• App 2:
– Set Account 2 = $200
– Set Account 1 = $0

• At the end:
– Total = $200

• App 1: Set Account 1 = $200

• App 2: Set Account 2 = $200

• App 1: Set Account 2 = $0

• App 2: Set Account 1 = $0

• At the end:
– Total = $0

This is called the lost update aka WRITE-WRITE conflict
CSE 544 - Winter 2020 8

What can go wrong?
• Buying tickets to the next Bieber concert:

– Fill up form with your mailing address
– Put in debit card number
– Click submit
– Screen shows money deducted from your account
– [Your browser crashes]

9

Lesson:
Changes to the database
should be ALL or NOTHING

Transactions

• Collection of statements that are
executed atomically (logically speaking)

10

BEGIN TRANSACTION
[SQL statements]

COMMIT or
ROLLBACK (=ABORT)

[single SQL statement]

If BEGIN… missing,
then TXN consists

of a single instruction
CSE 544 - Winter 2020

Know your chemistry
transactions: ACID

• Atomic
– State shows either all the effects of txn, or none of

them
• Consistent

– Txn moves from a DBMS state where integrity
holds, to another where integrity holds

• remember integrity constraints?
• Isolated

– Effect of txns is the same as txns running one after
another (i.e., looks like batch mode)

• Durable
– Once a txn has committed, its effects remain in the

database 11

Atomic

• Definition: A transaction is ATOMIC if
all its updates must happen or not at all.

CSE 544 - Winter 2020 12

-- Example: move $100 from A to B:
BEGIN TRANSACTION;
UPDATE accounts SET bal = bal – 100 WHERE acct = A;
UPDATE accounts SET bal = bal + 100 WHERE acct = B;

COMMIT;

Isolated

• Definition An execution ensures that txns are
isolated, if the effect of each txn is as if it
were the only txn running on the system.

13

-- App 1:
BEGIN TRANSACTION;

SELECT inventory
FROM products
WHERE pid = 1;

SELECT inventory * price
FROM products
WHERE pid = 1;

COMMIT

-- App 2:
BEGIN TRANSACTION;
UPDATE products
SET inventory = 0
WHERE pid = 1;

COMMIT;

Consistent

• Recall: integrity constraints govern how
values in tables are related to each other
– Can be enforced by the DBMS, or ensured by the

app

• How consistency is achieved by the app:
– App programmer ensures txns takes consistent

state to consistent state
– DB makes sure that txns are atomic+isolated

CSE 544 - Winter 2020 14

Durable

• A transaction is durable if its effects
continue to exist after the transaction
and even after the program has
terminated

CSE 544 - Winter 2020 15

Rollback transactions

• If the app gets to a state where it cannot
complete the transaction successfully,
execute ROLLBACK

• The DB returns to the state prior to the
transaction

CSE 544 - Winter 2020 16

Implementing Transactions

Need to address two problems:

• ”I” – Isolation:
– Means concurrency control

• “A” – Atomicity:
– Means recover from crash

CSE 544 - Winter 2020 17

Transaction Schedules

CSE 544 - Winter 2020 18

Modeling a Transaction

• Database = a collection of elements
– An element can be a record (logical elements)
– Or can be a disc block (physical element)

• Transaction = sequence of read/writes of
elements

CSE 544 - Winter 2020 19

Database: A B C D …

Schedules

CSE 544 - Winter 2020 20

A schedule is a sequence
of interleaved actions
from all transactions

Serial Schedule

• A serial schedule is one in which transactions are
executed one after the other, in some sequential
order

• Fact: nothing can go wrong if the system executes
transactions serially

• But DBMS don’t do that because we want better
overall system performance

CSE 544 - Winter 2020 21

Example

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

CSE 544 - Winter 2020 22

A and B are elements
in the database

t and s are variables
in txn source code

Example: Serial Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

CSE 544 - Winter 2020 23

Ti
m

e

Another Serial Schedule
T1 T2

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

CSE 544 - Winter 2020 24

Ti
m

e

Serializable Schedule

CSE 544 - Winter 2020 25

A schedule is serializable if it is
equivalent to a serial schedule

Example
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

CSE 544 - Winter 2020 26

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

CSE 544 - Winter 2020 27

How do We Know if a
Schedule is Serializable?

