
CSE544
Data Management

Lectures 13
Parallel Query Processing

CSE 544 - Winter 2021 1

Annoucements

• HW4 due on Friday

• Project Milestone due next Friday

• Mini-HW5 will be posted on Saturday

CSE 544 - Winter 2021 2

Distributed/Parallel Query
Processing

Parallel DBs since the 80s

New, strong technology pulls:

• Multi-core
• Cloud computing

CSE 544 - Winter 2021 3

Architectures for Parallel
Databases

• Shared memory

• Shared disk

• Shared nothing

CSE 544 - Winter 2021 4

Shared Memory
• SMP =

symmetric multiprocessor
• Nodes share RAM and disk
• 10x … 100x processors

• Example: SQL Server runs on
a single machine and can
leverage many threads to
speed up a query

• Easy to use and program
• Expensive to scale

5

Interconnection
Network

P P P

Global Shared
Memory

D D D

Shared Disk
• All nodes access same disks
• 10x processors

• Example: Oracle

• No more memory contention

• Harder to program
• Still hard to scale

6

Interconnection
Network

P P P

D D D

M M M

Shared Nothing
• Cluster of commodity machines
• Called "clusters" or "blade servers”
• Each machine: own memory&disk
• Up to x1000-x10000 nodes
• Example: redshift, spark, snowflake

Because all machines today have many
cores and many disks, shared-nothing
systems typically run many "nodes” on a
single physical machine.

• Easy to maintain and scale
• Most difficult to administer and tune.

Interconnection
Network

P P P

D D D

M M M

Performance Metrics
Nodes = processors = computers

• Speedup:
– More nodes, same data è higher speed

• Scaleup:
– More nodes, more data è same speed

Warning: sometimes Scaleup is used to mean Speedup

Linear v.s. Non-linear
Speedup

CSE 544 - Winter 2021 9

nodes (=P)

Speedup

×1 ×5 ×10 ×15

Ideal

Linear v.s. Non-linear Scaleup

CSE 544 - Winter 2021 10
nodes (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

Ideal

Why Sub-linear?

• Startup cost
– Cost of starting an operation on many nodes

• Interference
– Contention for resources between nodes

• Skew
– Slowest node becomes the bottleneck

CSE 544 - Winter 2021 11

Distributed Query Processing
Algorithms

12

Horizontal Data Partitioning
• Block Partition, a.k.a. Round Robin:

– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1

• Range partitioned on attribute A:
– Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi

CSE 544 - Winter 2021 13

Notation

14

When a relation R is distributed to p servers,
we draw the picture like this:

R1 R2 RP

Here R1 is the fragment of R stored on server 1, etc

𝑅 = 𝑅! ∪ 𝑅" ∪⋯∪ 𝑅#

Uniform Load and Skew

• |R| = N tuples, then |R1| + |R2| + … + |Rp| = N

• We say the load is uniform when:
|R1| ≈ |R2| ≈ … ≈ |Rp| ≈ N/p

• Skew means that some load is much larger:
maxi |Ri| >> N/p

15We design algorithms for uniform load, discuss skew later

Parallel Algorithm

• Selection σ

• Join ⨝

• Group by ɣ
16

Parallel Selection
Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers must scan and filter the data

• Hash partitioned:
– Can have all servers scan and filter the data
– Or can optimize and only have some servers do work

• Range partitioned
– Also only some servers need to do the work

CSE 544 - Winter 2021 17

Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)

18

Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)

19

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSE 544 - Winter 2021 20

R1 R2 RP

. . .

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSE 544 - Winter 2021 21

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSE 544 - Winter 2021 22

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSE 544 - Winter 2021 23

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSE 544 - Winter 2021 24

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSE 544 - Winter 2021 25

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

This is done in one
communication step

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSE 544 - Winter 2021 26

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

This is done in one
communication step

Can you think
of an optimization?

Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj = γA, sum(B) (Rj’)

CSE 544 - Winter 2021 27

Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj = γA, sum(B) (Rj’)

CSE 544 - Winter 2021 28

Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj = γA, sum(B) (Rj’)

CSE 544 - Winter 2021 29

Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj = γA, sum(C) (Rj’)

CSE 544 - Winter 2021 30

SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a

Example Query with Group By

SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a

Example Query with Group By

σc>0

g a, sum(b)→sb

R

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a

Example Query with Group By

σc>0

g a, sum(b)→sb

R

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

σc>0

scan

σc>0

scan

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

σc>0

scan

g a, sum(b)→b

σc>0

scan

g a, sum(b)→b

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→sb

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→ sb

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→ sb

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Pushing Aggregates Past
Union

40

The rule that allowed us to do early summation is:

𝛾!,#$% & →(𝑅) ∪ 𝑅* =

= 𝛾!,#$% + →((𝛾!,#$% & →+ 𝑅) ∪ 𝛾!,#$% & →+ 𝑅*)

For example:
• R1 has B= x,y,z; R2 has B=u,w
• Then: x+y+z+u+w = (x+y+z) + (u+w)

Pushing Aggregates Past
Union

Which other rules can we push past
union?
• Sum?
• Count?
• Avg?
• Max?
• Median?

