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Shared-address-space 
multiprocessors are 
effective vehicles for 

speeding up 
visualization and 
image synthesis 

algorithms. This article 
demonstrates excellent 
parallel speedups on 

some well-known 
sequential algorithms. 

S everal recent algorithms have substantially sped up complex and time- 
consuming visualization tasks. In particular, novel algorithms for radiosity 
computation' and volume r e n d e r i r ~ g ~ . ~  have demonstrated performance far 

superior to earlier methods. Despite these advances, visualization of complex scenes 
or data sets remains computationally expensive. Rendering a 256 x 256 x 256-voxel 
volume data set takes about 5 seconds per frame on a 100-MHz Silicon Graphics In- 
digo workstation using Levoy's ray-casting algorithm2 and about a second per frame 
using a new shear-warp algorithm.' These times are much larger than the 0.03 second 
per frame required for real-time rendering or the 0.1 second per frame required for 
interactive rendering. Realistic radiosity and ray-tracing computations are much 
more time-consuming. 

Multiprocessing provides an attractive solution to this computational bottleneck. 
It is well known that ray-casting algorithms afford substantial parallelism, and we show 
that the same is true for the radiosity and shear-warp methods. However, all these vi- 
sualization algorithms have highly irregular and unpredictable data access patterns. 
This makes data distribution and communication management very difficult in the ex- 
plicit message-passing programming paradigm supported by most scalable multi- 
processors (Intel's iPSC/860 and Paragon or Thinking Machines' CM-5, for example), 
since these tasks have to be performed explicitly by the programmer. The need for 
explicit communication management leads ( I )  to complicated parallel algorithms 
that look very little like their sequential counterparts and (2) to substantial perfor- 
mance inefficiencies. 

Recently. a new class of scalable. shared-address-space multiprocessors has emerged. 
Like message-passing machines. these multiprocessors have a distributed intercon- 
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nection network and physically dis- 
tributed main memory. However. they 
provide hardware support for efficient 
implicit communication through a shared 
address space, and they automatically ex- 
ploit temporal locality by caching both 
local and remote data in a processor's 
hardware cache. 

In this article, we show that these ar- 
chitectural characteristics make it much 
easier to obtain very good speedups 

on the best known visualization algo- 
rithms. Simple and natural paralleliza- 
tions work vel-y well. the sequential 
implementations do not havc to be fun- 
damentally restructured. and the high de- 
gree of temporal locality obviates the 
need for explicit data distribution and 
communication management. 

We demonstrate our claims through 
parallel versions of three state-of-the-art 
algorithms: a recent hierarchical radiosity 

Cache-coherent shared-address-space multiprocessors 

Figure A shows the generic shared-address-space multi- 
processor that we assume in our parallelization. The multi- 
processor consists of a number of processing nodes con- 
nected by a general interconnection network. Every node 
contains a processor, a cache, and a portion of the total 
physical (main) memory on the machine. The address 
space is shared, so that any processor can reference any 
variable regardless of where it resides. When a processor 
reads or writes a word, that word is brought into the proces- 
sor's cache. Modifying locally cached shared data intro- 
duces the cache coherence problem, which is solved by 
using a distributed directory-based protocol supported in 
hardware.' 

The two important goals in parallelizing an algorithm to run 
on such a machine are balancing the workload across the 
cooperating processors and presewing locality of data refer- 
encing. Locality is important because even though memory 
is uniformly addressable, it is not uniformly accessible: The 
cost of accessing a data item increases with the distance the 
access must travel from the issuing processor. Load balanc- 
ing and data locality are often at odds with each other and 
must be traded off for good performance. 

locality at three levels of th6 memay and interconnection 
hierarchy: 

The generalised multiprocessor shown in Figure A affords 

Cache focality. This includes both the temporal locality 
exploited by reusing data that a processor brings into its 
cache (whether from its own local memory unit or from 

network) and Me spatiat l o ~ a l i  pfovided by 
multiword cache lines. 

algorithm by Hanrahan et al.,' a paral- 
lelized ray-casting volume renderer by 
Levoy.' and an optimized ray-tracer by 
Spach and Pulleyblank.' We also discuss 
a new shear-warp volume rendering al- 
gorithm' that provides what is to  our 
knowledge the first demonstration of in- 
teractive frame rates for a 256 x 256 x 256 
voxel data set on a general-purpose mul- 
tiprocessor. The images used in these 
demonstrations are shown in Figure 1. 

FigureA.The I 
algorithms 
were paral- 
lelized to run 
on a shared- 
address-space 
multiprocessor 
with physically 
distributed I I L  I 

I 1  

Interconnection network I '  memory. 

close as possible to the issuing processor in the network 
topology. 