CSE 544 - Winter 2020 28

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Notation:

Key Idea: Focus on conflicting operations

Conflicts

• Write-Read – WR
• Read-Write – RW
• Write-Write – WW

CSE 544 - Winter 2020 29

Conflict Serializability
Conflicts: (i.e., swapping will change program behavior)

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
CSE 544 - Winter 2020 30

Conflict Serializability

• A schedule is conflict serializable if it can be
transformed into a serial schedule by a
series of swappings of adjacent non-
conflicting actions

• Every conflict-serializable schedule is
serializable

• The converse is not true (why?)
CSE 544 - Winter 2020 31

Conflict Serializability

CSE 544 - Winter 2020 32

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 544 - Winter 2020 33

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 544 - Winter 2020 34

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 544 - Winter 2020 35

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 544 - Winter 2020 36

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

Serializable, Not Conflict-
SerializableT1 T2

READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s + 200
WRITE(A,s)
READ(B,s)
s := s + 200
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

CSE 544 - Winter 2020 37

Testing for Conflict-
Serializability

Precedence graph:
• A node for each transaction Ti,
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• The schedule is conflict-serializable iff the
precedence graph is acyclic

CSE 544 - Winter 2020 38

Example 1

CSE 544 - Winter 2020 39

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

CSE 544 - Winter 2020 40

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

CSE 544 - Winter 2020 41

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3A

Example 1

CSE 544 - Winter 2020 42

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3A

Example 1

CSE 544 - Winter 2020 43

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3AB

Example 1

CSE 544 - Winter 2020 44

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB

Example 2

CSE 544 - Winter 2020 45

1 2 3

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Example 2

CSE 544 - Winter 2020 46

1 2 3

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Example 2

CSE 544 - Winter 2020 47

1 2 3
A

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Example 2

CSE 544 - Winter 2020 48

1 2 3
A

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Example 2

CSE 544 - Winter 2020 49

1 2 3
A

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Example 2

CSE 544 - Winter 2020 50

1 2 3
A

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Example 2

CSE 544 - Winter 2020 51

1 2 3
A

B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Example 2

CSE 544 - Winter 2020 52

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Implementing Transactions

CSE 544 - Winter 2020 53

Scheduler

• Scheduler a.k.a. Concurrency Control
Manager
– The module that schedules the transaction’s

actions
– Goal: ensure the schedule is serializable

• We discuss next how a scheduler may be
implemented

CSE 544 - Winter 2020 54

Implementing a Scheduler

Two major approaches:
• Locking Scheduler

– Aka “pessimistic concurrency control”
– SQLite, SQL Server, DB2

• Multiversion Concurrency Control (MVCC)
– Aka “optimistic concurrency control”
– Postgres, Oracle: Snapshot Isolation (SI)

55CSE 544 - Winter 2020

Lock-based Implementation of
Transactions

CSE 544 - Winter 2020 56

Locking Scheduler

Simple idea:
• Each element has a unique lock
• Each transaction must first acquire the

lock before reading/writing that element
• If the lock is taken, then wait
• The transaction must release the lock(s)

CSE 544 - Winter 2020 57

Actions on Locks

CSE 544 - Winter 2020 58

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

Let’s see this in action…

A Non-Serializable Schedule

CSE 544 - Winter 2020 59

T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)

Example

CSE 544 - Winter 2020 60

T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B);

Scheduler has ensured a conflict-serializable schedule

But…

61

T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

CSE 544 - Winter 2020 62

In every transaction, all lock requests
must precede all unlock requests

The 2PL rule:

Example: 2PL transactions

CSE 544 - Winter 2020 63

T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); Now it is conflict-serializable

Two Phase Locking (2PL)

64

Theorem: 2PL ensures conflict serializability

Two Phase Locking (2PL)
Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Two Phase Locking (2PL)

66

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:

Two Phase Locking (2PL)

67

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

U1(A) happened
strictly before L2(A)

Two Phase Locking (2PL)

68

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

Two Phase Locking (2PL)

69

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

L2(A) happened
strictly before U1(A)

Two Phase Locking (2PL)

70

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

Two Phase Locking (2PL)

71

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B) why?