CSE 544 - Winter 2021 41

Pushing Aggregates Past
Union

Which other rules can we push past
union?
• Sum?
• Count?
• Avg?
• Max?
• Median?

CSE 544 - Winter 2021 42

Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) =
sum(B)/count(B)

median(B)

Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)

CSE 544 - Winter 2021 43

Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)

CSE 544 - Winter 2021 44

Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)

CSE 544 - Winter 2021 45But only if the data is without skew!

Parallel/Distributed Join

Three “algorithms”:

• Hash-partitioned

• Broadcast

• Combined: “skew-join” or other names
CSE 544 - Winter 2021 46

Hash Join: R ⋈A=B S

R1, S1 R2, S2 RP, SP . . .

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(K1,A, C), S(K2, B, D)
Query: R ⋈A=B S

Hash Join: R ⋈A=B S

R1, S1 R2, S2 RP, SP . . .

Reshuffle R on R.A
and S on S.B

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(K1,A, C), S(K2, B, D)
Query: R ⋈A=B S

Hash Join: R ⋈A=B S

R’1, S’1 R’2, S’2 R’P, S’P . . .

R1, S1 R2, S2 RP, SP . . .

Reshuffle R on R.A
and S on S.B

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(K1,A, C), S(K2, B, D)
Query: R ⋈A=B S

Hash Join: R ⋈A=B S

R’1, S’1 R’2, S’2 R’P, S’P . . .

R1, S1 R2, S2 RP, SP . . .

Reshuffle R on R.A
and S on S.B

Each server computes
the join locally

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(K1,A, C), S(K2, B, D)
Query: R ⋈A=B S

Hash Join: R ⋈A=B S

• Step 1
– Every server holding any chunk of R partitions

its chunk using a hash function h(t.A)
– Every server holding any chunk of S partitions

its chunk using a hash function h(t.B)

• Step 2:
– Each server computes the join of its local

fragment of R with its local fragment of S

CSE 544 - Winter 2021 51

Broadcast Join

• When joining R and S
• If |R| >> |S|

– Leave R where it is
– Replicate entire S relation across nodes

• Also called a small join or a broadcast join

CSE 544 - Winter 2021 52

Broadcast Join

CSE 544 - Winter 2021 53

Query: R ⋈ S

. . .
SR1 R2 RP

Broadcast Join

CSE 544 - Winter 2021 54

. . .

Keep R in place

Broadcast S

SR1 R2 RP

Query: R ⋈ S

Broadcast Join

CSE 544 - Winter 2021 55

R1 R2 RP

. . .

Keep R in place

Broadcast S

SR1 R2 RP

Same place…

Query: R ⋈ S

Broadcast Join

CSE 544 - Winter 2021 56

R1, S R2, S RP, S

. . .

Keep R in place

Broadcast S

SR1 R2 RP

Broadcast S

Same place…

Query: R ⋈ S

Skew-Join

• Hash-join:
– Both relations are partitioned (good)
– May have skew (bad)

• Broadcast join
– One relation must be broadcast (bad)
– No worry about skew (good)

• Skew join (has other names):
– Combine both: in class

57

Example Query Execution

CSE 544 - Winter 2021 58

SELECT *
FROM Order o, Line i
WHERE o.item = i.item

AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oLine i

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, …)

Query Execution

CSE 544 - Winter 2021 59

Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)

Query Execution

CSE 544 - Winter 2021 60

Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Line i

Order(oid, item, date), Line(item, …)

Query Execution

CSE 544 - Winter 2021 61

Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

SELECT *
FROM R, S, T
WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Example 2

62

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

CSE 544 - Winter 2021 63

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

CSE 544 - Winter 2021 64

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

CSE 544 - Winter 2021 65

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

CSE 544 - Winter 2021 66

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

Broadcasting S and T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

CSE 544 - Winter 2021 67

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Skew

CSE 544 - Winter 2021 68

Skew

• Skew in the input: a data value has
much higher frequency than others

• Skew in the output: a server generates
many more values than others, e.g. join

• Skew in the computation

CSE 544 - Winter 2021 69

Simple Skew Handling
Techniques

For range partition:

