
Parallel Operation in the Control
Data 6600

Jiun-Hung Chen
Adrienne Wang
Jan 19, 2005



Overall System



Instruction Level Parallelism in
Hardware

 CDC6600: Out-of-order execution -> out-of-
order completion

 Multiple functional units: can have multiple
instructions in execution phase



Conflicts and Solutions

 First Order Conflict (Structural Hazard)
 Instructions require the same functional units/result registers.
 Solution: Determine early and issue the 2nd instruction upon

completion of the 1st one. Or provide two units to reduce the
probability of conflict.

 Second Order Conflict (RAW Hazard)
 Instructions require results that are not ready.
 Solution: Scoreboard control over the functional unit.

 Third Order Conflict (WAR Hazard)
 Some instructions may finish earlier than previously issued

instructions and need to overwrite the value in a register
which is still needed.

 Solution: Hold the result in the functional unit.



Scoreboard

 Also called Unit and Register Reservation
Control

 The Scoreboard manages simultaneous
operation of multiple functional units on a
single instruction stream.

 Units proceed independently.
 The Scoreboard determines when a functional

unit can read the operands and write to the
result register.



Four Stages of Scoreboard
Control
 1.Issue — decode instructions & check

for structural hazards
 2.Read operands — wait until no data

hazards, then read operands
 3.Execution — The functional unit

begins execution upon receiving
operands. It notifies the scoreboard
when it has completed execution.

 4. Write result — Write the result to
register after the scoreboard sends
signal to the functional unit.



 fields for each functional unit
 Fm: Function to be performed (eg. + or -)
 Fi: Destination register
 Fj, Fk: Source registers
 Qj, Qk: Functional units producing Fj, Fk
 Rj, Rk: single-bit flag indicating when Fj, Fk

are ready
 Xi: Identifies which unit has reserved

register Xi for its result (Some units may
have Bi/Ai)

Functional Unit Status



Scoreboard Operation I

 Place Reservations
1. Set the unit busy: Prevent the next

instruction which uses the same functional
unit from being issued.

2. Set the register designators Fi, Fj, Fk:
Transfers the i, j, k fields of the instruction
to the designators of the functional unit.

3. Set the functional unit identifiers Qj, Qk:
Copy from the X/B/A identifiers.

4. Assign the functional unit number to the
result register identifier, Xi, Bi, or Ai.



Scoreboard Example Cycle1

F8  F6    F2SUBD

F0  F2    F4MULT

F2  45+  R3LD

1F6  34+  R2LD

WriteExecuteReadIssue i       j      kInstruction

NoAdd

NoMult1

YesR2F6LDYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit



Scoreboard Example Cycle7

7F8  F6    F2SUBD

6F0  F2    F4MULT

765F2  45+  R3LD

4321F6  34+  R2LD

WriteExecuteReadIssue i       j      kInstruction

NoYesIntegerF2F6F8SubYesAdd

YesNoIntegerF4F2F0MultYesMult1

YesR3F2LoadYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit



Scoreboard Operation II

 Set read flags Rj, Rk
 If both are set, the unit may start
 Determined by the Qj, Qk identifiers and by the

Release signal from the functional units
identified by Qj, Qk. Solve the second order
conflict.

 x6 = x1+x2       Add unit
x7 = x5/x6      Divide unit
x6 is the result of the Add unit
Qk=17
 Rk is determined by Qk and the release signal
 from the Add unit.



Set the read flags



Scoreboard Operation II
(continued)

 Send the Release signal to functional units.
 Release the result to the result register.
 Solve the third order conflict.
 x5 = x4 * x3        Mult unit

x4 = x0 + x6        Add unit
The Add unit can’t release the result to x4
unless the Mult unit has read the value in x4.