Two Phase Locking (2PL)

72

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)

......etc.....

Two Phase Locking (2PL)

73

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A)

Cycle in time:
Contradiction

A New Problem:
Non-recoverable Schedule

CSE 544 - Winter 2020 74

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback

A New Problem:
Non-recoverable Schedule

CSE 544 - Winter 2020 75

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value.

A New Problem:
Non-recoverable Schedule

CSE 544 - Winter 2020 76

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value.

Dirty reads of
A, B lead to
incorrect writes.

A New Problem:
Non-recoverable Schedule

CSE 544 - Winter 2020 77

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value. Can no longer undo!

Dirty reads of
A, B lead to
incorrect writes.

Strict 2PL

CSE 544 - Winter 2020 78

All locks are held until commit/abort:
All unlocks are done together with commit/abort.

The Strict 2PL rule:

Strict 2PL

79

T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); BLOCKED…
L1(B); READ(B)
B :=B+100
WRITE(B);
Rollback & U1(A);U1(B);

…GRANTED; READ(A)
A := A*2
WRITE(A);
L2(B); READ(B)
B := B*2
WRITE(B);
Commit & U2(A); U2(B);

Strict 2PL

• Lock-based systems always use strict 2PL
• Easy to implement:

– Before a transaction reads or writes an element A,
insert an L(A)

– When the transaction commits/aborts, then
release all locks

• Ensures both conflict serializability and
recoverability

CSE 544 - Winter 2020 80

Recoverable Schedule

• A schedule is recoverable if, whenever a
transaction commits, then all transactions
whose values it read have already committed

• A schedule avoids cascading aborts,
whenever a transaction reads an element,
then the transaction that wrote it must have
already committed

• Avoiding cascading aborts implies
recoverable (why?)

81

Strict Schedules

• A schedule is strict if every value written
by a transaction T is not read or
overwritten by another transaction until
after T commits or aborts

CSE 544 - Winter 2020 82

Strict 2PL

• Every scheduled produced by Strict 2PL
is conflict-serializable, avoids cascading
aborts, and is strict.

CSE 544 - Winter 2020 83

Another problem: Deadlocks

• T1: R(A), W(B)
• T2: R(B), W(A)

• T1 holds the lock on A, waits for B
• T2 holds the lock on B, waits for A

This is a deadlock!
CSE 544 - Winter 2020 84

Another problem: Deadlocks
To detect a deadlocks, search for a cycle in the waits-
for graph:
• T1 waits for a lock held by T2;
• T2 waits for a lock held by T3;
• . . .
• Tn waits for a lock held by T1

Relatively expensive: check periodically, if
deadlock is found, then abort one TXN;
re-check for deadlock more often (why?)

85

Lock Modes
• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

CSE 544 - Winter 2020 86

None S X
None

S
X

Lock compatibility matrix:

Lock Modes
• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

CSE 544 - Winter 2020 87

None S X
None

S
X

Lock compatibility matrix:

Lock Granularity
• Fine granularity locking (e.g., tuples)

– High concurrency
– High overhead in managing locks
– E.g., SQL Server

• Coarse grain locking (e.g., tables, entire database)
– Many false conflicts
– Less overhead in managing locks
– E.g., SQL Lite

• Solution: lock escalation changes granularity as needed

CSE 544 - Winter 2020 88

Lock Performance

CSE 544 - Winter 2020 89

Th
ro

ug
hp

ut
 (T

PS
)

Active Transactions

thrashing

Why ?