Neither memory nor network locality is important in the visual- 
ization algorithms we examine in this artide. The temporal 
cache locality that obviates these problems falls naturally out of 
the spatial coherence in the appliitions exploited by simple 

physical memory on the ma& 
mam on a 
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Figure 1. Images rendered by the three applications: (a-b) hierarchical radiosity image and image showing the patches cre- 
ated, (c) volume rendering, and (d) ray tracing. Figures (a) and (b) courtesy of Pat Hanrahan, (c) courtesy of North Carolina 
Memorial Hospital, and (d) courtesy of Hewlett-Packard. 

Hier arc hic a1 
radiosity 

The radiosity method computes the 
global illumination in a scene containing 
diffusely reflecting surfaces. I t  is a view- 
independent visualization method. which 
means that the radiosity does not have to 
be recomputed when the viewpoint 
changes. 

In traditional radiosity approaches, the 
large polygonal surfaces that describe a 
scene (such as walls or a desktop) are first 
subdivided into small elements or patches 
whose radiosity is approximately uniform 
over their surfaces. The radiosity of a 

patch i can be expressed as a linear com- 
bination of the radiosities o f  all other 
patches j .  leading to  a linear system of 
equations. The coefficients in the linear 
combination are the "form factors" be- 
tween the patches. where the form fac- 
tor bi from patch j to patch i is the frac- 
tion o f  light energy leaving; that arrives 
at i. The inherent form factor depends on 
the shape of each patch i andj.  the angle 
the patches make with each other. and 
the distance between them. However. 
this must bc modified by the presence of 
any intervening patches that occlude the 
visibility between i and j. 

The computation of form factors is the 
most time-consuming part of a radiosity 

algorithm. The number of form factors 
among all pairs of n patches is O(n' ) .  
and each of these pairs has to be tested 
for intervisibility, making traditional 
radiosity methods (including progressive 
radiosity') very expensive. 

A new hierarchical method' dramati- 
cally reduces the complexity of comput- 
ing radiosities. The method is inspired 
by recent advances in using hierarchical 
methods to solve the N-body problem. 
A scene is initially modeled as compris- 
ing a number. say k ,  of large input poly- 
gons. Light-transport interactions are 
computed among these polygons. and 
polygons are hierarchically subdivided 
as necessary to improve accuracy. Each 
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Figure 2. Refinements and interactions in the hierarchical radiosity application. In 2b, we show binary trees instead of quad- 
trees and only one polygon's interaction lists for simplicity. 

subdivision results in four subpatches. 
leading to a quadtree per input polygon. 
If the resulting final number of undivided 
subpatches is n, the number of interac- 
tions or  form factors computed by this 
algorithm is O(n + k?).  A brief descrip- 
tion of the algorithm follows. (Details 
can be found in Hanrahan et al.' and in 
Singh.') 

Sequential algorithm. The input poly- 
gons that constitute the scene are first in-  
serted into a binary space partitioning 
(BSP) tree to facilitate efficient visibility 
computation between pairs of patches. 
Every input polygon is given an interac- 
tion list of other input polygons which are 
potentially visible from it and with which 
it must therefore compute interactions. 
Then, polygon radiosities are computed 
by the following iterative algorithm: 

(1) For every polygon. compute its ra- 
diosity due to all polygons on its in- 
teraction list. subdividing it or other 
polygons hierarchically as necessary. 
Subdivided patches acquire their 
own interactions lists and are pro- 
cessed recursively (see Figure 2). 

(2) Add all the area-weighted polygon 
radiosities to obtain the total ra- 
diosity of the scene and compare i t  

with that of the previous iteration to 
check for convergence. If the ra- 
diosity has not converged to within a 
user-specified tolerance. return to 
step 1. Otherwise, go to step 3. 

(3) Smooth the solution for display by 
computing the radiosities at the ver- 
tices of the leaf-level elements. 

Most of the time in an iteration is spent 
in step 1. In every iteration. each of the 
quadtrees is traversed depth-first. starting 
from the root. At every quadtree node 
visited in this tra\ersal. we compute a 
patch's (patch r .  say) interactions with all 
other patches./. in its interaction list. An 
interaction may cause one of the inter- 
acting patches to be subdivided and chil- 
dren to be created for the subdivided 
patch. if they don't already exist. If patch 
i (the patch being visited) is subdivided. 
patch j is removed from i's interaction list 
and added to each of i's children's inter- 
action lists. If patch j is subdivided. it is re- 
place by its children on patch i 's  interac- 
tion list. Figure Zb shows an example of 
this hierarchical refinement of interac- 
tions. Patch i'\ interaction list is com- 
pletely processed i n  this manner before 
\ isiting its childt-en in the tree traversal. 

At the beginning of an iteration. ii 

patch's intcraction list in anv quadtree is 

exactly as it was at the end of the previous 
iteration: It contains the patches with 
which its interaction did not cause a sub- 
division. 

Exploiting parallelism. Parallelism is 
available at three levels in this application: 
across input polygons. across the patches 
that a polygon is subdivided into, and 
across the interactions computed for a 
patch. Since the patch quadtrees are con- 
structed as the application proceeds, all 
three levels of parallelism involve com- 
munication and synchronization among 
processors. For example, a processor must 
lock a patch to ensure that it has exclusive 
access before subdividing the patch. 