• Ensure each range gets same number of
tuples

• E.g.: {1, 1, 1, 2, 3, 4, 5, 6 } à [1,2] and [3,6]

• Eq-depth v.s. eq-width histograms
CSE 544 - Winter 2021 70

Simple Skew Handling
Techniques

Skew in the computation:

• Create more partitions than nodes
– “virtual servers”

• And be smart about scheduling the partitions

• Note: MapReduce uses this technique
CSE 544 - Winter 2021 71

Skew for Hash Partition

Relation R(A,B,C,…), we hash-partition on A
If A is a key: we expect a uniform partition
If A is not a key:
• Some value A=v may occur very many times

– The “Justin Bieber” effect J
– v is called a “heavy hitter”

• All records with same value v are hashed to
the same server i

• Partition Ri is much larger than |R|/p; skew!!
72

Skew for Hash Partition

Relation R(A,B,C,…), we hash-partition on A
If A is a key: we expect a uniform partition
If A is not a key:
• Some value A=v may occur very many times

– The “Justin Bieber” effect J
– v is called a “heavy hitter”

• All records with same value v are hashed to
the same server i

• Partition Ri is much larger than |R|/p; skew!!
73

Skew for Hash Partition

Relation R(A,B,C,…), we hash-partition on A
If A is a key: we expect a uniform partition
If A is not a key:
• Some value A=v may occur very many times

– The “Justin Bieber” effect J
– v is called a “heavy hitter”

• Records with value v hashed to same server i
• Partition Ri is much larger than |R|/p; skew!!

74

Analyzing Heavy Hitters

• We will discuss how to choose the threshold
such that a value that occurs more times than
the threshold becomes a “heavy hitters”

• This analysis is based on Cernoff bounds,
which is a general technique that is useful in
statistics and randomized algorithm

CSE 544 - Winter 2021 75

Problem Statement

Given: N data items v1, …, vN
• We hash-partition them to P nodes
• When is the partitioning uniform?

CSE 544 - Winter 2021 76

Problem Statement

Given: N data items v1, …, vN
• We hash-partition them to P nodes
• When is the partitioning uniform?
Uniform: each node has O(N/P) items

CSE 544 - Winter 2021 77

Problem Statement

Given: N data items v1, …, vN
• We hash-partition them to P nodes
• When is the partitioning uniform?
Uniform: each node has O(N/P) items
Skew: some node has >> N/P items

CSE 544 - Winter 2021 78

Problem Statement

Given: N data items v1, …, vN
• We hash-partition them to P nodes
• When is the partitioning uniform?
Uniform: each node has O(N/P) items
Skew: some node has >> N/P items
1. Due to the hash function h, or
2. Due to skew in the data

CSE 544 - Winter 2021 79

Role of the Hash Function

Assume v1, …, vN are distinct
Hash function computes h(vi) ∈ {1,…,P}

• If h is fixed then we can find bad items
that will overload one server; how?

• If h is random: balls-in-bins problem;
we analyze it using the Cernoff bound

80

The Cernoff Bound

Bernoulli r.v.: 𝑋", … , 𝑋# ∈ {0,1}
For all i, Pr 𝑋$ = 1 = 𝜇 ∈ (0,1)
We are interested in 𝑌 = 𝑋" + 𝑋% +⋯+ 𝑋#

Fact: 𝐸 𝑌 = 𝑁𝜇
Theorem (Cernoff bound). If they are iid then:

Pr 𝑌 > 1 + 𝛿 𝐸[𝑌] ≤ 𝑒𝑥𝑝 − &!

'
𝐸[𝑌]

CSE 544 - Winter 2021 81

Note:
very many

variants

Role of the Hash Function

Fix one server j;

Define indicator variables:
𝑋" = ℎ 𝑣" = 𝑗 ,… , 𝑋# = [ℎ 𝑣# = 𝑗]
Pr 𝑋" = 1 = ⋯ = Pr 𝑋# = 1 = 1/𝑃

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = 𝑁/𝑃

82

Role of the Hash Function

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = #

(

83

Role of the Hash Function

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = #

(

Case 1: v1, …, vN distinct; then 𝑋1, … , 𝑋𝑁 are iid.

84

Why?

Role of the Hash Function

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = #

(

Case 1: v1, …, vN distinct; then 𝑋1, … , 𝑋𝑁 are iid.

Cernoff: Pr Load j > 1 + 𝛿 #
(
≤ 𝑒𝑥𝑝 − &!

'
#
(

85

Why?

