
Kasia and Lillie, cse 548 wi05

Decoupled Access/Execute
Computer Architectures +

Retrospective
James E. Smith

Summary

• Decoupling access
from execution

• Implementation
issues
– Stores

– Conditional branches

– Queues implemented
with registers

Issues

• Deadlock prevented by compiler

• How to merge instruction streams?

• Going from this to this

Benefits

• Decoupling performance gains:
– Processor-memory communication speed is less of

an issue

– One instruction per cycle bottleneck not an issue

– Improvement = 1.71 on average

• Reduction of programmer responsibility

• Two PCs makes interrupts easier to deal with
than in other multi-processor architectures

Critique

• Instruction stream merge
– Performance evaluation?

• Deadlock prevention
– Moving the problem to the compiler

• Hand-compiled code
• They assume optimum conditions in their

evaluation
• How did they come up with the timings?

– Human error seems to be likely

• “Does it work? Nyeeeh . . .” - Schwerin

Questions

• Max speedup from decoupled processor = 2.5,
while for a pair of strictly serial processors = 2.0.
If there were efforts to improve performance
today, would a decoupled architecture be an
option, or would the “design from scratch” be too
costly?

• Arithmetic mean is apparently a faux pas. How
are average speedups calculated today?

• What was the result of the study on the
performance impact of the WAQ length?

More questions

• How do they decide queue length?

• What else can we decouple from what?

• What would happen if this joined forces with out-
of-order processing?

• Did anyone get very far building a compiler for
this? Are there any terribly clever compiler tricks
we can apply?

• DEA vs. Superscalar in a fight to the death: who
wins? Who gets the most points for style?