Statically assigning polygons or poly- 
gon pairs to processors leads to severe 
load imbalances. since the workload dis- 
tribution across polygon pairs is highly 
nonuniform and unpredictable. Our par- 
allelization technique therefore uses dy- 
namic task stealing for load balancing. 
We obtain the best performance by defin- 
ing a task to be either a patch and all its 
interactions or a single patch-patch in- 
teraction. depending on the size of the 
problem and the number of  processors 
(the difference is usually small). 

The parallel implementation provides 
every processor u,ith its own task queue. 
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Figure 3. Speedups (a) and working sets (b) for the radiosity application. The BF refinement threshold was set to 0.02 and the 
area refinement threshold to 2,000 units.’The algorithm took seven iterations to converge on a uniprocessor. 

A processor‘s task queue is initialized 
with a subset of the initial polygon-poly- 
gon interactions. When a patch is subdi- 
vided, new tasks involving the subpatches 
are enqueued on the task queue of the 
processor that did the subdivision. A pro- 
cessor consumes tasks from its task queue 
until there are no tasks left. It then steals 
tasks from other processors‘ queues. 
which it can directly access in the shared 
address space. 

While task stealing provides load bal- 
ancing. it can also compromise data lo- 
cality. We try to preserve locality as fol- 
lows.h A processor inserts tasks at the 
head of its queue. It dequeues tasks from 
the head of its own queue (to yield a 
depth-first search of quadtrees and hence 
reuse portions of the BSP tree efficiently 
across visibility-testing interactions) but 
steals from the tail of another processor‘s 
task queue (increasing the likelihood of 
stealing a large patch. within which lo- 
cality can be exploited). 

Results and discussion. This simple 
parallelization is both conceptually natu- 
ral and easy to implement in a shared ad- 
dress space. As seen in Figure 3a. it also 
yields very good speedups on the Dash 
multiprocessor, even though no  attempt 
was made to distribute (or replicatc) data 

in main memory. (Appropriate data dis- 
tribution at page granularity would have 
been very difficult, given the irregular, 
dynamic data structures and fine-grained 
data-sharing patterns of the algorithm.) 
Good speedups are also obtained on the 
Challenge (data distribution is not an is- 
sue here given its centralized shared 
memory). Because we used the relatively 
small (174 input polygons) room scene in 
Hanrahan et al.’ (Figure l a ) ,  speedups 
scale more slowly beyond 32 processors 
on Dash. We expect even better 
speedups with larger input scenes and 
that the effectiveness of shared-address- 
space multiprocessors will extend to 
other radiosity algorithms, such as hier- 
archical radiosity with glossy surfaces, 
zonal radiosity. and even importance- 
driven radiosity (since there appears to 
be no need for data redistribution even if 
the viewpoint changes). 

We now show that the reason we ob- 
tain good performance without attention 
to locality in main memory is the appli- 
cation‘s high degree of temporal locality 
on shared, as well as private, data and the 
effectiveness of automatic caching in ex- 
ploiting this locality transparently. To an- 
alyze temporal locality. we measure the 
size and impact of the application‘s im- 
portant per-processor working sets. We 

measure working sets by using a simu- 
lated multiprocessor with fully associa- 
tive caches to plot the read-miss rate ver- 
sus cache size, following the methodology 
described by Rothberg et al.’ Figure 3b 
indicates a very high degree of temporal 
locality, given that a 4-Kbyte cache re- 
duces the miss rate to a negligible quan- 
tity. We can explain this significant tem- 
poral locality as follows. 

The algorithm spends most of its time 
computing the visibility between inter- 
acting patches (say i and;). Visibility for 
an interaction is computed by firing a 
number of “random” rays from i to; and 
measuring the fraction of these rays that 
reachjwithout being occluded. Since oc- 
clusion is determined using the BSP tree, 
the algorithm repeatedly traverses the 
relevant portion of the BSP tree between 
the input polygons that are the ancestors 
of patches i and j .  The processor’s next 
visibility interaction will likely be be- 
tween patch i and a child of patch ; and 
will thus reuse the same portion of the 
BSP tree. As a result, the important 
working set for a processor is a fraction of 
the BSP tree, which is very small com- 
pared with the entire data set of 
quadtrees. The size of the working set 
(BSP tree) grows as the logarithm of the 
number of input polygons and is inde- 
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pendent of the number o f  processors 
used. Given the large (often multi- 
megabyte) cache sizes on current shared- 
address-space machines. there is little 
chance of encountering problems whose 
working sets will overflow) these caches. 