Limitations of CDC6600
Scoreboard

 No forwarding hardware
 Whether independent instructions can be

found to execute.
 Limited to the size of the scoreboard.
 Small number of functional units leads to

structural hazards
 Antidependences and output dependences

lead to WAR and WAW stalls



Questions
 Why are all functions separated into different units?  Wouldn’t it work better if

any unit could perform any operation, reducing conflicts of function type?
 A harder problem would be organizing the instructions for best performance and

least conflict.  Neither paper talks about this possibility.
 How Q is notified the operation is done?
 Any computational theory is able to model the ILP?
 Does the scheduling and communication overhead make this impractical (slow)?
 This seems to be the hardware approach to introducing ILP, could a compiler

that was aware of how it was working help the hardware out?  How?
 What exactly is a major and minor cycle?  I get that the first is longer…
 Is this along the lines of what current processors do?  How do they stay

synched and consistent?
 Seems to be substantial bookkeeping. Performance evaluation? Overhead?
 Multiple memory units seem good for speed. Don’t they have dependency

problems?
 Are any modern techniques inspired by scoreboard?



Peripheral and Central processors



Time-Sharing Design



Central Processor



Instruction Format



Instruction Stack



Central Processor Operating
Registers



Features

 Parallel Operations
 Scoreboard
 All-transistor Logic



Critique

 Pros
 Dynamic Scheduling with Scoreboard

 Cons
 Large number of buses
 Multiple function units



Question

 Performance vs. number of function
units

 Scoreboard vs. Tomasulo?



Scoreboard Example

F8  F6    F2SUBD

F0  F2    F4MULT

F2  45+  R3LD

F6  34+  R2LD

WriteExecuteReadIssue i       j      kInstruction

Add

Mult1

Integer

RkRjQkQjFkFjFiFmBusyFunctional Unit



Scoreboard Example Cycle1

F8  F6    F2SUBD

F0  F2    F4MULT

F2  45+  R3LD

1F6  34+  R2LD

WriteExecuteReadIssue i       j      kInstruction

NoAdd

NoMult1

YesR2F6LDYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit



Scoreboard Example Cycle2

F8  F6    F2SUBD

F0  F2    F4MULT

F2  45+  R3LD

21F6  34+  R2LD

WriteExecuteReadIssue i       j      kInstruction

NoAdd

NoMult1

YesR2F6LDYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit



Scoreboard Example Cycle3

F8  F6    F2SUBD

F0  F2    F4MULT

F2  45+  R3LD

321F6  34+  R2LD

WriteExecuteReadIssue i       j      kInstruction

NoAdd

NoMult1

YesR2F6LDYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit



Scoreboard Example Cycle4

F8  F6    F2SUBD

F0  F2    F4MULT

F2  45+  R3LD

4321F6  34+  R2LD

WriteExecuteReadIssue i       j      kInstruction

NoAdd

NoMult1

YesR2F6LDYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit



Scoreboard Example Cycle5

F8  F6    F2SUBD

F0  F2    F4MULT

5F2  45+  R3LD

4321F6  34+  R2LD

WriteExecuteReadIssue i       j      kInstruction

NoAdd

NoMult1

YesR3F2LDYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit



Scoreboard Example Cycle6

F8  F6    F2SUBD

6F0  F2    F4MULT

65F2  45+  R3LD

4321F6  34+  R2LD

WriteExecuteReadIssue i       j      kInstruction

NoAdd

YesNoIntegerF4F2F0MultYesMult1

YesR3F2LoadYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit



Scoreboard Example Cycle7

7F8  F6    F2SUBD

6F0  F2    F4MULT

765F2  45+  R3LD

4321F6  34+  R2LD

WriteExecuteReadIssue i       j      kInstruction

NoYesIntegerF2F6F8SubYesAdd

YesNoIntegerF4F2F0MultYesMult1

YesR3F2LoadYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit



Scoreboard Example Cycle8

7F8  F6    F2SUBD

6F0  F2    F4MULT

765F2  45+  R3LD

4321F6  34+  R2LD

WriteExecuteReadIssue i       j      kInstruction

NoYesIntegerF2F6F8SubYesAdd

YesNoIntegerF4F2F0MultYesMult1

YesR3F2LoadYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit


