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Scan and Selection
Operators

OScan([index], table, predicate)
OSequential Scan
OIndexscan: Which index(es) to use?

OAlways push down “index-evaluable”
predicates

OFilter(table, predicate)
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Join Operators

OJoin(Merge, R1, R2, R1l.a = R2.a)
ORequires sorted order on R1.a, R2.a
OOutput is a sorted order
OPipelined

OJoin(Nested-Loop, R1, R2, Rl.a =

R2.b)

OSorted inputs of no consequence
OOutput has the same sort order as R1.a
OPipelined
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“Generic” Join Operators

OJoin([method], outer, inner, join-

predicate)

OAsymmetric

O Effect of physical properties of input streams
(e.g., sorted input)

OPhysical properties of output stream (e.g.,
sorted)

OPipelined v.s. Blocking
(Nested Loop v.s. Sort-Merge)
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Sort & Hash

OSort(R1, {A,B,C}, parameters)
OBlocking (only in part)

OBuild-Hash(R1, {C,D}, parameters)
OBlocking

OProbe-Hash(R2, {C,D}, hash-table)
OPipelining
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Generic View of RE
Operators

OInput: One or more data streams
OOutput: One data stream
OImplementation

Oopen()

Ogetnext()

Oclose()
U Pipelined/Blocking
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RE Operator Tree

2A=3A

@ (R1sorted on A)
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Execution of an Operator
Tree

O Demand-driven architecture is the
simplest

Oopen() is propagated from the root
Ogetnext() at the root is propagated

O If getnext() at the root fails to
return a new tuple, then no more
answers for the query
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Query Optimization
0 Compile a SQL query in an operator
tree
OApproach 1:
OTake a SQL expression

ORepresent as a tree

OTurn algebraic operators into RE
operators

OWhy is this not adequate?
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Observations

U Selections always reduce relation size
OIndex scan may/may not be more efficient
O Order of evaluation of joins irrelevant for
correctness
OBut, order determines efficiency
OTotal sales for Products for Q298 from NW
OSum sales of all products, join with Products
OJoin products with Sale, then sum
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Richness of Choice

O Algebraic properties allow semantically
equivalent algebraic trees for a query
O Multiple implementation techniques for
each algebraic operator

O Costs of the alternatives may be widely
different depending on statistical
properties of data
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Goal of Query Optimizer

00 Compile a SQL query in an operator tree
OFind the tree with least cost subject to
OEquivalence transformations
UAvailable RE operators
ODatabase statistics
O Explore the space of trees efficiently
O Optimizer helps achieve
OData Independence
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Implementing an Optimizer

OProgram Optimization
OSearch Algorithms/Planning
O Combinatorial Optimization

OWe will revisit this issue in the next
lecture..
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A Framework for Query
Optimization

O Equivalence Transformations
OAlgebraic properties
OImplementation options

O Estimation Model

ONeeds to estimate cost of an operator
tree (incrementally)

OTree-Finder (“search”)
OFast, Memory-efficient
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Examples of
Transformations

O Join Ordering

O Commuting join and outer-join
O Commuting group by and join
O Optimize multi-block queries

OCollapse multi-block query to a single
block query

OOptimize across multiple query blocks
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ASPJ Queries

Select A.a, Sum(B.z)

From A, B, C

Where Ax = B.xand B.y = C.y
Group By A.a

Order By A.a
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Implementation
Transformations

0Scan

OB+ tree index scan with (sargable)
Predicate: Between and its degenerate
forms

OSequential scan
OFilter
OAny Boolean expression
OJoin
OSort-Merge, Nested-loop, Indexed
Nested-loop
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Join Ordering

O Select and Join commute
OFilter(Join(A,B), a) = Join(Filter(A,a), B)

O Joins are associative and commutative :
OJoin(Join(A,B), C) = Join (Join(B,A), C)
OJoin(Join(A,C), B) = Join(Join(A,B), C)

OMany equivalent expressions (How many?)

OHow about n-ary joins?
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Transformation => Space

O Shape of join trees
ORestricted use of AC properties

OLinear Join Trees /<G
AN

0O Bushy Join Trees
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Join and OuterdJoin

ODo outer-join operators commute?
OExample:
(R LOJ S): Preserves R
OJoin (R,SLOIT) =7
0 Goal of Transformations: Isolate blocks of
natural join
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Group By and Join

OSelect .. From .. Where .. Group By ..

0 Traditionally, execution of group-by follows
execution of joins

OTotal sales for Products for Q298 from NW
OSum sales of all products, join with Products
OJoin products with Sale, then sum
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Operator Trees:
Group By and Join

0 Schema:

O Product(pid, unitprice, ..)

[J Sales(tid, date, store, pid, units)
0 Trees: /
Group E_sy (pid) \
sum(units)

Products

Join

Group By (pid)
Join sum(units) Filter (In NW)

Products Scan (Sales)

Introducing Operator:
Group By and Join
O Schema:

[ Sales(tid, date, store, pid,amount)
[0 Category(pid,cid, details)  Group By (cid)

sum(amount)
0 Example: ‘
Group By (cid) Join
sum(amount)
Join Group BY (pid) Category

sum(amount)
Category ‘

Filter (..)

Filter(..)

Scan (Sales)

Filter(s.store in

{CA, WA}
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Scan (Sales) Filter (INNW)  jjter(saledate = Q298)
Filter(date = Q298)
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Prerequisites:

Group By and Join

0 Schema constraints, arbitrary aggregation
functions

0 No schema constraints, but properties of
aggregate functions

0 Agg(S1 U S2) = f(Agg(S1), Agg(S2))
0 May sometime require use of derived columns
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Group By and Join:
Pros and Cons

0 (+) “Pushing down” group by past a join:
O Group By “collapses” an equivalence class
O Therefore, may reduce cost of subsequent joins
O Can be pipelined with index scans

0 (-) Application needs to be cost based since
O The cost of group by may be increased
O Access methods on base tables may no longer be useful

for the join

0 Encapsulating a “transformation” is not easy
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Multi-Block Queries

O Multi-block structure arises due to
O views with aggregates
U table expressions
U nested sub-queries
OTechniques for Optimization
U Merge into a single block
0 Share information across blocks
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