An Overview of Query
Optimization in Relational
Systems

Surajit Chaudhuri

Microsoft Research
surajitc@microsoft.com
http:/research.microsoft.com/~surajitc

Outline

1 Preliminaries
1 Query Optimization Framework
1 Building Blocks

1 Equivalence Transformations

1 Statistical Model

1 Tree-Finder: System-R, Volcano,
Starburst

1 Tuning Optimizers
1 Beyond the Core Optimizer
5/14/9. COﬂClUSlon ©Surajit Chaudhuri 53

System R “Tree-Finder”

1 Functionality
1 Ordering among joins
1 Chooses join methods and access
paths
1 Naive strategy:
1 Generate all permutations of joins

1 Generate all combinations of join
methods and access paths

1 Prohibitively expensive

Exploiting Dynamic
Programming

1 Best plan for Join(R,S) are the same for for
1 Join (Join (R,S), T)
1 Join (Join (R,S), V)
1 Optimize one sub-expression once and reuse:
1 Join (Join (Join (R,S), T), V)
1 Join (Join (Join (R,S), V), T)
1 One optimal plan for each subset of relations

5/14/99 ©Surajit Chaudhuri 55

5/14/99 ©Surajit Chaudhuri 54
1234
123 124 234 134
34
23 24
12 13 14
5/14/99 ©Surajit Chaudhuri 56

Enumeration Algorithm

1 Find the optimal plan for Join(T={Rj,..,R,, Rp+1})

For each Subset S (of size n) of {R,,..R,, R} do

LetM=T-S

Find Optimal plan P(s) for Join(S)

Determine optimal single-join plan for Join (P(s), M)
« Iterate over choices of join methods and access methods
* One optimal plan for each interesting order

Endfor
Pick the plan with the least cost

5/14/99 ©Surajit Chaudhuri 57




Complexity

1 Enumeration cost drops from O(n!) to O(n2/n)
1 May need to store O(2n) partial plans
1 Do we?
1 Significantly more efficient than the naive
scheme

1 Significantly reduced number of “single-join”
enumerations

Reducing Search in
System-R Tree-Finder

1 Avoid Cartesian product
1 Defer all Cartesian products as late as possible to avoid
“blow-up”
| Don't consider (R1 X R2) Join R3 if (R1 Join R3) Join R2 is
feasible

1 May result in sub-optimality
| Large Sales Table
| Small Store Table with selection store.loc = “Redmond”
| Small Product Table with selection product.release = 1999

1 Recognized as “star” queries in OLAP

5/14/99 ©Surajit Chaudhuri 59

5/14/99 ©Surajit Chaudhuri 58
Star Query
Product
Order ProdNo
OrderNo ProdName
OrderDatef ProdDescr
Fact table Category
Customer OrderNo e CategoryDesc
CustomerNo SalespersoniD gg:_'Prloe
CustomerName CustomerNo Daio
CustomerAddress > | ProdNo
City DateKey DateKey
CityName «— Date
Salesperson Quantity onth
= TotalPrice ear
SalespersonID o
SalespesonName / y
City CityName
Quata 7| State
Country
5/14/99 ©Surajit Chaudhuri 60

Interesting Orders

1 Violation of principle of optimality

NL /Merge Merge
/ \ sott \ / \
NL NL / Merge scan
Scan Scan
R3 R3 / R3
;ort
Scan Scan Scan Scan Scan Scan
R1 R2 R1 R2 R1 R2
5/14/99 ©Surajit Chaudhuri 61

Handling Interesting
Orders in Tree-Finder

1 Identify all columns that may exploit sorted
order (by examining join predicates)

1 Collapse into equivalent groups
1 One optimal partial plan for each interesting

order
1 Example:
Rl.c=R4d
J,
Rl.a=R3.a J \ R4
3, R3
Rla=R2b,
Rl.c=R2.d
R1 R2
5/14/99 ©Surajit Chaudhuri

Key Ideas from System R

1 Cost model
1 Enumeration exploits
1 Dynamic programming
1 One optimal plan for each expression

1 Violation of principle of optimality
handled using interesting order

1 Foundation of commercial optimizers

5/14/99 ©Surajit Chaudhuri 63




Limitations of System R

I Limited Transformations

1 Join ordering and choice of access
methods only

1 Single block queries

1 Not an adequate infrastructure for
optimizing complex SQL

5/14/99 ©Surajit Chaudhuri

Outline

1 Preliminaries
1 Query Optimization Framework
1 Building Blocks

1 Equivalence Transformations

1 Statistical Model

1 Tree-Finder: System-R, Volcano,
Starburst

1 Tuning Optimizers
1 Beyond the Core Optimizer
5/14/9. COﬂClUSlon ©Surajit Chaudhuri 65

Extensible Architectures

1 Extensibility for optimizer developers
1 Add arbitrary transformations
1 Add new RE operators

1 Generation of the operator tree is realized
as a sequence of transformations
1 What sequence of transformations will result in

a low-cost & valid RE operator tree?

1 Example: Exodus/Volcano/Cascades,
Starburst

1 Lets try TEA (Toy Extensible Architecture)

5/14/99 ©Surajit Chaudhuri

Plan Data Structure

1 Data Structure representation of a query

1 Before Optimization: reflects query constructs
(e.g., Join, Group By)

1 After Optimization: an operator tree that
relational engine can execute (e.g., merge,
sort)

1 During Optimization

| Some logical operators (RA)
I Some physical operators (RE)

5/14/99 ©Surajit Chaudhuri 67

Life Cycle of a Plan in TEA

Join

Me?ge
Ordered I Merge
—

Scan A

Join

Scan € /
Scan B Sort
Scan A on B.X
Scan A

Join
Scan C

Scan B

Scan A
5/14/99 ©Surajit Chaudhuri

on B.X /
\ Join Scan c \
erge
gcan B Join \ N Scan C

Node Properties

1 Logical
1 RA operator
1 Expression (sub-tree)
1 Physical
1 ordering of rows
I Estimated
1 cost, total cost (sub-tree)
1 statistical descriptors

5/14/99 ©Surajit Chaudhuri 69




Transformation

1 Condition-Action rules that
1 Preserve logical equivalence (Logical)

1 RE operator to realize a logical expression
(Implementation)

1 RE operator to realize a physical property
(Enforcer)

1 Bind template nodes to plan nodes
1 Verify condition
1 Apply action and generate a plan

5/14/99 ©Surajit Chaudhuri 70

Naive Tree-Finder

1 Find (Node, Physical_Property, Cost-Limit)
1 Apply logical transformations to generate
logically equivalent tree with root node’
| Find (node’, Physical_Property, Cost-Limit)
1 Apply implementation rule to a node
| Find(child1, New1_Physical_Property, cost-limit1)
| Find(child2, New2_Physical_Property, cost-limit2)
| Cost = Cost1 + Cost2 + Operator cost (stat1,stat2)
1 Enforce a physical property

5/14/99 ©Surajit Chaudhuri 71

Efficiency Issues in TEA
(1)

1 Equivalence Classes

1 Expressions obtained by logical
transformations

1 Lookup if an optimized plan exists for the
class (using a hash table) or “in progress”

1 Reuse

1 Use branch and bound to drive the cost
limit
I Greedy algorithms

5/14/99 ©Surajit Chaudhuri 72

Efficiency Issues in TEA

(2)

1 Rank applicable transformations
1 By promise (how?)
1 Use implementation rules only for most
promising logical expression
1 Top-Down Optimizer

1 Redundant optimization of sub-expressions
avoided

1 Memo structure with expression (history of
transformations)

5/14/99 ©Surajit Chaudhuri 73

Volcano v.s. Starburst

1 Starburst

1 Heuristic application of logical transformation
rules

1 Cost-based mapping to RE operator trees

I Choice of access methods and join ordering for
ASPJ queries

1 Volcano
1 Uniformly cost-based
1 Harder to do search control

5/14/99 ©Surajit Chaudhuri 74

Outline

1 Preliminaries
1 Query Optimization Framework
1 Building Blocks

1 Equivalence Transformations

1 Statistical Model

1 Tree-Finder

1 Tuning Optimizers
1 Beyond the Core Optimizer
1 Conclusion

5/14/99 ©Surajit Chaudhuri 75




Tuning Optimizer

1 Information on the plan chosen by the
optimizer
1 Showplan (MS), Visual Explain (IBM) Interfaces
1 Store plan information in tables

1 Optimization Level

1 How exhaustive is the search for the “optimal” plan?
| IBM DB2: greedy v.s. DP join enumeration

1 Statistics
1 Create/Update Statistics
1 Manual update to statistics

5/14/99 ©Surajit Chaudhuri 76

Tuning Optimizer: Hints

1 Hints give partial control of execution
back to the application developer
1 Can specify
1 Join ordering, Join methods, Choice of Indexes
1 Example
Select emp-id
From Emp (index = 0)
Where hire-date > *10/1/94"
1 Liability: Hints may result in poor
performance with upgrades