Skew at j

Role of the Hash Function

Load of server j: Load j = 𝑋" + 𝑋% +⋯+ 𝑋#
Expected load: E Load j = #

(

Case 1: v1, …, vN distinct; then 𝑋1, … , 𝑋𝑁 are iid.

Cernoff: Pr Load j > 1 + 𝛿 #
(
≤ 𝑒𝑥𝑝 − &!

'
#
(

Union bound: Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 − &!

'
#
(

86

Why?

Skew at j

Skew at 1 or at 2 … or at P

Role of the Hash Function

Case 1: v1, …, vN distinct:

Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿%

3
𝑁
𝑃

Discussion: usually N >> P

87

Role of the Hash Function

Case 1: v1, …, vN distinct:

Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿%

3
𝑁
𝑃

Discussion: usually N >> P

• E.g. want load/server < 30% above expected,
then 𝛿 = 0.3 Assume N=109 and P=103

88

Role of the Hash Function

Case 1: v1, …, vN distinct:

Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿%

3
𝑁
𝑃

Discussion: usually N >> P

• E.g. want load/server < 30% above expected,
then 𝛿 = 0.3 Assume N=109 and P=103

Pr 𝑆𝑘𝑒𝑤 ≤ 1000 ⋅ e)
"."$
% "*& = 1000 ⋅ 𝑒)'⋅"*' ≈ 0

89

Role of the Hash Function

Case 1: v1, …, vN distinct:

Pr 𝑆𝑘𝑒𝑤 ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿%

3
𝑁
𝑃

Discussion: usually N >> P

• Start worrying only when 𝑁 ≈ 𝑃 ln𝑃 (why?)

90

Role of the Hash Function

• Don’t write your own has function!

• Randomize it (how?)

• Make sure N >> P (if not, why
parallelize?)

• Then Load = O(N/P)CSE 544 - Winter 2021 91Take away: a good hash function shall not cause skew!

Role of the Data Skew

Case 2: v1, …, vN have duplicates
Call vi a heavy hitter if it occurs >> N/P
times

92

Role of the Data Skew

Case 2: v1, …, vN have duplicates
Call vi a heavy hitter if it occurs >> N/P
times

Fact if there exists a heavy hitter, then
there exists a server j s.t. Load j ≫ $

#

93

Role of the Data Skew

Case 2: v1, …, vN have duplicates
Call vi a heavy hitter if it occurs >> N/P
times

Fact if there exists a heavy hitter, then
there exists a server j s.t. Load j ≫ $

#

Therefore: Pr 𝑆𝑘𝑒𝑤 =1
94

Role of the Data Skew

Case 2: v1, …, vN have duplicates
Call vi a heavy hitter if it occurs >> N/P
times

Fact if there exists a heavy hitter, then
there exists a server j s.t. Load j ≫ $

#

Therefore: Pr 𝑆𝑘𝑒𝑤 =1
95No hash function can handle heavy hitters

Role of the Data Skew

Case 3: v1, …, vN have duplicates, no heavy hitters

Assume each value occurs #
,(

times, for c > 1
𝑣", 𝑣", … , 𝑣"

#
,(

, 𝑣%, 𝑣%, … , 𝑣%
#
,(

, …

c𝑃 distinct values

Role of the Data Skew

Case 3: v1, …, vN have duplicates, no heavy hitters

Assume each value occurs #
,(

times, for c > 1
𝑣", 𝑣", … , 𝑣"

#
,(

, 𝑣%, 𝑣%, … , 𝑣%
#
,(

, …

𝑋" = ℎ 𝑣" = 𝑗 , X% = ℎ 𝑣% = 𝑗 ,… c𝑃 distinct values

Role of the Data Skew

Case 3: v1, …, vN have duplicates, no heavy hitters

Assume each value occurs #
,(

times, for c > 1
𝑣", 𝑣", … , 𝑣"

#
,(

, 𝑣%, 𝑣%, … , 𝑣%
#
,(

, …

𝑋" = ℎ 𝑣" = 𝑗 , X% = ℎ 𝑣% = 𝑗 ,…

𝑌 = ∑$ 𝑋$ 𝐸 𝑌 = 𝑐 𝐿𝑜𝑎𝑑 𝑗 = 𝑌 #
,(

Pr Skew ≤ 𝑃 ⋅ Pr 𝑌 > 1 + 𝛿 𝐸[𝑌] ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿!𝑐

3

c𝑃 distinct values

Role of the Data Skew

Case 3: v1, …, vN have duplicates, no heavy hitters

Assume each value occurs #
,(

times, for c > 1
𝑣", 𝑣", … , 𝑣"