TPS =
Transactions
per second

To avoid, use
admission control

Phantom Problem
• So far we have assumed the database to

be a static collection of elements (=tuples)

• If tuples are inserted/deleted then the
phantom problem appears

CSE 544 - Winter 2020 90

Phantom Problem

CSE 544 - Winter 2020 91

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

Phantom Problem

CSE 544 - Winter 2020 92

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

No: T1 sees a “phantom” product A3

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

But this is conflict-serializable!

Phantom Problem
• A “phantom” is a tuple that is

invisible during part of a transaction execution but not
invisible during the entire execution

• In our example:
– T1: reads list of products
– T2: inserts a new product
– T1: re-reads: a new product appears !

• Conflict-serializability assumes DB is static
• When DB is dynamic then c-s is not

serializable.

CSE 544 - Winter 2020 96

Dealing With Phantoms

• Lock the entire table
• Lock the index entry for ‘blue’

– If index is available
• Or use predicate locks

– A lock on an arbitrary predicate

CSE 544 - Winter 2020 97

Dealing with phantoms is expensive !

Summary of Serializability

• Serializable schedule = equivalent to a serial
schedule

• (strict) 2PL guarantees conflict serializability
– What is the difference?

• Static database:
– Conflict serializability implies serializability

• Dynamic database:
– Conflict serializability plus phantom management

implies serializability
CSE 544 - Winter 2020 98

Weaker Isolation Levels

• Serializable are expensive to implement

• SQL allows the application to choose a
more efficient implementation, which is
not always serializable: weak isolation
levels

99

Isolation Levels in SQL
1. “Dirty reads”

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSE 544 - Winter 2020 100

ACID

Lost Update

T1: READ(A)

T1: A := A+5

T1: WRITE(A)

T2: READ(A);

T2: A := A*1.3

T2: WRITE(A);

Write-Write Conflict

101Never allowed at any level

1. Isolation Level: Dirty Reads

• “Long duration” WRITE locks
– Strict 2PL

• No READ locks
– Read-only transactions are never delayed

CSE 544 - Winter 2020 102

Possible problems: dirty and inconsistent reads

1. Isolation Level: Dirty Reads

T1: WRITE(A)

T1: ABORT

T2: READ(A)

CSE 544 - Winter 2020

Write-Read Conflict

103

1. Isolation Level: Dirty Reads

T1: A := 20; B := 20;
T1: WRITE(A)

T1: WRITE(B)

T2: READ(A);
T2: READ(B);

Write-Read Conflict

104Inconsistent read

2. Isolation Level: Read
Committed

• “Long duration” WRITE locks
– Strict 2PL

• “Short duration” READ locks
– Only acquire lock while reading (not 2PL)

CSE 544 - Winter 2020 105

Unrepeatable reads:
When reading same element twice,
may get two different values

2. Isolation Level: Read Committed

T1: WRITE(A)
COMMIT

T2: READ(A);

T2: READ(A);

CSE 544 - Winter 2020

Read-Write Conflict

106Unrepeatable read

3. Isolation Level: Repeatable
Read

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

CSE 544 - Winter 2020 107

This is not serializable yet !!!

Why ?

4. Isolation Level Serializable

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

• Predicate locking
– To deal with phantoms

CSE 544 - Winter 2020 108

Beware!
In commercial DBMSs:
• Default level may not be serializable
• Default level differs between DBMSs
• Some engines support subset of levels!
• Also, some DBMSs do NOT use locking and

different isolation levels can lead to different pbs

Bottom line: Read the doc for your DBMS!

CSE 544 - Winter 2020 109

Optimistic concurrency control

CSE 544 - Winter 2020 110

Locking vs Optimistic

• Locking prevents unserializable behavior
from occurring. It causes transactions to wait
for locks

• Optimistic methods assume no unserializable
behavior will occur. They abort transactions if
it does

• Locking typically better in case of high levels
of contention; optimistic better otherwise 111

Timestamps

• Each transaction receives a unique
timestamp TS(T)

Could be:

• The system’s clock
• A unique counter, incremented by the

scheduler
CSE 544 - Winter 2020 112

Timestamps

CSE 544 - Winter 2020 113

The timestamp order defines
the serialization order of the transaction

Main invariant:

Will generate a schedule that is view-equivalent
to a serial schedule, and recoverable

Main Idea
• Scheduler receives a request, rT(X) or wT(X)
• Should it allow it to proceed? Wait? Abort?
• Consider these cases:

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Should we
allow the OP?

