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Annoucements

• HW4 due on Friday

• Project Milestone due next Friday

• Mini-HW5 will be posted on Saturday
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Distributed/Parallel Query
Processing

Parallel DBs since the 80s

New, strong technology pulls:

• Multi-core
• Cloud computing
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Architectures for Parallel 
Databases

• Shared memory

• Shared disk

• Shared nothing
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Shared Memory
• SMP = 

symmetric multiprocessor
• Nodes share RAM and disk
• 10x … 100x processors

• Example: SQL Server runs on 
a single machine and can 
leverage many threads to 
speed up a query

• Easy to use and program
• Expensive to scale
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Shared Disk
• All nodes access same disks
• 10x processors

• Example: Oracle

• No more memory contention

• Harder to program
• Still hard to scale
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Shared Nothing
• Cluster of commodity machines
• Called "clusters" or "blade servers”
• Each machine: own memory&disk
• Up to x1000-x10000 nodes
• Example: redshift, spark, snowflake

Because all machines today have many 
cores and many disks, shared-nothing 
systems typically run many "nodes” on a 
single physical machine.

• Easy to maintain and scale
• Most difficult to administer and tune.
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Performance Metrics
Nodes = processors = computers

• Speedup: 
– More nodes, same data è higher speed

• Scaleup:
– More nodes, more data è same speed

Warning: sometimes Scaleup is used to mean Speedup



Linear v.s. Non-linear 
Speedup
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# nodes (=P)

Speedup

×1 ×5 ×10 ×15

Ideal



Linear v.s. Non-linear Scaleup
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# nodes (=P) AND data size 

Batch
Scaleup

×1 ×5 ×10 ×15

Ideal



Why Sub-linear?

• Startup cost
– Cost of starting an operation on many nodes

• Interference
– Contention for resources between nodes

• Skew
– Slowest node becomes the bottleneck
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Distributed Query Processing 
Algorithms
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Horizontal Data Partitioning
• Block Partition, a.k.a. Round Robin: 

– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP) 

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1

• Range partitioned on attribute A:
– Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi
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Notation
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When a relation R is distributed to p servers,
we draw the picture like this:

R1 R2 RP

Here R1 is the fragment of R stored on server 1, etc

𝑅 = 𝑅! ∪ 𝑅" ∪⋯∪ 𝑅#



Uniform Load and Skew

• |R| = N tuples, then |R1| + |R2| + … + |Rp| = N

• We say the load is uniform when:
|R1| ≈ |R2| ≈ … ≈ |Rp| ≈ N/p

• Skew means that some load is much larger:
maxi |Ri| >> N/p

15We design algorithms for uniform load, discuss skew later



Parallel Algorithm

• Selection σ

• Join ⨝

• Group by  ɣ
16



Parallel Selection
Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers must scan and filter the data

• Hash partitioned:
– Can have all servers scan and filter the data
– Or can optimize and only have some servers do work

• Range partitioned
– Also only some servers need to do the work
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Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)
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Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)
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Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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R1 R2 RP

.  .  .



Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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R1 R2 RP

.  .  .

Reshuffle R
on attribute A



Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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R1’ R2’ RP’.  .  .

R1 R2 RP

.  .  .

Reshuffle R
on attribute A

This is done in one
communication step



Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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R1’ R2’ RP’.  .  .

R1 R2 RP

.  .  .

Reshuffle R
on attribute A

This is done in one
communication step

Can you think
of an optimization?



Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:  
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2:  receive fragments, union them,  then group-by 
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj =  γA, sum(B) (Rj’)
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Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:  
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
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Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:  
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2:  receive fragments, union them,  then group-by 
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj =  γA, sum(B) (Rj’)
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Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:  
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2:  receive fragments, union them,  then group-by 
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj =  γA, sum(C) (Rj’)
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SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a 

Example Query with Group By



SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a 

Example Query with Group By

σc>0

g a, sum(b)→sb

R



Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a 

Example Query with Group By

σc>0

g a, sum(b)→sb

R



Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, sum(b) as sb    FROM R   WHERE c > 0 GROUP BY a 



Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

σc>0

scan

σc>0

scan

SELECT a, sum(b) as sb    FROM R   WHERE c > 0 GROUP BY a 



Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

σc>0

scan

g a, sum(b)→b

σc>0

scan

g a, sum(b)→b

SELECT a, sum(b) as sb    FROM R   WHERE c > 0 GROUP BY a 



Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

SELECT a, sum(b) as sb    FROM R   WHERE c > 0 GROUP BY a 
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1/3 of R
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g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

SELECT a, sum(b) as sb    FROM R   WHERE c > 0 GROUP BY a 



Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→sb

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→ sb

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→ sb

SELECT a, sum(b) as sb    FROM R   WHERE c > 0 GROUP BY a 



Pushing Aggregates Past 
Union

40

The rule that allowed us to do early summation is:

𝛾!,#$% & →( 𝑅) ∪ 𝑅* =

= 𝛾!,#$% + →(( 𝛾!,#$% & →+ 𝑅) ∪ 𝛾!,#$% & →+ 𝑅* )

For example:
• R1 has B= x,y,z;  R2 has B=u,w
• Then:   x+y+z+u+w = (x+y+z) + (u+w)



Pushing Aggregates Past 
Union

Which other rules can we push past 
union?
• Sum?
• Count?
• Avg?
• Max?
• Median?
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Pushing Aggregates Past 
Union

Which other rules can we push past 
union?
• Sum?
• Count?
• Avg?
• Max?
• Median?
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Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) = 
sum(B)/count(B)

median(B)



Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)
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Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
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Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)
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Parallel/Distributed Join

Three “algorithms”:

• Hash-partitioned

• Broadcast

• Combined: “skew-join” or other names
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Hash Join:  R ⋈A=B S

R1, S1 R2, S2 RP, SP .  .  .

Initially, R and S are block partitioned. 
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(K1,A, C), S(K2, B, D)
Query: R ⋈A=B S



Hash Join:  R ⋈A=B S

R1, S1 R2, S2 RP, SP .  .  .

Reshuffle R on R.A
and S on S.B

Initially, R and S are block partitioned. 
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(K1,A, C), S(K2, B, D)
Query: R ⋈A=B S



Hash Join:  R ⋈A=B S

R’1, S’1 R’2, S’2 R’P, S’P .  .  .

R1, S1 R2, S2 RP, SP .  .  .

Reshuffle R on R.A
and S on S.B

Initially, R and S are block partitioned. 
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(K1,A, C), S(K2, B, D)
Query: R ⋈A=B S



Hash Join:  R ⋈A=B S

R’1, S’1 R’2, S’2 R’P, S’P .  .  .

R1, S1 R2, S2 RP, SP .  .  .

Reshuffle R on R.A
and S on S.B

Each server computes
the join locally

Initially, R and S are block partitioned. 
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(K1,A, C), S(K2, B, D)
Query: R ⋈A=B S



Hash Join:  R ⋈A=B S

• Step 1
– Every server holding any chunk of R partitions 

its chunk using a hash function h(t.A)
– Every server holding any chunk of S partitions 

its chunk using a hash function h(t.B)

• Step 2: 
– Each server computes the join of its local 

fragment of R with its local fragment of S
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Broadcast Join

• When joining R and S
• If |R| >> |S|

– Leave R where it is
– Replicate entire S relation across nodes

• Also called a small join or a broadcast join
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Broadcast Join
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Query:  R ⋈ S

.  .  .
SR1 R2 RP 



Broadcast Join
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.  .  .

Keep R in place

Broadcast S

SR1 R2 RP 

Query:  R ⋈ S



Broadcast Join
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R1 R2 RP 

.  .  .

Keep R in place

Broadcast S

SR1 R2 RP 

Same place…

Query:  R ⋈ S



Broadcast Join

CSE 544 - Winter 2021 56

R1, S R2, S RP, S

.  .  .