The use of hierarchy allows this algo- 
rithm to exploit temporal locality better 
than traditional radiosity algorithms. 
which sweep through all patches a s  the! 
shoot radiosity to  them. The hierarchical 
algorithm's use of gathering rather than 
shooting also results in better communi- 
cation behavior - since only a processor 
that owns a patch writes the radiosity of 
that patch - and avoids the trade-off he- 
tween concurrency and the shooting ap- 
proach's need to preserve the sorted or- 
der of patchesh In fact. gathering has 
been observed to work better than shoot- 
ing in parallel even for traditional ra- 
diosity algorithms on message-passing 
machines.x 

Volume rendering 
Volume rendering techniques are very 

important in the analysis and undcr- 
standing of multi di m e nsio na 1 sam p I e d 
data, such as those generated in various 
scientific disciplines. The first parallel al- 

Figure 4. Image 
plane partition- 
ing in the volume 
renderer for four 
processors. 

gorithm we use. developed by Nieh and 
Levoy.' renders volumes using optimized 
ray-casting techniques. LJntil very re- 
cently. the sequential algorithm was one 
of the fastest algorithms known for vol- 
ume rendering. We then examine a much 
faster shear-warp algorithm that. when 
parallelized. can produce interactive 
frame rates for a rotation sequence of a 
256 x 256 x 256-voxel data set on a gen- 
eral-purpose multiprocessor. 

Sequential raycasting algorithm. The 
volume t o  he rendered I S  represented by 
a cube of voxcls (or volume elements). 
For each voxel. a color and a partial opac- 

ity have been computed during a prior 
shading operation. The outermost loop 
o f  the computation is over a sequence of 
viewing frames. In  a typical sequence. 
successive frames correspond to chang- 
ing the angle between the viewer and the 
volume being rendered. For each frame, 
rays are cast from the viewing position 
into the volume data through pixels in 
the image plane that corresponds to that 
frame. Colors and opacities are com- 
puted for a set of evenly spaced sample 
locations along each ray by trilinearly in- 
terpolating from the colors and opacities 
of surrounding voxels. These samples are 
blended using digital compositing tech- 
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Figure 5. Speedups (a) and working sets (b) for the ray-casting volume renderer. The threshold opacity value for early ray 
termination is set to 0.95, on a scale from 0 to 1.0. About 22,000 rays (245,000 samples) were traced in the case with adaptive 
sampling and 173,000 rays (618,000 samples) with nonadaptive sampling. 
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Figure 6. The recently developed shear-warp volume rendering method. 

niques to yield a single color for the ray 
and hence for the corresponding pixel. 
Rays in a volume renderer typically are 
not reflected, but pass straight through 
the volume unless they encounter too 
much opacity and are terminated early. 

The algorithm uses three optimiza- 
tions: (1) the early ray termination men- 
tioned above, controlled by a user-de- 
fined opacity threshold: (2)  an octree 
representation of space to avoid unnec- 
essary sampling in transparent regions 
of the volume; and (3) adaptive image 
sampling. 

Exploiting parallelism. In a shared ad- 
dress space, each processor can directly 
reference any voxel in the data set. Only 
one copy of the voxel data set is main- 
tained, and it is distributed round-robin 
at the granularity of pages among the lo- 
cal memories of processors. No attempt is 
made at smart data distribution, both be- 
cause this is very difficult at page granu- 
larity and because it is impossible to de- 
termine a good static distribution, given 
that the viewpoint and hence the data 
affinity of processors changes across 
frames. The voxel data set is read-only. It 
is therefore very easy to exploit the most 
natural parallelism. which is across rays 
(or pixels in the image plane). However. 
owing to the nonuniformity of the vol- 
ume data, an equal partitioning of the im- 
age plane among processors is not nec- 
essarily load balanced, and task stealing 
is once again required. 

Giveny processors, the image plane is 
partitioned into p rectangular blocks of 
comparable size.' Every image block or 
partition is further subdivided into fixed- 
size square image tiles, which are the 
units of task granularity and stealing. 
These tile tasks are initially inserted into 
the task queue of the processor assigned 
that block (a distributed task-queue sys- 

tem is used. as in the radiosity applica- 
tion). A processor ray-traces the tiles in 
its block in scan-line order. When it is 
done with its block. it steals tile tasks 
from other processors that are still busy. 
Figure 4 shows a four-processor example 
of the image plane partitioning. 

Results. Figure 5a shows speedups on 
Dash for both adaptive and nonadaptive 
sampling. and on the Challenge for non- 
adaptive sampling. The results measure 
rendering time only and do not include 
the time to load in the data set, compute 
opacities and build the octree, and trans- 
fer the rendered image to the frame 
buffer. We use a 256 x 2.56 x 256-voxel 
data set showing a computed tomogra- 
phy rendering of a human head; the re- 
sulting image is shown in Figure IC. The 
image measures approximately 41.5 x 41.5 
pixels. and the total data set size is about 
30 megabytes. A tile size of I: x 8 pixels is 
the unit of task stealing. 