Main Idea
• Scheduler receives a request, rT(X) or wT(X)
• Should it allow it to proceed? Wait? Abort?
• Consider these cases:

START(U), ...,START(T), ..., wU(X), ..., rT(X)

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Should we
allow the OP?

Main Idea
• Scheduler receives a request, rT(X) or wT(X)
• Should it allow it to proceed? Wait? Abort?
• Consider these cases:

START(U), ...,START(T), ..., wU(X), ..., rT(X)

OK

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Should we
allow the OP?

Main Idea
• Scheduler receives a request, rT(X) or wT(X)
• Should it allow it to proceed? Wait? Abort?
• Consider these cases:

START(T), ...,START(U), ..., wU(X), ..., rT(X)

START(U), ...,START(T), ..., wU(X), ..., rT(X)

OK

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Should we
allow the OP?

Main Idea
• Scheduler receives a request, rT(X) or wT(X)
• Should it allow it to proceed? Wait? Abort?
• Consider these cases:

START(T), ...,START(U), ..., wU(X), ..., rT(X)
Too late

START(U), ...,START(T), ..., wU(X), ..., rT(X)

OK

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Should we
allow the OP?

Timestamps
With each element X, associate
• RT(X) = the highest timestamp of any

transaction U that read X
• WT(X) = the highest timestamp of any

transaction U that wrote X
• C(X) = the commit bit: true when transaction

with highest timestamp that wrote X committed

119

If element = page, then these are associated
with each page X in the buffer pool

Simplified Timestamp-based
Scheduling

Only for transactions that do not abort
Otherwise, may result in non-recoverable schedule

CSE 544 - Winter 2020 120

Request is rT(X)
?

Request is wT(X)
?

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Simplified Timestamp-based
Scheduling

Only for transactions that do not abort
Otherwise, may result in non-recoverable schedule

CSE 544 - Winter 2020 121

Request is wT(X)
?

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Request is rT(X)
If TS(T) < WT(X) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Simplified Timestamp-based
Scheduling

Only for transactions that do not abort
Otherwise, may result in non-recoverable schedule

CSE 544 - Winter 2020 122

Request is rT(X)
If TS(T) < WT(X) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Request is wT(X)
If TS(T) < RT(X) then ROLLBACK
Else if TS(T) < WT(X) ignore write & continue (Thomas Write Rule)
Otherwise, WRITE and update WT(X) =TS(T)

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Details

Read too late:
• T wants to read X, and TS(T) < WT(X)

CSE 544 - Winter 2020 123

START(T) … START(U) … wU(X) . . . rT(X)

Need to rollback T !

Details

Write too late:
• T wants to write X, and TS(T) < RT(X)

CSE 544 - Winter 2020 124

START(T) … START(U) … rU(X) . . . wT(X)

Need to rollback T !

Details

Write too late, but we can still handle it:
• T wants to write X, and

TS(T) >= RT(X) but WT(X) > TS(T)

CSE 544 - Winter 2020 125

START(T) … START(V) … wV(X) . . . wT(X)

Don’t write X at all !
(Thomas’ rule)

View-Serializability

• By using Thomas’ rule we do not obtain
a conflict-serializable schedule

• Instead, we obtain a view-serializable
schedule

• Will define view-serializability next…

CSE 544 - Winter 2020 126

View Equivalence

• A serializable schedule need not be
conflict serializable, even under the
“worst case update” assumption

CSE 544 - Winter 2020 127

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ?