Keep R in place

Broadcast S

SR1 R2 RP 

Broadcast S

Same place…

Query:  R ⋈ S



Skew-Join

• Hash-join:
– Both relations are partitioned (good)
– May have skew (bad)

• Broadcast join
– One relation must be broadcast (bad)
– No worry about skew (good)

• Skew join (has other names):
– Combine both: in class
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Example Query Execution
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SELECT * 
FROM Order o, Line i
WHERE o.item = i.item

AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oLine i

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, …)



Query Execution
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Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)



Query Execution
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Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Line i

Order(oid, item, date), Line(item, …)



Query Execution
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Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)



Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

SELECT * 
FROM R, S, T 
WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 

Example 2
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σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T
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… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 



σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T
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… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 



σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T
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… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 



σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T
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… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 



Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

Broadcasting S and T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T
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… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 



Skew
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Skew

• Skew in the input: a data value has 
much higher frequency than others

• Skew in the output: a server generates 
many more values than others, e.g. join

• Skew in the computation

CSE 544 - Winter 2021 69



Simple Skew Handling 
Techniques

For range partition:

• Ensure each range gets same number of 
tuples

• E.g.: {1, 1, 1, 2, 3, 4, 5, 6 } à [1,2] and [3,6]

• Eq-depth v.s. eq-width histograms
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Simple Skew Handling 
Techniques

Skew in the computation:

• Create more partitions than nodes
– “virtual servers”

• And be smart about scheduling the partitions

• Note: MapReduce uses this technique
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Skew for Hash Partition

Relation R(A,B,C,…), we hash-partition on A
If A is a key: we expect a uniform partition
If A is not a key:
• Some value A=v may occur very many times

– The “Justin Bieber” effect J
– v is called a “heavy hitter”

• All records with same value v are hashed to 
the same server i

• Partition Ri is much larger than |R|/p; skew!!
72
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Relation R(A,B,C,…), we hash-partition on A
If A is a key: we expect a uniform partition
If A is not a key:
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Skew for Hash Partition

Relation R(A,B,C,…), we hash-partition on A
If A is a key: we expect a uniform partition
If A is not a key:
• Some value A=v may occur very many times

– The “Justin Bieber” effect J
– v is called a “heavy hitter”

• Records with value v hashed to same server i
• Partition Ri is much larger than |R|/p; skew!!
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Analyzing Heavy Hitters

• We will discuss how to choose the threshold 
such that a value that occurs more times than 
the threshold becomes a “heavy hitters”

• This analysis is based on Cernoff bounds, 
which is a general technique that is useful in 
statistics and randomized algorithm
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Problem Statement

Given: N data items v1, …, vN
• We hash-partition them to P nodes
• When is the partitioning uniform?
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Problem Statement

Given: N data items v1, …, vN
• We hash-partition them to P nodes
• When is the partitioning uniform?
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Problem Statement

Given: N data items v1, …, vN
• We hash-partition them to P nodes
• When is the partitioning uniform?
Uniform: each node has O(N/P) items
Skew: some node has >> N/P items
1. Due to the hash function h, or
2. Due to skew in the data
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Role of the Hash Function

Assume v1, …, vN are distinct
Hash function computes h(vi) ∈ {1,…,P}

• If h is fixed then we can find bad items 
that will overload one server; how?

• If h is random: balls-in-bins problem;
we analyze it using the Cernoff bound
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The Cernoff Bound

Bernoulli r.v.:  𝑋", … , 𝑋# ∈ {0,1}
For all i,  Pr 𝑋$ = 1 = 𝜇 ∈ (0,1)
We are interested in 𝑌 = 𝑋" + 𝑋% +⋯+ 𝑋#

Fact: 𝐸 𝑌 = 𝑁𝜇
Theorem (Cernoff bound). If they are iid then:

Pr 𝑌 > 1 + 𝛿 𝐸[𝑌] ≤ 𝑒𝑥𝑝 − &!

'
𝐸[𝑌]
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Role of the Hash Function

Fix one server j;

Define indicator variables:
𝑋" = ℎ 𝑣" = 𝑗 ,… , 𝑋# = [ℎ 𝑣# = 𝑗]
Pr 𝑋" = 1 = ⋯ = Pr 𝑋# = 1 = 1/𝑃

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = 𝑁/𝑃
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Role of the Hash Function

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = #

(

Case 1: v1, …, vN distinct; then 𝑋1, … , 𝑋𝑁 are iid.
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Role of the Hash Function

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = #

(

Case 1: v1, …, vN distinct; then 𝑋1, … , 𝑋𝑁 are iid.

Cernoff:  Pr Load j > 1 + 𝛿 #
(
≤ 𝑒𝑥𝑝 − &!

'
#
(
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Role of the Hash Function

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = #

(

Case 1: v1, …, vN distinct; then 𝑋1, … , 𝑋𝑁 are iid.

Cernoff:  Pr Load j > 1 + 𝛿 #
(
≤ 𝑒𝑥𝑝 − &!

'
#
(

Union bound: Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 − &!

'
#
(
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Role of the Hash Function

Case 1: v1, …, vN distinct:

Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿%

3
𝑁
𝑃

Discussion: usually N >> P
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𝑁
𝑃
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• E.g. want load/server < 30% above expected, 
then 𝛿 = 0.3 Assume N=109 and P=103
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Role of the Hash Function

Case 1: v1, …, vN distinct:

Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿%

3
𝑁
𝑃

Discussion: usually N >> P

• E.g. want load/server < 30% above expected, 
then 𝛿 = 0.3 Assume N=109 and P=103

Pr 𝑆𝑘𝑒𝑤 ≤ 1000 ⋅ e)
"."$
% "*& = 1000 ⋅ 𝑒)'⋅"*' ≈ 0
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Role of the Hash Function

Case 1: v1, …, vN distinct:

Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿%

3
𝑁
𝑃

Discussion: usually N >> P

• Start worrying only when 𝑁 ≈ 𝑃 ln𝑃 (why?)
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Role of the Hash Function

• Don’t write your own has function!

• Randomize it (how?)

• Make sure N >> P (if not, why 
parallelize?)

• Then Load = O(N/P)CSE 544 - Winter 2021 91Take away: a good hash function shall not cause skew!



Role of the Data Skew

Case 2: v1, …, vN have duplicates
Call vi a heavy hitter if it occurs >> N/P
times
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Role of the Data Skew

Case 2: v1, …, vN have duplicates
Call vi a heavy hitter if it occurs >> N/P
times

Fact if there exists a heavy hitter, then 
there exists a server j s.t. Load j ≫ $

#

Therefore:   Pr 𝑆𝑘𝑒𝑤 =1
95No hash function can handle heavy hitters
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𝑣", 𝑣", … , 𝑣"
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Role of the Data Skew

Case 3: v1, …, vN have duplicates, no heavy hitters

Assume each value occurs #
,(

times, for c > 1
𝑣", 𝑣", … , 𝑣"

#
,(

, 𝑣%, 𝑣%, … , 𝑣%
#
,(

, …

𝑋" = ℎ 𝑣" = 𝑗 , X% = ℎ 𝑣% = 𝑗 ,…

𝑌 = ∑$ 𝑋$ 𝐸 𝑌 = 𝑐 𝐿𝑜𝑎𝑑 𝑗 = 𝑌 #
,(

Pr Skew ≤ 𝑃 ⋅ Pr 𝑌 > 1 + 𝛿 𝐸[𝑌] ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿!𝑐

3

Need 𝑐 ≳ ln𝑃

c𝑃 distinct values



Discussion

Use library hash function! Randomize!

• When each value occurs ≤ #
(⋅67 (

times, then 
𝐿𝑜𝑎𝑑 ≤ (1 + 𝛿) #

(
with high probability

• When some value occurs ≫ #
(

times, the load 
will be skewed

• Gray area: when values occur ≈ #
(

times: it 

can be shown that 𝐿𝑜𝑎𝑑 ≈ #⋅89(()
(
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SkewJoin

Main idea: separate the heavy hitters from the 
light hitters

• Hash join the light hitters: the partition is 
uniform because they are light

• Broadcast join the heavy hitters: works 
because there are very few heavy hitters
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SkewJoin: Details

Query: R ⋈A=B S, R.A = foreign key, S.A=key
• Step 1: find the heavy hitters in R.A

– I.e. find the values v=R.A that occur ≥ ,
-

times

– There are ≤ P heavy hitters! Broadcast them
• Step 2: each sever partitions locally:

𝑅 = 𝑅6$<=> ∪ 𝑅=?@AB, 𝑆 = 𝑆6$<=> ∪ 𝑆=?@AB
Notice: |𝑆=?@AB| ≤ 𝑃 (i.e. it is small)

• Step 3: hash-join 𝑅6$<=> ⋈ 𝑆6$<=>
• Step 4: broadcast join 𝑅=?@AB ⋈ 𝑆=?@AB



Discussion

• Many distributed query processors do 
not handle skew well

• (Project idea: how does your favorite 
engine handle skewed data?)

• In practice, you may need to partition 
skewed data manually
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