#
,(

, 𝑣%, 𝑣%, … , 𝑣%
#
,(

, …

𝑋" = ℎ 𝑣" = 𝑗 , X% = ℎ 𝑣% = 𝑗 ,…

𝑌 = ∑$ 𝑋$ 𝐸 𝑌 = 𝑐 𝐿𝑜𝑎𝑑 𝑗 = 𝑌 #
,(

Pr Skew ≤ 𝑃 ⋅ Pr 𝑌 > 1 + 𝛿 𝐸[𝑌] ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿!𝑐

3

c𝑃 distinct values

Role of the Data Skew

Case 3: v1, …, vN have duplicates, no heavy hitters

Assume each value occurs #
,(

times, for c > 1
𝑣", 𝑣", … , 𝑣"

#
,(

, 𝑣%, 𝑣%, … , 𝑣%
#
,(

, …

𝑋" = ℎ 𝑣" = 𝑗 , X% = ℎ 𝑣% = 𝑗 ,…

𝑌 = ∑$ 𝑋$ 𝐸 𝑌 = 𝑐 𝐿𝑜𝑎𝑑 𝑗 = 𝑌 #
,(

Pr Skew ≤ 𝑃 ⋅ Pr 𝑌 > 1 + 𝛿 𝐸[𝑌] ≤ 𝑃 ⋅ 𝑒𝑥𝑝 −
𝛿!𝑐

3

Need 𝑐 ≳ ln𝑃

c𝑃 distinct values

Discussion

Use library hash function! Randomize!

• When each value occurs ≤ #
(⋅67 (

times, then
𝐿𝑜𝑎𝑑 ≤ (1 + 𝛿) #

(
with high probability

• When some value occurs ≫ #
(

times, the load
will be skewed

• Gray area: when values occur ≈ #
(

times: it

can be shown that 𝐿𝑜𝑎𝑑 ≈ #⋅89(()
(

CSE 544 - Winter 2021 101

SkewJoin

Main idea: separate the heavy hitters from the
light hitters

• Hash join the light hitters: the partition is
uniform because they are light

• Broadcast join the heavy hitters: works
because there are very few heavy hitters

CSE 544 - Winter 2021 102

SkewJoin: Details

Query: R ⋈A=B S, R.A = foreign key, S.A=key

SkewJoin: Details

Query: R ⋈A=B S, R.A = foreign key, S.A=key
• Step 1: find the heavy hitters in R.A

– I.e. find the values v=R.A that occur ≥ ,
-

times

– There are ≤ P heavy hitters! Broadcast them

SkewJoin: Details

Query: R ⋈A=B S, R.A = foreign key, S.A=key
• Step 1: find the heavy hitters in R.A

– I.e. find the values v=R.A that occur ≥ ,
-

times

– There are ≤ P heavy hitters! Broadcast them
• Step 2: each sever partitions locally:

𝑅 = 𝑅6$<=> ∪ 𝑅=?@AB, 𝑆 = 𝑆6$<=> ∪ 𝑆=?@AB
Notice: |𝑆=?@AB| ≤ 𝑃 (i.e. it is small)

SkewJoin: Details

Query: R ⋈A=B S, R.A = foreign key, S.A=key
• Step 1: find the heavy hitters in R.A

– I.e. find the values v=R.A that occur ≥ ,
-

times

– There are ≤ P heavy hitters! Broadcast them
• Step 2: each sever partitions locally:

𝑅 = 𝑅6$<=> ∪ 𝑅=?@AB, 𝑆 = 𝑆6$<=> ∪ 𝑆=?@AB
Notice: |𝑆=?@AB| ≤ 𝑃 (i.e. it is small)

• Step 3: hash-join 𝑅6$<=> ⋈ 𝑆6$<=>

SkewJoin: Details

Query: R ⋈A=B S, R.A = foreign key, S.A=key
• Step 1: find the heavy hitters in R.A

– I.e. find the values v=R.A that occur ≥ ,
-

times

– There are ≤ P heavy hitters! Broadcast them
• Step 2: each sever partitions locally:

𝑅 = 𝑅6$<=> ∪ 𝑅=?@AB, 𝑆 = 𝑆6$<=> ∪ 𝑆=?@AB
Notice: |𝑆=?@AB| ≤ 𝑃 (i.e. it is small)

• Step 3: hash-join 𝑅6$<=> ⋈ 𝑆6$<=>
• Step 4: broadcast join 𝑅=?@AB ⋈ 𝑆=?@AB

Discussion

• Many distributed query processors do
not handle skew well

• (Project idea: how does your favorite
engine handle skewed data?)

• In practice, you may need to partition
skewed data manually

108

