CSE548 — Lecture 12
Transactional Memory



TM: Architectural Support

Transactional memory: efficient support for lock-free
synchronization

— Avoids: Priority inversion, convoying, deadlocks
Two properties of TM:

— Serializability: appear to execute serially

— Atomicity: transactions either commit or abort
Primitives for accessing memory:

— Load-transactional, Load-transactional-exclusive, store-transactional
Primitives for manipulating transaction state:

— Commit, abort, validated

— Commits succeed only if no other transactions has updated the
memory location’s data set, and no other transaction has read any
location in the transaction’s write set.



TM: Architectural Support

* Implementation:
— Hardware support is restricted to primary caches

— TM is implemented by modifying standard multiprocessor
cache coherence protocols

— At any time, a memory location is either:
* Not immediately accessible by any processors
* Accessible non-exclusively by one or more processors
* Accessible exclusively by exactly one processor

— Two caches: a regular cache for non-TM ops, and a
transactional cache for transactional ops

— Transactional cache holds al the tentative writes, w/o
propagating them to the other processors or to main
memory unless the transaction commits



Virtualizing TM

* |ssues with architectural support for TM:

— Hardware proposals requires programmers to be
aware of platform-specific resource limitations

— Examples are: buffer sizes, scheduling quanta, page
faults, process migration

* VIM:

— Solves resource or scheduling limitation issues

— Use programmer transparent software structures to
hide the buffer overflow, page faults, context switches
etc.

— The idea is to decouple transactional state from
processor state



Discussion

* Open challengesin TM

— Virtual address aliasing to allow sharing between
two processes

— OS sys calls within a transaction
— |/O within a transaction?



