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Transactions: Concurrency Control
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Announcmenets

• Poster presentations on Friday!

• Please arrive around 9:30 to set up

• There will be easels, and power cords for 
laptops

• Pizza around 12pm
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Transactions
• We use database transactions everyday

– Bank $$$ transfers
– Online shopping
– Signing up for classes

• Applications that talk to a DB must use 
transactions in order to keep the 
database consistent.
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What’s the big deal?
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Challenges

• Suppose we only serve one app at a time
– No problem…

• Suppose we execute apps concurrently
– What’s the problem?

• Want: multiple operations to be executed 
atomically over the same DBMS
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What can go wrong?
• Manager: balance budgets among projects

– Remove $10k from project A
– Add $7k to project B
– Add $3k to project C

• CEO: check company’s total balance
– SELECT SUM(money) FROM budget;

• This is called a dirty / inconsistent read 
aka a WRITE-READ conflict
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What can go wrong?
• App 1: SELECT inventory FROM products

WHERE pid = 1

• App 2: UPDATE products SET inventory = 0
WHERE pid = 1

• App 1: SELECT inventory * price FROM products 
WHERE pid = 1

• This is known as an unrepeatable read 
aka READ-WRITE conflict
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What can go wrong?
Account 1 = $100
Account 2 = $100

Total = $200
• App 1:

– Set Account 1 = $200
– Set Account 2 = $0

• App 2:
– Set Account 2 = $200
– Set Account 1 = $0

• At the end:
– Total = $200

• App 1: Set Account 1 = $200

• App 2: Set Account 2 = $200

• App 1: Set Account 2 = $0

• App 2: Set Account 1 = $0

• At the end: 
– Total = $0

This is called the lost update aka WRITE-WRITE conflict
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What can go wrong?
• Buying tickets to the next Bieber concert:

– Fill up form with your mailing address
– Put in debit card number
– Click submit
– Screen shows money deducted from your account
– [Your browser crashes]

9

Lesson:
Changes to the database
should be ALL or NOTHING



Transactions

• Collection of statements that are 
executed atomically (logically speaking)
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BEGIN TRANSACTION 
[SQL statements]

COMMIT or     
ROLLBACK (=ABORT)

[single SQL statement]

If BEGIN… missing,
then TXN consists

of a single instruction
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Know your chemistry 
transactions: ACID

• Atomic
– State shows either all the effects of txn, or none of 

them
• Consistent

– Txn moves from a DBMS state where integrity 
holds, to another where integrity holds 

• remember integrity constraints?
• Isolated

– Effect of txns is the same as txns running one after 
another (i.e., looks like batch mode)

• Durable
– Once a txn has committed, its effects remain in the 
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Atomic

• Definition: A transaction is ATOMIC if 
all its updates must happen or not at all.
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-- Example: move $100 from A to B:
BEGIN TRANSACTION; 
UPDATE accounts SET bal = bal – 100 WHERE acct = A;
UPDATE accounts SET bal = bal + 100 WHERE acct = B;

COMMIT;



Isolated

• Definition An execution ensures that txns are 
isolated, if the effect of each txn is as if it 
were the only txn running on the system.
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-- App 1:
BEGIN TRANSACTION;

SELECT inventory
FROM products
WHERE pid = 1;

SELECT inventory * price
FROM products 
WHERE pid = 1;

COMMIT

-- App 2:
BEGIN TRANSACTION;
UPDATE products
SET inventory = 0
WHERE pid = 1;

COMMIT;



Consistent

• Recall: integrity constraints govern how 
values in tables are related to each other
– Can be enforced by the DBMS, or ensured by the 

app

• How consistency is achieved by the app:
– App programmer ensures txns takes  consistent 

state to consistent state
– DB makes sure that txns are atomic+isolated
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Durable

• A transaction is durable if its effects 
continue to exist after the transaction 
and even after the program has 
terminated
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Rollback transactions

• If the app gets to a state where it cannot 
complete the transaction successfully, 
execute ROLLBACK

• The DB returns to the state prior to the 
transaction
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Implementing Transactions

Need to address two problems:

• ”I” – Isolation: 
– Means concurrency control

• “A” – Atomicity:
– Means recover from crash
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Transaction Schedules
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Modeling a Transaction

• Database = a collection of elements
– An element can be a record (logical elements)
– Or can be a disc block (physical element)

• Transaction = sequence of read/writes of 
elements
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Database: A B C D …



Schedules
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A schedule is a sequence 
of interleaved actions 
from all transactions