Clearly, the parallel volume renderer 
yields very good speedups on both 
machines. Owing to the need for pixel 
sharing and additional synchronization 
at partition boundaries with adaptive 
sampling.' the speedups in this case are 
somewhat less than with nonadaptive 
sampling. On a 48-processor Dash or a 
16-processor Challenge. we are able to 
come within a factor of three of interac- 
tive rendering. 

As in the radiosity algorithm, the ob- 
served speedups on Dash are very good 
even though we simply distribute data 
round-robin among physical memories. 
Figure 5b shows once more that the 
speedups result from the high degree of 
temporal locality on private as well as 
shared data accesses. The important 
working set in this case is the amount of 
read-only voxel and octree data used in 
sampling a ray that is typically reused by 

the next ray. The reuse is possible be- 
cause of the spatial coherence resulting 
from the contiguity of partitions in the 
image plane: Successive rays cast by a 
processor pass through adjacent pixels 
and tend to reference many of the same 
voxels in the volume. The important 
working set for the 30-megabyte data set 
we use (too large to be rendered at inter- 
active rates) is only 16 kilobytes in size. 
The working-set size is independent of 
the number of processors in this applica- 
tion as well, and is proportional to the 
number of voxels along a single dimen- 
sion of the data set (along a ray) -that 
is, to the cube root of the data set size. In 
addition, the push in volume rendering 
is toward real-time rendering rather than 
rapidly increasing data set sizes. The im- 
portant working set for this algorithm is 
therefore likely to remain small for some 
time to come. 

Interactive frame rates with the paral- 
lel shear-warp method. A new shear- 
warp algorithm has recently been devel- 
oped that can render a 256-cubed-voxel 
data set in one second on a Silicon 
Graphics Indigo workstation.' We have 
parallelized this algorithm on Dash and 
the Challenge. 

The shear-warp algorithm proceeds in 
two phases. It first factors the viewing 
transformation into a 3D shear parallel 
to the data slices and projects the data to 
form a distorted intermediate (compos- 
ited) image. Then it performs a 2D warp 
on the composited image to produce a fi- 
nal undistorted image. Unlike the image- 
order ray-casting algorithm, this is an ob- 
ject-order algorithm that streams through 
slices of the sheared volume data set in 
front-to-back order and splats voxels 
onto the corresponding pixels in the com- 
posited image. In contrast to the ray-cast- 
ing approach. volume shearing has the 
attractive property of exploiting spatial 
cache locality (with multiword cache 
lines) in both the object and image data. 
The algorithm uses run-length encoding, 
min-max pyramids, and multidimen- 
sional summed area tables to achieve its 
efficiency without sacrificing image qual- 
ity. Its phases are depicted in Figure 6. 

We parallelize the first (compositing) 
phase by partitioning the intermediate or 
composited image among processors. 
This ensures that only one processor 
writes a given pixel in the composited im- 
age. If the original voxel data set were 
partitioned among processors, different 
processors would write the same pixels 
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Figure 7. Speedups (a) and working sets (b) for the ray tracing application. The hierarchical uniform grid is subdivided to a 
maximum of three levels, with five-way subdivision in each dimension and a maximum of 60 primitive objects per leaf cell of 
the hierarchy. The size of a tile (the unit of task stealing) is 8 x 8 pixels. 

(due to the shearing of the voxel data set) 
and synchronization would be required 
to ensure mutual exclusion when updat- 
ing pixels and to preserve dependencies 
between processing slices of the data set. 
The composited image is divided into 
groups of scan lines (the optimal group 
size depends on the size of the problem 
and the cache line size on the machine), 
and the groups are assigned to processors 
in an interleaved manner (Figure 6 shows 
the partitioning for two processors). In-  
stead of streaming through a full 2D slice 
of the voxel data set before going to the 
slice behind it, as in the serial implemen- 
tation, a processor now streams through 
the voxels that correspond to one group 
of image scan lines that it is assigned, then 
proceeds to the similar group in the next 
slice, and so on. When it has gone through 
all the slices for one group of image scan 
lines, it processes the other groups it is as- 
signed similarly, and finally steals groups 
from other processors. The 2D warp is 
also partitioned in groups of scan lines. 
by partitioning the final warped image 
among processors this time. 

This parallelization achieves good 
speedups and lets us obtain interactive- 
rendering rates of 12 frames a second for 
a rotation sequence on a 256-cubed-voxel 
human-head data set. These speeds were 
obtained on a general-purpose, 16-pro- 

cessor Challenge machine (a single pro- 
cessor takes about 1 second per frame). 
Thus, both image-order and object-order 
volume-rendering algorithms can be par- 
allelized effectively on cache-coherent 
multiprocessors. 

Ray tracing 
Our final application is an optimized 

ray tracer. The ray tracer was originally 
developed by Spach and Pulleyblank4for 
a message-passing machine. with dupli- 
cation of the entire scene data set on ev- 
ery processing node. and was later 
adapted to the current implementation 
on a shared-address-space machine with- 
out data set duplication. 

