
CSE544
Data Management

Lectures 1&2:
Relational Data Model, SQL

CSE 544 - Winter 2021 1

Outline

• Introduction, class overview

• Database management systems (DBMS)

• The relational model

CSE 544 - Winter 2021 2

Course Staff

• Instructor: Dan Suciu
– Office hours: Mondays, 11:30-12:20

• TA: Walter Cai
– Office hours: TBD

CSE 544 - Winter 2021 3

Goals of the Class
• Relational Data Model

– Data models, data independence, declarative query
language.

• Relational Database Systems
– Storage, query execution and optimization
– Parallel data processing, column-oriented db etc.

• Transactions
– Optimistic/pessimistic concurrency control
– ARIES recovery system

4

A Note for Non-Majors
• For the Data Science option: take 414
• For the Advanced Data Science option: take 544

• 544 is an advanced class, not intended as an
introduction to data management research

• Does not cover fundamentals systematically, yet
there is an exam testing those fundamentals

• Unsure? Look at the short quiz on the website.

CSE 544 - Winter 2021 5

Readings
• Paper reviews

– Mix of old seminal papers and new papers
– Papers are available on class website

• Lecture notes (the slides)
– Posted on class website after each lecture

• Background from:
– Database Management Systems. Third Ed.

Ramakrishnan and Gehrke. McGraw-Hill.
6

Class Resources

Website: lectures, assignments
• http://www.cs.washington.edu/544

Canvas: zoom, videos

Ed: discussion board

CSE 544 - Winter 2021 7

Evaluation

• Assignments 40%

• Reviews 10%

• Project 40%

• Intangibles 10%
CSE 544 - Winter 2021 8

Assignments – 40%

• HW1: Use a DBMS
• HW2: Data analysis in the cloud
• HW3: Query Execution and SimpleDB
• HW4: Datalog
• [possibly a HW5 on transactions]
• See course calendar for deadlines
• Late assignments w/ very valid excuse

CSE 544 - Winter 2021 9

Paper reviews – 10%

• Recommended length: ½ page – 1 page
– Summary of the main points of the paper
– Critical discussion of the paper

• Grading: credit/patial-credit/no-credit

• Submit review before the lecture

10

Project – 40%
• Topic

– Best: come up with your own, ideally related to your own research
– Or choose from a list of mini-research topics
– Can be related to a project in another course
– Must be related to databases / data management
– Must involve either research or significant engineering
– Open ended

• Final deliverables
– Short, conference-style presentation on Friday, March 12
– Short, conference-style paper (6 pages)

CSE 544 - Winter 2021 11

Project – 40%

• Dates posted on the calendar page:
– M1: form groups
– M2: Project proposal
– M3: Milestone report
– M4: Poster presentation
– M5: Project paper

• We will provide feedback throughout the
quarter

CSE 544 - Winter 2021 12

Intangibles 10%

• Class participation

• Exceptionally good reviews, or
homework, or project

• Etc, etc

CSE 544 - Winter 2021 13

How to Turn In

• Homeworks: gitlab

• Project: gitlab

• Reviews: google forms

14

Now onward to the world of databases!

CSE 544 - Winter 2021 15

Data Management

• Entities: employees, positions (ceo, manager,
cashier), stores, products, sells, customers.

• Relationships: employee positions, staff of each
store, inventory of each store.

CSE 544 - Winter 2021 16

Database Management
System

• A DBMS is a software system designed
to provide data management services

• Examples of DBMS
– Oracle, DB2 (IBM), SQL Server (Microsoft),
– PostgreSQL, MySQL,…

17

DBMS Functionality

1. Create & persistently store large datasets
2. Efficiently query & update

1. Must handle complex questions about data
2. Must handle sophisticated updates
3. Performance matters

3. Change structure (e.g., add attributes)
4. Concurrency control: enable simultaneous updates
5. Crash recovery
6. Access control, security, integrity

18Several types of architectures (next)