View Equivalence

• A serializable schedule need not be
conflict serializable, even under the
“worst case update” assumption

CSE 544 - Winter 2020 128

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ? No…

View Equivalence

• A serializable schedule need not be
conflict serializable, even under the
“worst case update” assumption

CSE 544 - Winter 2020 129

w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Lost write

Equivalent, but not conflict-equivalent

View Equivalence

CSE 544 - Winter 2020 130

T1 T2 T3
W1(X)

W2(X)
W2(Y)
CO2

W1(Y)
CO1

W3(Y)
CO3

T1 T2 T3
W1(X)
W1(Y)
CO1

W2(X)
W2(Y)
CO2

W3(Y)
CO3

Lost

Serializable, but not conflict serializable

View-Equivalent Schedules

Two schedules S1, S2 are view-equivalent if:
• If Ri(X) reads an initial value in S1 it also

reads an initial value in S2
• If Ri(X) reads the value written by Wj(X) in S1,

then it does the same in S2
• If the final value of X in S1 is Wj(X) then so is

in S2
A schedule is view-serializable if it is view-
equivalent to a serial schedule

131

Connections

• Every conflict-serializable schedule is
also view-serializable: CS à VS (why?)

• Every view-serializable schedule is also
serializable: VS à S (why?)

• The converse does not necessarily hold

CSE 544 - Winter 2020 132

Simplified Timestamp-Based
Scheduling

• Fact: the simplified timestamp-based
scheduling with Thomas’ rule ensures
that the schedule is view-serializable

CSE 544 - Winter 2020 133

Ensuring Recoverable
Schedules

• Use the commit bit C(X) to keep track if
the transaction that last wrote X has
committed

CSE 544 - Winter 2020 134

Ensuring Recoverable
Schedules

Read dirty data:
• T wants to read X, and WT(X) < TS(T)
• Seems OK, but…

CSE 544 - Winter 2020 135

START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

Ensuring Recoverable
Schedules

Thomas’ rule needs to be revised:
• T wants to write X, and WT(X) > TS(T)
• Seems OK not to write at all, but …

CSE 544 - Winter 2020 136

START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

Timestamp-based Scheduling

CSE 544 - Winter 2020 137

Request is rT(X)
If TS(T) < WT(X) then ROLLBACK
Else If C(X) = false, then WAIT
Else READ and update RT(X) to larger of TS(T) or RT(X)

Request is wT(X)
If TS(T) < RT(X) then ROLLBACK
Else if TS(T) < WT(X)

Then If C(X) = false then WAIT
else IGNORE write (Thomas Write Rule)

Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

Summary of Timestamp-
based Scheduling

• Conflict-serializable

• Recoverable
– Even avoids cascading aborts

• Does NOT handle phantoms

CSE 544 - Winter 2020 138

Multiversion Timestamp
• When transaction T requests r(X)

but WT(X) > TS(T), then T must rollback

• Idea: keep multiple versions of X:
Xt, Xt-1, Xt-2, . . .

• Let T read an older version, with appropriate
timestamp

CSE 544 - Winter 2020 139

TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .

Details
• When wT(X) occurs,

create a new version, denoted Xt where t = TS(T)

• When rT(X) occurs,
find most recent version Xt such that t < TS(T)
Notes:
– WT(Xt) = t and it never changes
– RT(Xt) must still be maintained to check legality of writes

• Can delete Xt if we have a later version Xt1 and all active
transactions T have TS(T) > t1

CSE 544 - Winter 2020 140

Example (in class)

CSE 544 - Winter 2020 141

X3 X9 X12 X18

R6(X) -- what happens?
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6

Example (in class)

CSE 544 - Winter 2020 142

X3 X9 X12 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6

Example (in class)

CSE 544 - Winter 2020 143

X3 X9 X12 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6

Example (in class)

CSE 544 - Winter 2020 144

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6

Example (in class)

CSE 544 - Winter 2020 145

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6

Example (in class)

CSE 544 - Winter 2020 146

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens? Return X14
W5(X) – what happens?

When can we delete X3?

TS(T)=6

Example (in class)

CSE 544 - Winter 2020 147

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens? Return X14
W5(X) – what happens?

When can we delete X3?

TS(T)=6

Example (in class)

CSE 544 - Winter 2020 148

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens? Return X14
W5(X) – what happens? ABORT

When can we delete X3?