5/14/99 ©Surajit Chaudhuri 7

Outline

Preliminaries

Query Optimization Framework
Building Blocks

Tuning Optimizers

Beyond the Core Optimizer

Parallel and Distributed Systems

First/Top-K Queries

OLAP, Materialized Views

Semantic Query Optimization

Expensive Predicates, O-R Systems, Client-Server

1 Conclusion

5/14/99 ©Surajit Chaudhuri 78

Distributed Systems

1 Optimization in Distributed Systems
1 Site Selection for operations
1 Communication cost v.s. local processing time
| Economic Model? (Cohera)
1 Evolution of Distributed Systems
1 Scalability concerns => Parallel systems
1 Distributed information => Replicated sites

5/14/99 ©Surajit Chaudhuri 79

Parallel Database Systems

1 Objective is to minimize response time
1 Forms of parallelism

1 Independent, Pipelined, Partitioned
1 Issues

1 Consider Communication cost due to
repartitioning

1 Scheduling of operators becomes an
important aspect of optimization

1 Can/Should scheduling be separated from the
rest of the query optimization?

5/14/99 ©Surajit Chaudhuri 80

Parallel Database Systems

1 Two step approach:
1 Generate a sequential plan
1 Apply a scheduling algorithm to “parallelize” the plan

1 The first phase should take into account cost of
communication (e.g., repartitioning cost)
1 Influences partitioning attribute

1 Scheduling algorithm assigns processors to
operators
1 Symmetric schedule: assigns each operator equally to

each processor

| suboptimal when communication costs are considered
5/14/99 ©Surajit Chaudhuri 81




First/Top K Queries

1 Optimize query response
1 Produce first matching record quickly
1 Top k restaurants in Seattle Order by
customer-satisfaction
1 Optimal query plan may be different
1 Use nested loop instead of sort-merge
1 Use non-clustered index scan instead of sort
1 Commercial database systems provide
constructs

5/14/99 ©Surajit Chaudhuri

OLAP

1 Spreadsheet paradigm drives the
querying model
1 Backends always cannot digest
complex SQL
1 Middleware ("ROLAP") tool optimizes
SQL generation
I Creates and maintains materialized views
| Defines appropriate temporary relations

5/14/99 ©Surajit Chaudhuri 83

Materialized Views

1 View Definitions
1 Aggregation as part of view definitions
1 Store Sales of Products by Quarter

1 Optimization Problem

1 Materialized views enable additional logical
transformations

1 Check applicability of materialized views
1 Use a more specific view that can answer the query

| Sales of Products by Year is adequate to answer query
on yearly revenue

1 Need for a cost-based choice
1 Multiple materialized views may apply

1 Using base table may be better than using cached
5/14/99 results ©Surajit Chaudhuri

Semantic Optimization

1 Transformation Rules in Classical
Optimizer
1 Equivalences over SQL

1 Semantic Optimization imports application
knowledge

1 Constraints that hold over a database
I No person above the age of 25
1 Optimizer can exploit these constraints

5/14/99 ©Surajit Chaudhuri 85

Expensive Predicates, O-R
Systems

1 Expensive Predicates: Cannot push down
selections
1 Select * From Stocks Where stocks. fluctuation > .6
1 Associate a per-tuple CPU and IO cost with predicate
evaluation
1 O-R Systems: Relationship among udfs
1 Spatial data-blade may support related spatial indexes
1 Use rules to specify semantic relationships
1 Cost-based semantic Query Optimization
1 New issues in costing and enumeration
| How to use costs uniformly across ADT-s
| “Mix and match” or “ADT-specific” optimization?

5/14/99 ©Surajit Chaudhuri

Other Issues

1 Compile Time v.s. Run time optimization
1 Choose plan and Exchange

1 Resource governor
1 Adapting optimization to memory constraints

1 Sensitivity of the cost model

1 Language Extension for ease of
optimization (e.g., Cube)

1 Client-Server issues

1 Function shipping, Data shipping or mixed

mode
5/14/99 ©Surajit Chaudhuri 87




Concluding Remarks
1 Quality of the Optimizer depends on

1 Cost Estimator, Transformation Rules, Search Control/Enumerator

1 Many external factors influence performance
1 Query Processing engine
1 Physical database design

1 Oversimplification may render results useless
1 Need to pay attention to SQL semantics

1 Questions?

1 Email: surajitc@microsoft.com
1 Home Page: http://research.microsoft.com/~surajitc

5/14/99 ©Surajit Chaudhuri 88