Single Client

19

Application and database
on the same computer

E.g. sqlite, postgres

E.g. data analytics

Two-tier Architecture
Client-Server

20

Connection:
ODBC, JDBC

Applications:
Java

Database server
E.g. Oracle, DB2,…

E.g. accounting, banking, …

Three-tier Architecture

connection
(ODBC, JDBC)

http

Application server
E.g. java,python,

ruby-on-rails

Database server
E.g. Oracle

E.g. Web commerce

browser

Cloud Databases

ODBC, JDBC http

Sharded database
E.g. Spark, Snowflake

E.g. large-scale analytics or…

…social networks

App
server

Workloads

• OLTP – online transaction processing

• OLAP – online analytics processing,
a.k.a. Decision Support

CSE 544 - Winter 2021 23

Most of
this course

Relational Data Model

CSE 544 - Winter 2021 24

Relational Data Model
• A Database is a collection of relations

• A Relation is a set of tuples
– Also called Table

• A Tuple t is an element of Dom1 x Dom2 x … x Domn
– Domi is the domain of attribute i
– n is number of attributes of the relation
– Also called Row or Record

CSE 544 - Winter 2021 25

Discussion
• Rows in a relation:

– Ordering immaterial (a relation is a set)
– All rows are distinct – set semantics
– Query answers may have duplicates – bag semantics

• Columns in a tuple:
– Ordering is significant
– Applications refer to columns by their names

• Domain of each column is a primitive type

Data independence!

CSE 544 - Winter 2021 26

Or is it?

CSE 544 - Winter 2021

Schema
• Relation schema: describes column heads

– Relation name
– Name of each field (or column, or attribute)
– Domain of each field
– The arity of the relation = # attributes

• Database schema: set of all relation schemas

27

CSE 544 - Winter 2021

Instance

• Relation instance: concrete table content
– Set of records matching the schema
– The cardinality or size of the relation = # tuples

• Database instance: set of all relation instances

28

What is the schema?
What is the instance?

CSE 544 - Winter 2021 29

sno sname scity sstate
1 s1 city 1 WA
2 s2 city 1 WA
3 s3 city 2 MA
4 s4 city 2 MA

Supplier

What is the schema?
What is the instance?

CSE 544 - Winter 2021 30

sno sname scity sstate
1 s1 city 1 WA
2 s2 city 1 WA
3 s3 city 2 MA
4 s4 city 2 MA

Relation schema
Supplier(sno: integer, sname: string, scity: string, sstate: string)

Supplier

instance

Relational Query Language

• Set-at-a-time:
– Query inputs and outputs are relations

• Two variants of the query language:
– Relational algebra: specifies order of operations
– Relational calculus / SQL: declarative

CSE 544 - Winter 2021 31

SQL

• Standard query language

• Introduced late 70’s, now it ballooned

• We briefly review “core SQL” (whatever
that means); study more on you own!

• Read by Wed: A case against SQL 32

Structured Query Language: SQL

• Data definition language: DDL
– Statements to create, modify tables and views
– CREATE TABLE …,

CREATE VIEW …,
ALTER TABLE…

• Data manipulation language: DML
– Statements to issue queries, insert, delete data
– SELECT-FROM-WHERE…,

INSERT…,
UPDATE…,
DELETE…

We quickly
review this

Review on
your own

CSE 544 - Winter 2021

SQL Query

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

Basic form: (plus many many more bells and whistles)

34

Quick Review of SQL

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

CSE 544 - Winter 2021 35

Quick Review of SQL

What does
this query
compute?

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT z.pno, z.pname
FROM Supplier x, Supply y, Part z
WHERE x.sno = y.sno

and y.pno = z.pno
and x.scity = ‘Seattle’
and y.price < 100

CSE 544 - Winter 2021 36

Terminology

• Selection: return a subset of the rows:
– SELECT * FROM Supplier

WHERE scity = ’Seattle’

• Projection: return subset of the columns:
– SELECT DISTINCT scity FROM Supplier;

• Join: refers to combining two or more tables
– SELECT * FROM Supplier, Supply, Part …

37

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

CSE 544 - Winter 2021 38

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

CSE 544 - Winter 2021 39

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

CSE 544 - Winter 2021 40

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Self-join

Nested-Loop Semantics of SQL

CSE 544 - Winter 2021 41

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer È {(a1,…,ak)}
return Answer

This SEMANTICS!
It is NOT how the
engine computes

the query!

More SQL: Aggregates

CSE 544 - Winter 2021 42

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

What do these
queries compute?

