Who are you?

- 1 UG 1 UN 19 G
- 5-6 figure out while here
- 2 Architecture
- 3 Graphics, 3 AI
- 2 Databases
- 1 Ubiquitous computing
- 2 Systems
- 2 Theory

A little about me...

- I am not a processor architect
- I am wondering lately if I am an architect
- I used to worry about the memory system
- Now I worry about:
 - simulation
 - statistics
 - quantum computation
 - models of computation
 - limits of computation
 - processors

What do you want from this class?

- What matters in the hype
- Compiler interactions
 - VLIW, trace scheduling ILP
 - (Intel: EPIC)
- Multiprocessors SMT vs. CMP
- Heterogeneous processors
 - Network processors
- Pipelining, Advanced Processors

What is computer architecture?

- Just hardware
- Interacting components
- Division of jobs among hardware / software
- Organization of components
- Instructions
- Design

What is not CA?

- Possibly:
 - (Complexity theory)
 - Algorithms
 - High level programming language
 - Circuits
 - Software Engineering
 - AI
 - Learning chips
- Actually Architecture is a little of all of these...

What are the major innovations/principles in computer architecture?

- Protected memory / Virtual Memory
- Pipelining
- Caches
- Compilers
- Von-Neumann Machines
- Circuit optimizations (P/G)
- Parallel Processing
- Instruction Level Parallelism
- Locality
- Bus
- Hardware Emulation
- Branch Prediction
- Speculation

What do computer architects do?

- Make computers faster
- Task Scheduling
- More Robust
 - Fault tolerant
- Distributed
- Better OS interfaces
- Lower Power
- More Secure
- Better compiler interface

How do CA's do their work?

- Wrote simulation
- Hack the compiler
- Trading off different ideas
- Run some traces
- Write/Read a lot of papers
 - Generate graphs.. Lots of ISCA like graphs
- Teaching
- Design

Why is this bad?

- No reality check
 - Does it matter?
 - Is it accurate?
- Hard to debug
 - Hard to say its objective
- No standard framework