Sequential algorithm. As in the ray- 
casting volume renderer. primary rays 
are fired from a viewpoint through the 
pixels in an image plane and into a space 
that contains the objects to be rendered. 
When it encounters an object. the ray is 
reflected toward each light source to de- 
termine whether i t  is shielded from that 
light source and. if not. to compute the 
contribution of the light source. The ray 
is also reflected from, and refracted 
through. the object as appropriate. 
spawning new rays. The same operations 

are performed recursively on the new 
rays at every object they encounter. Thus, 
each primary ray generates a tree of rays, 
the rays being terminated when they 
leave the volume enclosing the scene or 
by some user-defined criterion (such as 
the maximum number of levels allowed 
in a ray tree). A hierarchical uniform grid 
(similar to an octree but not necessarily 
with binary subdivisions) is used to tra- 
verse scene data efficiently," and early 
ray tracing and adaptive sampling are im- 
plemented. 

Exploiting parallelism. Like the ray- 
casting volume renderer, the ray-tracing 
algorithm affords substantial parallelism 
across rays, and the scene data is read- 
only. Here again, only a single copy of 
the scene database is maintained in 
shared space. and it is physically dis- 
tributed round-robin at page granularity 
among the memories. The partitioning 
scheme is almost identical to the one used 
for the ray-casting volume renderer, with 
a similar distributed task-queue system 
for load balancing. 

Results. Figure 7 shows the speedups 
for the parallel ray tracer. The scene be- 
ing rendered is a car on a checkerboard 
floor. as shown in Figure Id ,  and the im- 
age has 512 x 512 pixels. The data set size 
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is about 10 megabytes. No antialiasing is 
used in these measurements. We obtain 
excellent speedups without any attention 
to data distribution. 

As in volume rendering. the important 
working set in ray tracing consists of the 
data encountered in processing one pri- 
mary ray (and the tree of rays it gener- 
ates) that can be reused in processing pri- 
mary rays cast through neighboring 
pixels. The difference is that the working 
set is larger and not so well defined (as 
compared to that for the ray-casting al- 
gorithm shown in Figure 5 ) .  owing to the 
unpredictability of reflections. The work- 
ing-set size is once again independent of 
the number of processors. Its size de- 
pends on the hierarchical grid parame- 
ters discussed above. the reflectivity of 
the scene, and the number o f  levels al- 
lowed in the ray tree. Modern second- 
level caches should continue to keep the 
miss rate low enough to provide good 
performance. 

On  machines that require main mem- 
ory to be managed at the granularity of 
pages and under software control. sev- 
eral characteristics of these applications 
make it very difficult to manage data dis- 
tribution and replication in main mem- 
ory. These include ( 1 )  dynamic data 
structures (the quadtrees) in radiosity 
and changing viewpoints in the other ap- 
plications, which make it extremely diffi- 
cult to determine which processors access 
which data most often: (2) fine-grained 
data sharing, which makes pages an in-  
appropriate granularity for locality man- 
agement; and (3) dynamic task stealing. 
Thus, it is fortunate that caches work 
well. The same characteristics make i t  
very difficult to program these visualiza- 
tion algorithms for effective parallel per- 
formance on message-passing machines 
that do  not support a shared address 
space. as we shall now see. 

Shared address 
space versus 
message passing 

There are three primary aspects of 
communication management that distin- 
guish the communication abstractions of 
a shared address space and message pass- 
ing between private address spaces: ( 1 ) 
the naming of logically shared data, (2 )  
exploiting temporal locality on logically 
shared data. which includes both manag- 
ing data replication and renaming as well 

B S  maintaining the coherence of repli- 
cated data. and (3) the granularity and 
overhead o f  communication. 

In a shared-addrcss-space abstraction, 
any datum ~ local or nonlocal - can be 
referenced by any processor using the vir- 
tual address (name) of that datum in the 
shared address space. In the message-pass- 
ing abstraction. on the other hand. a pro- 
cessor can directly reference only those 
data that are allocatcd in its private ad- 
dress space (local memory). A processor 
must therefore know or determine which 

The cost of hardware 
support for a cache- 

coherent shared 
address space 

is justified by the 
ease of programming 

and performance 
it affords. 

processor's address space a datum resides 
in and send a message to that processor 
requesting the datum if it is nonlocal. 

As we have seen. temporal locality on 
both local and nonlocal data is handled 
automatically in shared-address-space ma- 
chines that cache shared data (if the caches 
are large enough). and machines like Dash 
automatically keep the cached shared data 
coherent as well. On message-passing ma- 
chines. nonlocal data must be replicated 
explicitly by the user and kept coherent 
by explicit communication of messages in 
the application program. The replicated 
data is thus explicitly renamed in message- 
passing programs. while hardware trans- 
parently takes care of renaming in the 
cache-coherent approach. 