SELECT count(*)
FROM Part

SELECT x.scity, avg(psize)
FROM Supplier x, Supply y, Part z
WHERE x.sno = y.sno and y.pno = z.pno
GROUP BY x.scity

SELECT x.scity, avg(psize)
FROM Supplier x, Supply y, Part z
WHERE x.sno = y.sno and y.pno = z.pno
GROUP BY x.scity
HAVING count(*) > 200

Discussion

• SQL Aggregates = simple data analytics
• Semantics:

1. FROM-WHERE (nested-loop semantics)
2. Group answers by GROUP BY attrs
3. Apply HAVING predicates on groups
4. Apply SELECT aggregates on groups

• Aggregate functions:
– count, sum, min, max, avg

• DISTINCT same as GROUP BY
43

Outer joins

44

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

Outer joins

SELECT x.name, x.category, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

Outer joins

Name Category
Gizmo gadget

Camera Photo
OneClick Photo

ProdName Store
Gizmo Wiz

Camera Ritz
Camera Wiz

Product Purchase

SELECT x.name, x.category, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

Outer joins

Name Category
Gizmo gadget

Camera Photo
OneClick Photo

ProdName Store
Gizmo Wiz

Camera Ritz
Camera Wiz

Product Purchase Output

missing

SELECT x.name, x.category, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Name Category Store
Gizmo gadget Wiz

Camera Photo Ritz
Camera Photo Wiz

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

Outer joins

Name Category
Gizmo gadget

Camera Photo
OneClick Photo

ProdName Store
Gizmo Wiz

Camera Ritz
Camera Wiz

Product Purchase Output

Now it’s present

SELECT x.name, x.category, y.store
FROM Product x LEFT OUTER JOIN Purchase y
ON x.name = y.prodName

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Name Category Store
Gizmo gadget Wiz

Camera Photo Ritz
Camera Photo Wiz
OneClick Photo NULL

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

Joins

• Inner join = includes only matching
tuples (i.e. regular join)

• Left outer join = includes everything
from the left

• Right outer join = includes everything
from the right

• Full outer join = includes everything

CSE 544 - Winter 2021 49

ON v.s. WHERE

• Outer join condition in the ON clause
• Different from the WHERE clause
• Compare:

50

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName

AND y.price < 10

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
WHERE y.price < 10

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

ON v.s. WHERE

• Outer join condition in the ON clause
• Different from the WHERE clause
• Compare:

51

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName

AND y.price < 10

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
WHERE y.price < 10

Includes products
that were never
purchased with

price < 10

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

ON v.s. WHERE

• Outer join condition in the ON clause
• Different from the WHERE clause
• Compare:

52

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName

AND y.price < 10

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
WHERE y.price < 10

Includes products
that were never
purchased with

price < 10

Includes products
that were never

purchased,
then checks price <10

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

ON v.s. WHERE

• Outer join condition in the ON clause
• Different from the WHERE clause
• Compare:

53

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName

AND y.price < 10

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
WHERE y.price < 10

Includes products
that were never
purchased with

price < 10

Includes products
that were never

purchased,
then checks price <10

Same as
inner join!

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

NULLs in SQL

• A NULL value means missing, or
unknown, or undefined, or inapplicable

• We can specify whether attributes may
or may not be NULL:

CSE 544 - Winter 2021 54

CREATE TABLE product
(pid int NOT NULL,
pname text NOT NULL,
price int – may be NULL
);

Three-Valued Logic

• False=0, Unknown=0.5, True=1
• Result of a comparison A=B is

– False or True when both A, B are not null
– Unknown otherwise

• AND, OR, NOT are min, max.
• Return tuples whose condition is True

Three-Valued Logic

• False=0, Unknown=0.5, True=1
• Result of a comparison A=B is

– False or True when both A, B are not null
– Unknown otherwise

• AND, OR, NOT are min, max.
• Return tuples whose condition is True

select *
from Product
where (price <= 100) or (price > 100)

pid Pname price
1 iPhone 500
2 iPod 80
3 iPad NULL

Three-Valued Logic

• False=0, Unknown=0.5, True=1
• Result of a comparison A=B is

– False or True when both A, B are not null
– Unknown otherwise

• AND, OR, NOT are min, max.
• Return tuples whose condition is True

select *
from Product
where (price <= 100) or (price > 100)

pid Pname price
1 iPhone 500
2 iPod 80
3 iPad NULLwhere (price <= 100) or (price > 100)

or isNull(price)