TS(T)=6

Example (in class)

CSE 544 - Winter 2020 149

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens? Return X14
W5(X) – what happens? ABORT

When can we delete X3?

TS(T)=6

Example (in class)

CSE 544 - Winter 2020 150

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens? Return X14
W5(X) – what happens? ABORT

When can we delete X3? When min TS(T)≥ 9

TS(T)=6

Concurrency Control by
Validation

Even more optimistic than timestamp validation
• Each transaction T defines a read set RS(T)

and a write set WS(T)
• Each transaction proceeds in three phases:

– Read all elements in RS(T). Time = START(T)
– Validate (may need to rollback). Time = VAL(T)
– Write all elements in WS(T). Time = FIN(T)

CSE 544 - Winter 2020 151

Main invariant: the serialization order is VAL(T)

Avoid wU(X) - rT(X) Conflicts

CSE 544 - Winter 2020 152

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate ?

START(T)
IF RS(T) Ç WS(U) and FIN(U) > START(T)

(U has validated and U has not finished before T begun)
Then ROLLBACK(T)

conflicts

Avoid wU(X) - wT(X) Conflicts

CSE 544 - Winter 2020 153

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate ? Write phase ?

START(T) VAL(T)
IF WS(T) Ç WS(U) and FIN(U) > VAL(T)

(U has validated and U has not finished before T validates)
Then ROLLBACK(T)

conflicts

Snapshot Isolation (SI)
A variant of multiversion/validation

• Very efficient, and very popular
• Oracle, PostgreSQL, SQL Server 2005

Warning: not serializable
• Earlier versions of postgres implemented SI for the

SERIALIZABLE isolation level
• Extension of SI to serializable has been implemented recently
• Will discuss only the standard SI (non-serializable)

CSE 544 - Winter 2020 154

Snapshot Isolation Rules
• Each transactions receives a timestamp TS(T)

• Transaction T sees snapshot at time TS(T) of the database

• When T commits, updated pages are written to disk

• Write/write conflicts resolved by “first committer wins” rule
– Loser gets aborted

• Read/write conflicts are ignored

CSE 544 - Winter 2020 155

Snapshot Isolation (Details)
• Multiversion concurrency control:

– Versions of X: Xt1, Xt2, Xt3, . . .

• When T reads X, return XTS(T).

• When T writes X: if other transaction updated X,
abort
– Not faithful to “first committer” rule, because the other

transaction U might have committed after T. But once we
abort T, U becomes the first committer J

CSE 544 - Winter 2020 156

What Works and What Not
• No dirty reads (Why ?)
• No inconsistent reads (Why ?)

– A: Each transaction reads a consistent snapshot

• No lost updates (“first committer wins”)

• Moreover: no reads are ever delayed

• However: read-write conflicts not caught ! “Write
skew”

CSE 544 - Winter 2020 157

Write Skew

CSE 544 - Winter 2020 158

T1:
READ(X);
if X >= 50

then Y = -50; WRITE(Y)
COMMIT

T2:
READ(Y);
if Y >= 50

then X = -50; WRITE(X)
COMMIT

In our notation:

R1(X), R2(Y), W1(Y), W2(X), C1,C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

Invariant: X + Y ≥ 0

Discussions
• Snapshot isolation (SI) is like repeatable reads but

also avoids some (not all) phantoms

• If DBMS runs SI and the app needs serializable:
– use dummy writes for all reads to create write-write

conflicts… but that is confusing for developers

• Extension of SI to make it serializable is implemented
in postgres

CSE 544 - Winter 2020 159

Final Thoughts on
Transactions

• Benchmarks: TPC/C; typical throughput:
x100’s TXN/second

• New trend: multicores
– Current technology can scale to x10’s of cores,

but not beyond!
– Major bottleneck: latches that serialize the cores

• New trend: distributed TXN
– NoSQL: give up serialization
– Serializable: very difficult e.g.Spanner w/ Paxos

Final/Final Thoughts

• Final is canceled! We will reweight

• Please finish homework 5

• Please submit final project report

CSE 544 - Winter 2020 161