Finally. while hardware-coherent 
shared-address-space machines support 
communication efficiently at the fine 
granularity of cache lines. the overhead 
of initiating and receiving communication 
is much larger on message-passing ma- 
chines (owing to software involvement). 
and it is therefore important to make mes- 
sages large to amortize this overhead. 
Note that a coherent shared-address- 
space abstraction can be provided in soft- 
ware on a machine that does not provide 
any hardware support for i t  (such as an 

Intel iPSCi860 or Paragon message-pass- 
ing machine): however, this is typically 
too inefficient for complex programs with 
fine-grained communication needs. 

The disadvantage o f  cache-coherent 
machines is the cost and design com- 
plexity of cache coherence. However. 
recent efforts to  build these machines 
have shown that the costs are quite 
small. In fact. the cost of the extra main 
memory needed on message-passing 
machines for explicit replication of op- 
erating system code. application code, 
and data often dominates the hardware 
cost of cache coherence. In any case. we 
argue that the cost of providing hard- 
ware support for a cache-coherent 
shared address space is more than justi- 
fied by the ease of programming and 
performance it affords. 

Managing communication explicitly is 
not very difficult for applications with 
regular, predictable behavior (such as 
those that solve systems of equations on 
regular grids). However, this is not true of 
visualization applications. Below. we use 
the ray-tracing and radiosity applications 
to discuss the difficulties of message-pass- 
ing implementations for these irregular 
applications. (The issues in volume ren- 
dering are similar to those in ray tracing.) 

Ray tracing. The main problems for 
message passing in the ray tracer are (1) 
managing the naming, replication, and 
fine-grained communication overhead is- 
sues in sharing the read-only scene data. 
and (2) managing load balancing. A third 
problem arises in managing synchroniza- 
tion when adaptive sampling is used to  
reduce computation time. 

Numirig. Any processor may need to 
access parts of the scene data set with 
fairly unstructured access patterns. Repli- 
cating the entire data set on all nodes is 
not an acceptable solution, since it 
severely limits the size of the problems 
that can be solved and is not scalable. A 
reasonable data distribution for message 
passing is to assign every processor 
(memory) a contiguous subvolume of the 
scene space. so that a processor P can de- 
termine which processor Q a ray goes to 
when i t  leaves P's partition. Processor P 
then has two choices: It  can send the ray 
to Q. which will then continue to  trace 
the ray, or it can communicate with Q to 
obtain the volume data the ray needs and 
continue to  process the ray itself. Both 
approaches have been tried.'.9 Managing 
the naming and naturally fine-grained 
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communication in both approaches is 
complex and inefficient compared with 
using a hardware-supported shared ad- 
dress space. 

Replication. We have seen that replica- 
tion of communicated scene data is very 
important to good performance. This is 
in fact accentuated on message-passing 
machines. where the overheads of com- 
munication are much larger. One ap- 
proach to managing replication is to repli- 
cate every remote data structure that is 
touched and hold it locally for the dura- 
tion of a frame, replacing data between 
frames. However. this can lead to large 
storage overheads without any benefits in 
complexity. The best approach for man- 
aging replication on a message-passing 
machine, used by Green and Paddon." is 
to emulate a fixed-size hardware cache 
for nonlocal data in the application pro- 
gram itself. Since this approach essentially 
amounts to implementing a restricted 
form of a shared address space with 
caches in the application program. it sup- 
ports the argument for a shared-address- 
space machine (particularly since we have 
seen that realistic hardware caches are 
large enough to yield very good perfor- 
mance in such a machine). In fact. imple- 
menting this method of managing repli- 
cation in software on a message-passing 
machine has significant overheads, since 
it introduces explicit renaming and in ir- 
regular applications necessitates a check 
in software on every reference to scene 
data (to determine whether the refer- 
enced item is locally allocated. remotely 
allocated but in the local cache structure. 
or remote). None of this is required in a 
cache-coherent machine. 

Communication overhead and granri- 
larity. All of the above approaches natu- 
rally generate fine-grained communica- 
tion, which is very inefficient given the 
high message overhead on message-pass- 
ing machines. Coalescing messages to 
make them larger requires substantial 
implementation overhead in such an un- 
structured application. 

Task stealing and load balancing. In 
the shared-address-space implementa- 
tion, the load-balancing problem was re- 
solved very simply by task stealing. All 
that was required to implement stealing 
was a lock per task-queue and simple ter- 
mination detection. On message-passing 
machines, task stealing must be done 
through explicit messages. which must 

be handled by the application program 
while it is performing the main compu- 
tation. Task stealing is therefore much 
more complex to program and incurs 
greater overheads on message-passing 
machines. In a survey of message-passing 
i m p I e me n t a t i o n s. G re en and Pad don 
mention several attempts to address the 
load-balancing problem. but not one of 
them uses task stealing. Instead, they try 
to prepartition the image and object 
space intelligently to improve load bal- 
ancing over a uniform decomposition 
(see Kobayashi et al.."' for example). 