Likbkin’s Critique Of SQL

• Libkin’s slides: A Case Against SQL
• In class: discuss some of the main

inconsistencies in SQL

CSE 544 - Winter 2021 58

Other use of Relational Data

• Sparse vectors, matrics

• Graph databases

CSE 544 - Winter 2021 59

Sparse Matrix

CSE 544 - Winter 2021 60

𝐴 =
5 0 −2
0 0 −1
0 7 0

How can we represent
it as a relation?

Sparse Matrix

CSE 544 - Winter 2021 61

𝐴 =
5 0 −2
0 0 −1
0 7 0

Row Col Val
1 1 5
1 3 -2
2 3 -1
3 2 7

Matrix Multiplication in SQL

CSE 544 - Winter 2021 62

𝐶 = 𝐴 ⋅ 𝐵

Matrix Multiplication in SQL

CSE 544 - Winter 2021 63

𝐶 = 𝐴 ⋅ 𝐵 𝐶!" =&
#

𝐴!# ⋅ 𝐵#"

Matrix Multiplication in SQL

CSE 544 - Winter 2021 64

𝐶 = 𝐴 ⋅ 𝐵 𝐶!" =&
#

𝐴!# ⋅ 𝐵#"

SELECT A.row, B.col, sum(A.val*B.val)
FROM A, B
WHERE A.col = B.row
GROUP BY A.row, B.col;

Discussion

• Matrix multiplication = join + group-by
• Many operations can be written in SQL
• E.g. try at home: write in SQL

𝑇𝑟 𝐴 ⋅ 𝐵 ⋅ 𝐶
where the trace is defined as:

𝑇𝑟 𝑋 = ∑! 𝑋!!
• Surprisingly, 𝐴 + 𝐵 is a bit harder…

65

Matrix Addition in SQL

CSE 544 - Winter 2021 66

𝐶 = 𝐴 + 𝐵

Matrix Addition in SQL

CSE 544 - Winter 2021 67

𝐶 = 𝐴 + 𝐵

SELECT A.row, A.col, A.val + B.val as val
FROM A, B
WHERE A.row = B.row and A.col = B.col

Matrix Addition in SQL

CSE 544 - Winter 2021 68

𝐶 = 𝐴 + 𝐵

SELECT A.row, A.col, A.val + B.val as val
FROM A, B
WHERE A.row = B.row and A.col = B.col

Why is this wrong?

Solution 1: Outer Joins

CSE 544 - Winter 2021 69

𝐶 = 𝐴 + 𝐵

SELECT
(CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,
(CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,
(CASE WHEN A.val is null THEN 0 ELSE A.val END) +
(CASE WHEN B.val is null THEN 0 ELSE B.val END) as val
FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 1: Outer Joins

CSE 544 - Winter 2021 70

𝐶 = 𝐴 + 𝐵

SELECT
(CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,
(CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,
(CASE WHEN A.val is null THEN 0 ELSE A.val END) +
(CASE WHEN B.val is null THEN 0 ELSE B.val END) as val
FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 1: Outer Joins

CSE 544 - Winter 2021 71

𝐶 = 𝐴 + 𝐵

SELECT
(CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,
(CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,
(CASE WHEN A.val is null THEN 0 ELSE A.val END) +
(CASE WHEN B.val is null THEN 0 ELSE B.val END) as val
FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 1: Outer Joins

CSE 544 - Winter 2021 72

𝐶 = 𝐴 + 𝐵

SELECT
(CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,
(CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,
(CASE WHEN A.val is null THEN 0 ELSE A.val END) +
(CASE WHEN B.val is null THEN 0 ELSE B.val END) as val
FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 2: Group By

CSE 544 - Winter 2021 73

𝐶 = 𝐴 + 𝐵

SELECT m.row, m.col, sum(m.val)
FROM (SELECT * FROM A

UNION ALL
SELECT * FROM B) as m

GROUP BY m.row, m.col;