Serial Schedule

• A serial schedule is one in which transactions are 
executed one after the other, in some sequential 
order

• Fact: nothing can go wrong if the system executes 
transactions serially

• But DBMS don’t do that because we want better 
overall system performance
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Example

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)
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A and B are elements
in the database

t and s are variables 
in txn source code



Example: Serial Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)
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Another Serial Schedule
T1 T2

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

CSE 544 - Winter 2020 24

Ti
m

e



Serializable Schedule
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A schedule is serializable if it is 
equivalent to a serial schedule



Example
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule
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A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)
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How do We Know if a 
Schedule is Serializable?
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T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Notation:

Key Idea: Focus on conflicting operations



Conflicts

• Write-Read – WR
• Read-Write – RW
• Write-Write – WW
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Conflict Serializability
Conflicts: (i.e., swapping will change program behavior)

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
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Conflict Serializability

• A schedule is conflict serializable if it can be 
transformed into a serial schedule by a 
series of swappings of adjacent non-
conflicting actions

• Every conflict-serializable schedule is 
serializable

• The converse is not true (why?)
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Conflict Serializability
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Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)



Conflict Serializability
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Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)



Conflict Serializability
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Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)



Conflict Serializability
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Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)



Conflict Serializability
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Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….



Serializable, Not Conflict-
SerializableT1 T2

READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s + 200
WRITE(A,s)
READ(B,s)
s := s + 200
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)
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Testing for Conflict-
Serializability

Precedence graph:
• A node for each transaction Ti, 
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• The schedule is conflict-serializable iff the 
precedence graph is acyclic
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Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3



Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3



Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3A



Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3A



Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3AB



Example 1
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3

This schedule is conflict-serializable

AB



Example 2
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1 2 3

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)



Example 2
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1 2 3

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)



Example 2
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1 2 3
A

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)



Example 2
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1 2 3
A

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)



Example 2
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1 2 3
A

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)



Example 2
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1 2 3
A

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)



Example 2
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1 2 3
A

B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)



Example 2
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1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)



Implementing Transactions
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Scheduler

• Scheduler a.k.a. Concurrency Control 
Manager
– The module that schedules the transaction’s 

actions
– Goal: ensure the schedule is serializable

• We discuss next how a scheduler may be 
implemented
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Implementing a Scheduler

Two major approaches:
• Locking Scheduler

– Aka “pessimistic concurrency control”
– SQLite, SQL Server, DB2

• Multiversion Concurrency Control (MVCC)
– Aka “optimistic concurrency control”
– Postgres, Oracle: Snapshot Isolation (SI)
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Lock-based Implementation of
Transactions
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Locking Scheduler

Simple idea:
• Each element has a unique lock
• Each transaction must first acquire the 

lock before reading/writing that element
• If the lock is taken, then wait
• The transaction must release the lock(s)
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Actions on Locks
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Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

Let’s see this in action…



A Non-Serializable Schedule

CSE 544 - Winter 2020 59

T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)



Example
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T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A); 
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B); 

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B); 

Scheduler has ensured a conflict-serializable schedule



But…
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T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B); 

Locks did not enforce conflict-serializability !!! What’s wrong ?



Two Phase Locking (2PL)
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In every transaction, all lock requests 
must precede all unlock requests

The 2PL rule:



Example: 2PL transactions
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T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A) 

L2(A); READ(A)
A := A*2
WRITE(A); 
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); Now it is conflict-serializable



Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability



Two Phase Locking (2PL)
Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C



Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:



Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)    why?

U1(A) happened
strictly before L2(A)



Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)    why?



Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) 
L2(A)àU2(B) why?

L2(A) happened
strictly before U1(A) 



Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) 
L2(A)àU2(B) why?



Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B) why?



Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)

......etc.....



Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A)

Cycle in time:
Contradiction



A New Problem: 
Non-recoverable Schedule
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T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A) 

L2(A); READ(A)
A := A*2
WRITE(A); 
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B); 

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); 
Commit

Rollback



A New Problem: 
Non-recoverable Schedule
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T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A) 

L2(A); READ(A)
A := A*2
WRITE(A); 
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B); 

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); 
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value.



A New Problem: 
Non-recoverable Schedule
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T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A) 

L2(A); READ(A)
A := A*2
WRITE(A); 
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B); 

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); 
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value.

Dirty reads of
A, B lead to
incorrect writes.



A New Problem: 
Non-recoverable Schedule
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T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A) 

L2(A); READ(A)
A := A*2
WRITE(A); 
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B); 

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); 
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value. Can no longer undo!

Dirty reads of
A, B lead to
incorrect writes.



Strict 2PL
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All locks are held until commit/abort:
All unlocks are done together with commit/abort.

The Strict 2PL rule:



Strict 2PL
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T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A); 

L2(A); BLOCKED…
L1(B); READ(B)
B :=B+100
WRITE(B); 
Rollback & U1(A);U1(B); 

…GRANTED; READ(A)
A := A*2
WRITE(A); 
L2(B); READ(B)
B := B*2
WRITE(B); 
Commit & U2(A); U2(B); 



Strict 2PL

• Lock-based systems always use strict 2PL
• Easy to implement:

– Before a transaction reads or writes an element A, 
insert an L(A)

– When the transaction commits/aborts, then 
release all locks

• Ensures both conflict serializability and 
recoverability
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Recoverable Schedule

• A schedule is recoverable if, whenever a 
transaction commits, then all transactions 
whose values it read have already committed

• A schedule avoids cascading aborts, 
whenever a transaction reads an element, 
then the transaction that wrote it must have 
already committed

• Avoiding cascading aborts implies 
recoverable (why?)
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Strict Schedules

• A schedule is strict if every value written 
by a transaction T is not read or 
overwritten by another transaction until 
after T commits or aborts
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Strict 2PL

• Every scheduled produced by Strict 2PL 
is conflict-serializable, avoids cascading 
aborts, and is strict.
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Another problem: Deadlocks

• T1:  R(A), W(B)
• T2:  R(B), W(A)

• T1 holds the lock on A, waits for B
• T2 holds the lock on B, waits for A

This is a deadlock!
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Another problem: Deadlocks
To detect a deadlocks, search for a cycle in the waits-
for graph:
• T1 waits for a lock held by T2;
• T2 waits for a lock held by T3;
• . . .
• Tn waits for a lock held by T1

Relatively expensive: check periodically, if 
deadlock is found, then abort one TXN;
re-check for deadlock more often (why?)

85



Lock Modes
• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

CSE 544 - Winter 2020 86

None S X
None

S
X

Lock compatibility matrix:



Lock Modes
• S = shared lock (for READ)
• X = exclusive lock (for WRITE)
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None S X
None

S
X

Lock compatibility matrix:



Lock Granularity
• Fine granularity locking (e.g., tuples)

– High concurrency
– High overhead in managing locks
– E.g., SQL Server

• Coarse grain locking (e.g., tables, entire database)
– Many false conflicts
– Less overhead in managing locks
– E.g., SQL Lite

• Solution: lock escalation changes granularity as needed
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Lock Performance
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Th
ro

ug
hp

ut
 (T

PS
)

# Active Transactions

thrashing

Why ?

TPS =
Transactions
per second

To avoid, use 
admission control



Phantom Problem
• So far we have assumed the database to 

be a static collection of elements (=tuples)

• If tuples are inserted/deleted then the 
phantom problem appears
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Phantom Problem
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Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:



Phantom Problem
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Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

No: T1 sees a “phantom” product A3



Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:



W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:



W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

But this is conflict-serializable!



Phantom Problem
• A “phantom” is a tuple that is 

invisible during part of a transaction execution but not 
invisible during the entire execution

• In our example:
– T1: reads list of products
– T2: inserts a new product
– T1: re-reads: a new product appears !

• Conflict-serializability assumes DB is static
• When DB is dynamic then c-s is not 

serializable.
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Dealing With Phantoms

• Lock the entire table
• Lock the index entry for ‘blue’

– If index is available
• Or use predicate locks 

– A lock on an arbitrary predicate
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Dealing with phantoms is expensive !



Summary of Serializability

• Serializable schedule = equivalent to a serial 
schedule

• (strict) 2PL guarantees conflict serializability
– What is the difference?

• Static database:
– Conflict serializability implies serializability

• Dynamic database:
– Conflict serializability plus phantom management

implies serializability
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Weaker Isolation Levels

• Serializable are expensive to implement

• SQL allows the application to choose a 
more efficient implementation, which is 
not always serializable:  weak isolation 
levels

99



Isolation Levels in SQL
1. “Dirty reads”

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
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ACID



Lost Update

T1: READ(A) 

T1: A := A+5

T1: WRITE(A) 

T2: READ(A);

T2: A := A*1.3

T2: WRITE(A);

Write-Write Conflict

101Never allowed at any level



1. Isolation Level: Dirty Reads

• “Long duration” WRITE locks
– Strict 2PL

• No READ locks
– Read-only transactions are never delayed
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Possible problems: dirty and inconsistent reads



1. Isolation Level: Dirty Reads

T1:  WRITE(A) 

T1:  ABORT

T2:  READ(A)

CSE 544 - Winter 2020

Write-Read Conflict
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1. Isolation Level: Dirty Reads

T1:  A := 20;  B := 20;
T1:  WRITE(A) 

T1:  WRITE(B) 

T2:  READ(A);
T2:  READ(B); 

Write-Read Conflict

104Inconsistent read



2. Isolation Level: Read 
Committed 

• “Long duration” WRITE locks
– Strict 2PL

• “Short duration” READ locks
– Only acquire lock while reading (not 2PL)
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Unrepeatable reads:
When reading same element twice, 
may get two different values



2. Isolation Level: Read Committed 

T1:  WRITE(A)
COMMIT 

T2:  READ(A);

T2:  READ(A); 
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Read-Write Conflict

106Unrepeatable read



3. Isolation Level: Repeatable 
Read 

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL
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This is not serializable yet !!!

Why ?



4. Isolation Level Serializable

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

• Predicate locking
– To deal with phantoms
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Beware!
In commercial DBMSs:
• Default level may not be serializable
• Default level differs between DBMSs
• Some engines support subset of levels!
• Also, some DBMSs do NOT use locking and 

different isolation levels can lead to different pbs

Bottom line: Read the doc for your DBMS!
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Optimistic concurrency control
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Locking vs Optimistic

• Locking prevents unserializable behavior 
from occurring. It causes transactions to wait 
for locks

• Optimistic methods assume no unserializable
behavior will occur. They abort transactions if 
it does

• Locking typically better in case of high levels 
of contention; optimistic better otherwise 111



Timestamps

• Each transaction receives a unique 
timestamp TS(T)

Could be:

• The system’s clock
• A unique counter, incremented by the 

scheduler
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Timestamps
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The timestamp order defines
the serialization order of the transaction

Main invariant:

Will generate a schedule that is view-equivalent
to a serial schedule, and recoverable



Main Idea
• Scheduler receives a request, rT(X) or wT(X)
• Should it allow it to proceed? Wait? Abort?
• Consider these cases:

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Should we
allow the OP?



Main Idea
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Main Idea
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• Consider these cases:
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wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)
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allow the OP?



Main Idea
• Scheduler receives a request, rT(X) or wT(X)
• Should it allow it to proceed? Wait? Abort?
• Consider these cases:

START(T), ...,START(U), ..., wU(X), ..., rT(X)

START(U), ...,START(T), ..., wU(X), ..., rT(X)

OK

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Should we
allow the OP?



Main Idea
• Scheduler receives a request, rT(X) or wT(X)
• Should it allow it to proceed? Wait? Abort?
• Consider these cases:

START(T), ...,START(U), ..., wU(X), ..., rT(X)
Too late

START(U), ...,START(T), ..., wU(X), ..., rT(X)

OK

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Should we
allow the OP?



Timestamps
With each element X, associate
• RT(X) = the highest timestamp of any 

transaction U that read X
• WT(X) = the highest timestamp of any 

transaction U that wrote X
• C(X) = the commit bit: true when transaction 

with highest timestamp that wrote X committed

119

If element = page, then these are associated
with each page X in the buffer pool



Simplified Timestamp-based 
Scheduling

Only for transactions that do not abort
Otherwise, may result in non-recoverable schedule
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Request is rT(X)
?

Request is wT(X)
?

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)



Simplified Timestamp-based 
Scheduling

Only for transactions that do not abort
Otherwise, may result in non-recoverable schedule
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Request is wT(X)
?

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Request is rT(X)
If TS(T) < WT(X)  then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)



Simplified Timestamp-based 
Scheduling

Only for transactions that do not abort
Otherwise, may result in non-recoverable schedule
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Request is rT(X)
If TS(T) < WT(X)  then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Request is wT(X)
If TS(T) < RT(X) then ROLLBACK
Else if TS(T) < WT(X) ignore write & continue (Thomas Write Rule)
Otherwise, WRITE and update WT(X) =TS(T)

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)



Details

Read too late:
• T wants to read X, and TS(T) < WT(X)

CSE 544 - Winter 2020 123

START(T) … START(U) … wU(X) . . . rT(X)

Need to rollback T !



Details

Write too late:
• T wants to write X, and TS(T) < RT(X)
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START(T) … START(U) … rU(X) . . . wT(X)

Need to rollback T !



Details

Write too late, but we can still handle it:
• T wants to write X, and 

TS(T) >= RT(X) but WT(X) > TS(T)
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START(T) … START(V) … wV(X) . . . wT(X)

Don’t write X at all !
(Thomas’ rule)



View-Serializability

• By using Thomas’ rule we do not obtain 
a conflict-serializable schedule

• Instead, we obtain a view-serializable 
schedule

• Will define view-serializability next…
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View Equivalence

• A serializable schedule need not be 
conflict serializable, even under the 
“worst case update” assumption
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w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ?



View Equivalence

• A serializable schedule need not be 
conflict serializable, even under the 
“worst case update” assumption
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w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ? No…



View Equivalence

• A serializable schedule need not be 
conflict serializable, even under the 
“worst case update” assumption
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w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Lost write

Equivalent,  but not conflict-equivalent



View Equivalence
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T1 T2 T3
W1(X)

W2(X)
W2(Y)
CO2

W1(Y)
CO1

W3(Y)
CO3

T1 T2 T3
W1(X)
W1(Y)
CO1

W2(X)
W2(Y)
CO2

W3(Y)
CO3

Lost

Serializable, but not conflict serializable



View-Equivalent Schedules

Two schedules S1, S2 are view-equivalent if:
• If Ri(X) reads an initial value in S1 it also 

reads an initial value in S2
• If Ri(X) reads the value written by Wj(X) in S1, 

then it does the same in S2
• If the final value of X in S1 is Wj(X) then so is 

in S2
A schedule is view-serializable if it is view-
equivalent to a serial schedule
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Connections

• Every conflict-serializable schedule is 
also view-serializable:  CS à VS (why?)

• Every view-serializable schedule is also 
serializable:  VS à S (why?)

• The converse does not necessarily hold
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Simplified Timestamp-Based 
Scheduling

• Fact: the simplified timestamp-based 
scheduling with Thomas’ rule ensures 
that the schedule is view-serializable
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Ensuring Recoverable 
Schedules

• Use the commit bit C(X) to keep track if 
the transaction that last wrote X has 
committed
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Ensuring Recoverable 
Schedules

Read dirty data:
• T wants to read X, and WT(X) < TS(T)
• Seems OK, but…
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START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true



Ensuring Recoverable 
Schedules

Thomas’ rule needs to be revised:
• T wants to write X, and WT(X) > TS(T)
• Seems OK not to write at all, but …
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START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true



Timestamp-based Scheduling
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Request is rT(X)
If TS(T) < WT(X)  then ROLLBACK
Else If C(X) = false, then WAIT
Else READ and update RT(X) to larger of TS(T) or RT(X)

Request is wT(X)
If TS(T) < RT(X) then ROLLBACK
Else if TS(T) < WT(X)

Then If C(X) = false then WAIT 
else IGNORE write (Thomas Write Rule) 

Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false



Summary of Timestamp-
based Scheduling

• Conflict-serializable

• Recoverable
– Even avoids cascading aborts

• Does NOT handle phantoms
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Multiversion Timestamp
• When transaction T requests r(X)

but WT(X) > TS(T), then T must rollback

• Idea: keep multiple versions of X:
Xt, Xt-1, Xt-2, . . .

• Let T read an older version, with appropriate 
timestamp
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TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .



Details
• When wT(X) occurs, 

create a new version, denoted  Xt where t = TS(T)

• When rT(X) occurs, 
find most recent version Xt such that t < TS(T)
Notes:
– WT(Xt)  = t and it never changes
– RT(Xt) must still be maintained to check legality of writes

• Can delete Xt if we have a later version Xt1 and all active 
transactions T have TS(T) > t1
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Example (in class)
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X3 X9 X12 X18

R6(X) -- what happens?
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6



Example (in class)
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X3 X9 X12 X18

R6(X) -- what happens?  Return X3
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6



Example (in class)
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X3 X9 X12 X18

R6(X)  -- what happens?  Return X3
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6



Example (in class)
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X3 X9 X12 X14 X18

R6(X)  -- what happens?  Return X3
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6



Example (in class)
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X3 X9 X12 X14 X18

R6(X)  -- what happens?  Return X3
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6



Example (in class)
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X3 X9 X12 X14 X18

R6(X)  -- what happens?  Return X3
W14(X) – what happens?
R15(X) – what happens?  Return X14
W5(X) – what happens?

When can we delete X3?

TS(T)=6



Example (in class)
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X3 X9 X12 X14 X18

R6(X)  -- what happens?  Return X3
W14(X) – what happens?
R15(X) – what happens?  Return X14
W5(X) – what happens?

When can we delete X3?

TS(T)=6



Example (in class)
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X3 X9 X12 X14 X18

R6(X)  -- what happens?  Return X3
W14(X) – what happens?
R15(X) – what happens?  Return X14
W5(X) – what happens?   ABORT

When can we delete X3?

TS(T)=6



Example (in class)
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X3 X9 X12 X14 X18

R6(X)  -- what happens?  Return X3
W14(X) – what happens?
R15(X) – what happens?  Return X14
W5(X) – what happens?   ABORT

When can we delete X3?

TS(T)=6



Example (in class)
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X3 X9 X12 X14 X18

R6(X)  -- what happens?  Return X3
W14(X) – what happens?
R15(X) – what happens?  Return X14
W5(X) – what happens?   ABORT

When can we delete X3? When min TS(T)≥ 9

TS(T)=6



Concurrency Control by 
Validation

Even more optimistic than timestamp validation
• Each transaction T defines a read set RS(T) 

and a write set WS(T)
• Each transaction proceeds in three phases:

– Read all elements in RS(T).  Time = START(T)
– Validate (may need to rollback).  Time = VAL(T)
– Write all elements in WS(T). Time = FIN(T)
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Main invariant: the serialization order is VAL(T)



Avoid wU(X) - rT(X) Conflicts
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U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate ?

START(T)
IF  RS(T) Ç WS(U) and FIN(U) > START(T) 

(U has validated and  U has not finished before T begun)
Then ROLLBACK(T)

conflicts



Avoid wU(X) - wT(X) Conflicts
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U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate ? Write phase ?

START(T) VAL(T)
IF  WS(T) Ç WS(U) and FIN(U) > VAL(T) 

(U has validated and  U has not finished before T validates)
Then ROLLBACK(T)

conflicts



Snapshot Isolation (SI)
A variant of multiversion/validation

• Very efficient, and very popular
• Oracle, PostgreSQL, SQL Server 2005

Warning: not serializable
• Earlier versions of postgres implemented SI for the 

SERIALIZABLE isolation level
• Extension of SI to serializable has been implemented recently
• Will discuss only the standard SI (non-serializable)
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Snapshot Isolation Rules
• Each transactions receives a timestamp TS(T)

• Transaction T sees snapshot at time TS(T) of the database

• When T commits, updated pages are written to disk

• Write/write conflicts resolved by “first committer wins” rule
– Loser gets aborted

• Read/write conflicts are ignored
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Snapshot Isolation (Details)
• Multiversion concurrency control:

– Versions of X:   Xt1, Xt2, Xt3, . . .

• When T reads X, return XTS(T).

• When T writes X: if other transaction updated X, 
abort
– Not faithful to “first committer” rule, because the other 

transaction U might have committed after T.  But once we 
abort T, U becomes the first committer J
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What Works and What Not
• No dirty reads (Why ?)
• No inconsistent reads (Why ?)

– A: Each transaction reads a consistent snapshot

• No lost updates (“first committer wins”)

• Moreover: no reads are ever delayed

• However: read-write conflicts not caught ! “Write 
skew”

CSE 544 - Winter 2020 157



Write Skew
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T1:
READ(X);
if X >= 50

then Y = -50; WRITE(Y)
COMMIT

T2:
READ(Y);
if Y >= 50

then X = -50; WRITE(X)
COMMIT

In our notation:

R1(X), R2(Y), W1(Y), W2(X), C1,C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

Invariant: X + Y ≥ 0



Discussions
• Snapshot isolation (SI) is like repeatable reads but 

also avoids some (not all) phantoms

• If DBMS runs SI and the app needs serializable:
– use dummy writes for all reads to create write-write 

conflicts… but that is confusing for developers

• Extension of SI to make it serializable is implemented 
in postgres
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Final Thoughts on
Transactions

• Benchmarks: TPC/C; typical throughput:
x100’s TXN/second

• New trend: multicores
– Current technology can scale to x10’s of cores, 

but not beyond!
– Major bottleneck: latches that serialize the cores

• New trend: distributed TXN
– NoSQL: give up serialization
– Serializable: very difficult e.g.Spanner w/ Paxos



Final/Final Thoughts

• Final is canceled!  We will reweight

• Please finish homework 5

• Please submit final project report
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