We believe that 
general-purpose 
multiprocessors 

will be very 
effective at 

realizing real-time 
or interactive-time 

visualization. 

These complex approaches are input de- 
pendent as well as view dependent. and 
the best ones often require profiling low- 
resolution runs to determine a desirable 
partitioning. 

Finally. optimizations such as adaptive 
sampling (as used in the volume ren- 
derer) further complicate message-pass- 
ing implementations by requiring that the 
necessary synchronization for corner 
pixel values be performed through ex- 
plicit messages while the processes are in 
the midst of the main computation. 

Radiosity. The hierarchical radiosity 
algorithm is much more complex to im- 
plement with explicit message passing. In 
addition to the irregular. unpredictable 
data accesses and the need for task steal- 
ing that it shares with the ray tracer and 
volume renderer. i t  has two other com- 
plicating properties: ( I )  the main data 
structures (quadtrees of patches) are dy- 
namically changing. since they are built as 
the computation proceeds: and (2)  these 
data structures are not read-only but are 
actively read and written by different pro- 
cessors in the same computational phase. 
which complicates coherence manage- 

ment. Implementations of message-pass- 
ing versions by graduate students on an 
Intel iPSCi860 machine have been exer- 
cises in frustration and only yielded 
elevenfold speedups on 32 processors be- 
fore the project was abandoned as not 
being worthwhile. We briefly describe 
some of the main problems here. (De- 
tailed descriptions and explanations can 
he found in Singh.") 

Naming. Given the dynamic data 
structures. we solve the naming problem 
by giving every patch a unique identifier 
of the form quadtree.patch, where 
quadtree is the number of the quadtree 
or polygon of which that patch is a part, 
and patch is the (globally consistent) 
number of the patch within that 
quadtree. Thus. we essentially imple- 
ment an application-specific shared ad- 
dress space in software. 

Replication rrritf coherence. We have ex- 
perimented with two approaches to man- 
age replication and coherence. In the first 
approach. processors start a time step 
with local copies of all the data corre- 
sponding to their patches and interaction 
lists. They modify these data by subdivid- 
ing their and others' patches locally as 
needed in an iteration, and they commu- 
nicate the modifications to other inter- 
ested processors only at iteration bound- 
aries. Coherence is thus maintained at a 
Lery coarse temporal granularity (an en- 
tire iteration), stale local information is 
often used or extrapolated from, and the 
extra memory overhead is typically very 
large. Special data structures also have to 
be maintained dynamically to keep track 
of which patches are interested in updates 
made to a given patch. This is similar to 
maintaining an application-specific direc- 
tory for cache coherence. 

The  second approach is once again 
to emulate a shared address space and 
caches in the application program. A sin- 
gle "master" copy of the forest of 
quadtrees is maintained in distributed 
form and manipulated dynamically 
through message passing. This approach 
leads to much finer grained communica- 
tion and to localicachediremote checks 
at every reference to quadtree data. 

Tusk stealing and load balancing. The 
complexity of maintaining coherence is 
greatly increased by the need for task 
stealing. particularly in the local 
quadtrees approach. When a patch is 
stolen, we must decide whether the 
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patch's ownership remains with the old 
processor or is passed on to the stealer: 
either possibility complicates coherence 
and communication management. Al- 
though stealing does help load balancing. 
its communication and bookkeeping 
overheads are so large in our current im- 
plementation that it improves speedups 
from only ten- to elevenfold with 32 pro- 
cessors on an Intel iPSCi860 machine. 

The control and timing issues in han- 
dling messages for data, control. coher- 
ence. synchronization, and load balancing 
while performing the main computation 
are very difficult to program and debug in 
message-passing hierarchical radiosity. On 
the other hand, we have shown that cache- 
coherent shared-address-space machines 
solve this problem very well. 

W e have shown that general- 
purpose multiprocessors that 
efficiently support a shared 

address space and cache shared data are 
very effective vehicles for speeding up 
state-of-the-art visualization and image 
synthesis algorithms. Excellent parallel 
speedups were demonstrated on some of 
the most efficient sequential algorithms. 
including hierarchical radiosity, ray-cast- 
ing and shear-warp volume rendering. 
and ray tracing. 

A shared address space allows us to 
easily implement very natural paral- 
lelizations. and transparent coherent 
caching suffices to exploit enough tem- 
poral locality to yield excellent parallel 
performance. On the other hand. the dy- 
namic nature and unstructured access 
patterns of all the algorithms make i t  
much harder to program them effec- 
tively in an explicit message-passing 
paradigm. 

We therefore believe that scalable 
multiprocessors should provide efficient 
support for a cache-coherent shared ad- 
dress space if they target computer 
graphics and visualization among their 
application domains. Such general-pur- 
pose machines will be very effective at 
realizing real-time or interactive-time vi- 
sualization of interesting data sets in the 
future. We have shown that they can al- 
ready do  this for volume rendering using 
the new shear-warp algorithm. 
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