Graph Databases

• Graph databases systems are a niche
category of products specialized for
processing large graphs

• E.g. Neo4J, TigerGraph
• A graph is a special case of a relation,

and can be processed using SQL

CSE 544 - Winter 2021 74

Graph Databases
A graph:

1

2

4

3

5

Graph Databases

src dst
1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph: A relation:

1

2

4

3

5

Graph Databases

1

2

4

3

src dst
1 2
2 1
2 3

1 4

3 4
4 5

Edge

5

A graph:

Find nodes at distance 2: 𝑥, 𝑧 ∃𝑦 𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒(𝑦, 𝑧)}

A relation:

Graph Databases

src dst
1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph:

Find nodes at distance 2: 𝑥, 𝑧 ∃𝑦 𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒(𝑦, 𝑧)}

SELECT DISTINCT e1.src as X, e2.dst as Z
FROM Edge e1, Edge e2
WHERE e1.dst = e2.src;

A relation:

1

2

4

3

5

Other Representation

src dst
Alice Bob
Bob Alice
Bob Chris

Alice David

Chris David
David Eve

EdgeNode

Alice

Bob

David

Chris

Eve
Frank src

Alice
Bob
Chris

David

Eve
Frank

Representing nodes separately;
needed for “isolated nodes” e.g. Frank

Other Representation

src dst weight
Alice Bob 3
Bob Alice 1
Bob Chris 2

Alice David 9

Chris David 5
David Eve 1

EdgeNode

Alice

Bob

David

Chris

Eve
Frank src

Alice
Bob
Chris

David

Eve
Frank

Adding edge labels
Adding node labels…

2

5
3

1

9
1

Discussion: SQL and Logic

• First Order Logic is the language consisting
of: ∀, ∃, ∨, ∧, ¬, ⇒

• In class: what do these sentences say?
– ∀𝑥∀𝑦 𝐸 𝑥, 𝑦 ⇒ 𝐸 𝑦, 𝑥
– ∃𝑥(𝐸 “𝐴𝑙𝑖𝑐𝑒”, 𝑥 ∧ 𝐸 “𝐵𝑜𝑏”, 𝑥)
– ∀𝑥∀𝑦∀𝑧(𝐸 𝑥, 𝑦 ∧ 𝐸 𝑦, 𝑧 ⇒ 𝐸(𝑥, 𝑧))
– ∀𝑥∀𝑦(𝐸 𝑥, 𝑦 ⇒ (𝑥 ≠ 𝑦) ∧ ∃𝑧(𝐸 𝑥, 𝑧 ∧ 𝐸 𝑧, 𝑦)

• Theorem: every FO sentence can be written
in SQL

81

Possible in
a finite graph?

Limitations of SQL

• No recursion! Examples requiring
recursion:
– Gradient descent
– Connected components in a graph

• Advanced systems do support recursion
• Practical solution: use some external

driver, e.g. pyton

CSE 544 - Winter 2021 82

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
𝑃 𝑌 = 0 𝑋 =

1
1 + 𝑒𝑥𝑝 𝑤! + ∑"#$,&𝑤"𝑋"

𝑃 𝑌 = 1 𝑋 =
𝑒𝑥𝑝 𝑤! + ∑"#$,&𝑤"𝑋"

1 + 𝑒𝑥𝑝 𝑤! + ∑"#$,&𝑤"𝑋"

Switched
(following Mitchell)

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
𝑃 𝑌 = 0 𝑋 =

1
1 + 𝑒𝑥𝑝 𝑤! + ∑"#$,&𝑤"𝑋"

𝑃 𝑌 = 1 𝑋 =
𝑒𝑥𝑝 𝑤! + ∑"#$,&𝑤"𝑋"

1 + 𝑒𝑥𝑝 𝑤! + ∑"#$,&𝑤"𝑋"

Switched
(following Mitchell)

Train weights 𝑤!, 𝑤$, 𝑤', 𝑤& to minimize loss:

𝐿 𝑤!, … , 𝑤& = G
ℓ#$,)

𝑌ℓ ⋅ ln 𝑃 𝑌 = 1|𝑋ℓ + (1 − 𝑌ℓ) ⋅ ln 𝑃 𝑌 = 0|𝑋ℓ

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤" ← 𝑤" + 𝜂 G
ℓ#$,)

