
What is computation?
• Computation

– Transformations (operations)
– Conditionals
– Data

• Correctness

How can you express
computation?

– Basic ops
• A=b+c

– Variables
– If…then.. While…
– Classes (data structures)
– Functions (recursion)
– Thread

Registers

• Fast
• Temporary storage
• Memory addressing

Memory addressing modes

• Memory
– Direction: la <memory>
– Memory: [$reg], [$reg+constant]
– [$reg1 + $reg2]

• A = b[I]
– Reg1 = b
– Reg2 = I

• Branches
– PC relative
– Absolute

Instructions

• Minimum set:
– Nand, sub, branch-less-than-zero

• Real set:
– Memory I/O
– Jump, branches
– Arithmetic

Return of the CISC

• Cryptographic instructions
– Strange bit twiddles

• Domain specific processing
– Silicon now is cheap / free
– Bundle of computation common to domain
– Different model

• DSP

– Don’t want to be on critical-path
– Would like to compile for it

Encodings

• Desirables:
– Uniformity

• Less decoding time

– Compactness
• Potential down side
• Less of everything

– Less registers
– Smaller constants
– Optimizing for common case

When is CISC good?

• No compilers
• When RISC is over, go CISC

– Everything old will be new again
• Slow memory
• Expensive memory
• Language specific computing SYMBOL,

LISP machines
– Limited languages

When is RISC good?

• Cheap memory
• Start again
• Logic is expensive

– Area constraints

• Lower power because of less control logic
• You have compilers

What was 1980 like, for RISC?

• Conditions are right
– Cheap enough memory
– VLSI

• Carp / Meade work (Cal-Tech)

• Studies that show VAX instructions were
not being used
– 65 of 100’s of x86 instructions get used

What else might we want to express?

• Vector
– Exposes parallelism
– <a> = + <c>
– Exposes regularity
– Reduces the need for speculation

• VLIW
– Exposing parallelism

• Compiling for these?
– Easier with global variables, no pointers