𝑋"ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤" ← 𝑤" + 𝜂 G
ℓ#$,)

𝑋"ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤" ← 𝑤" + 𝜂 G
ℓ#$,)

𝑋"ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤" ← 𝑤" + 𝜂 G
ℓ#$,)

𝑋"ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤" ← 𝑤" + 𝜂 G
ℓ#$,)

𝑋"ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤" ← 𝑤" + 𝜂 G
ℓ#$,)

𝑋"ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤" ← 𝑤" + 𝜂 G
ℓ#$,)

𝑋"ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤" ← 𝑤" + 𝜂 G
ℓ#$,)

𝑋"ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

Update W, then repeat this
e.g. using python

http://www.cs.cmu.edu/~tom/NewChapters.html

Discussion

SQL in Data Science:
• Used primarily to prepare the data

– ETL – Extract/Transform/Load
– Join tables, process columns, filter rows

• Can also be used in training
– Much less convenient than ML packages
– But can be the best option if data is huge

CSE 544 - Winter 2021 94

SQL – Summary

• Very complex: >1000 pages,
– No vendor supports full standard; (in practice,

people use postgres as de facto standard)
– Much more than DML

• It is a declarative language:
– we say what we want
– we don’t say how to get it

• Relational algebra says how to get it 95

CSE 544 - Winter 2021

Relational Algebra
• Queries specified in an operational manner

– A query gives a step-by-step procedure

• Relational operators
– Take one or two relation instances as input
– Return one relation instance as result
– Easy to compose into relational algebra expressions

96

Five Basic Relational Operators

• Selection: 𝜎condition(S)
– Condition is Boolean combination (∧,∨)

of atomic predicates (<, <=, =, ≠, >=, >)
• Projection: πlist-of-attributes(S)
• Union (∪)
• Set difference (–),
• Cross-product/cartesian product (⨯),

Join: R ⋈𝛉S = 𝜎𝛉(R⨯S)
Other operators: anti-semijoin, renaming

CSE 544 - Winter 2021 97

CSE 544 - Winter 2021

Extended Operators
of Relational Algebra

• Duplicate elimination (𝛿)
– Since commercial DBMSs operate on multisets

not sets
• Group-by/aggregate (ɣ)

– Min, max, sum, average, count
– Partitions tuples of a relation into “groups”
– Aggregates can then be applied to groups

• Sort operator (𝜏)

98

Logical Query Plans

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

99

SELECT DISTINCT x.sname, x.scity
FROM Supplier x, Supply y, Part z
WHERE x.sno=y.sno

and y.pno=z.pno
and z.psize > 10;

Logical Query Plans

Supplier Supply

pno=pno

Part

Π sname,scity

σ psize > 10
sno=sno

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

100

SELECT DISTINCT x.sname, x.scity
FROM Supplier x, Supply y, Part z
WHERE x.sno=y.sno

and y.pno=z.pno
and z.psize > 10;

𝝳

Query Optimizer

• Rewrite one relational algebra
expression to a better one

• Very brief review now, more details next
lectures

CSE 544 - Winter 2021 101

Optimization

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Optimization

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Push
selections

down

Optimization

Product Purchase

pid=pid
city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ
price>100

σ

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

More about this
next lecture

Push
selections

down

Benefits of Relational Model

• Physical data independence
– Can change how data is organized on disk without

affecting applications

• Logical data independence
– Can change the logical schema without affecting

applications (not 100%... consider updates)

CSE 544 - Winter 2021 105

Physical Data Independence

106

sno sname scity sstate
1 s1 city 1 WA
2 s2 city 1 WA
3 s3 city 2 MA
4 s4 city 2 MA

Supplier
SELECT DISTINCT sname
FROM Supplier
WHERE scity = ‘Seattle’

How is the data stored on disk?
(e.g. row-wise, column-wise)

Is there an index on scity?
(e.g. no index, unclustered index, clustered index)

The SQL query works
the same, regardless

of the answers to
these questions

Lecture on Monday

• Data model – what’s so hard about it?

• Review “What goes around…

CSE 544 - Winter 2021 107

