
Same problem,
different approach

Monitor process does not query explicitly

Instead, it passively collects information and
uses it to build an observation.

(reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the
distributed computation based on the order in
which the receiver is notified of the events.

75

Observations:
a few observations

An observation puts no constraint on the order
in which the monitor receives notifications

p1

e
1

1

p0

76

Observations:
a few observations

An observation puts no constraint on the order
in which the monitor receives notifications

p1

e
1

1
e
2

1

p0

77

Observations:
a few observations

An observation puts no constraint on the order
in which the monitor receives notifications

p1

e
1

1
e
2

1

p0

78

Observations:
a few observations

An observation puts no constraint on the order
in which the monitor receives notifications

To obtain a run, messages must be delivered to
the monitor in FIFO order

p1

e
1

1
e
2

1

p0

79

Observations:
a few observations

An observation puts no constraint on the order
in which the monitor receives notifications

To obtain a run, messages must be delivered to
the monitor in FIFO order
What about consistent runs?

p1

e
1

1
e
2

1

p0

80

Causal delivery

FIFO delivery guarantees:
sendi(m) → sendi(m

′) ⇒ deliverj(m) → deliverj(m
′)

81

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

82

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

83

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

84

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

m
′

85

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

m
′

1

86

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

m
′

1 2

87

Causal Delivery
in Synchronous Systems

We use the upper bound on
message delivery time

∆

88

Causal Delivery
in Synchronous Systems

We use the upper bound on
message delivery time

DR1: At time , delivers all messages
it received with timestamp up to
in increasing timestamp order

∆

t p0

t−∆

89

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in
! increasing (logical clock) timestamp order.

90

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in
! increasing (logical clock) timestamp order.

1
p0

91

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in
! increasing (logical clock) timestamp order.

1
p0

4
Should deliver?p0

92

Causal Delivery
with Lamport Clocks

! DR1.1: !Deliver all received messages in
! increasing (logical clock) timestamp order.

Problem: Lamport Clocks don’t provide gap detection

1
p0

4
Should deliver?p0

Given two events and and their clock
values and — where
determine whether some event exists s.t.

e e
′

LC(e) LC(e′) LC(e) < LC(e′)

LC(e) < LC(e′′) < LC(e′)

e
′′

93

Stability

DR2: !Deliver all received stable messages in
increasing (logical clock) timestamp order.

A message received by is stable at if
will never receive a future message s.t.

m

m
′

pp p

TS(m′) < TS(m)

94

Implementing Stability

Real-time clocks

wait for time units∆

95

Implementing Stability

Real-time clocks

wait for time units

Lamport clocks

wait on each channel for s.t.

Design better clocks!

∆

m TS(m) > LC(e)

96

Clocks and STRONG Clocks

Lamport clocks implement the clock condition:

We want new clocks that implement the
strong clock condition:

e → e
′
⇒ LC(e) < LC(e′)

e → e
′
≡ SC(e) < SC(e′)

97

Causal Histories

The causal history of an event in is the sete (H,→)

θ(e) = {e′ ∈ H | e
′ → e} ∪ {e}

98

Causal Histories

The causal history of an event in is the sete (H,→)

p2

p1

p3

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1

e
1

2 e
2

2 e
3

2

e
3

3e
1

3 e
2

3 e
4
3

θ(e) = {e′ ∈ H | e
′ → e} ∪ {e}

99

Causal Histories

The causal history of an event in is the sete (H,→)

p2

p1

p3

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1

e
1

2 e
2

2 e
3

2

e
3

3e
1

3 e
2

3 e
4
3

e → e
′
≡ θ(e) ⊂ θ(e′)

θ(e) = {e′ ∈ H | e
′ → e} ∪ {e}

100

How to build

Each process :

initializes

if is an internal or send event, then

if is a receive event for message , then

θ(e)

θ : θ := ∅

e
k
i

pi

e
k
i m

θ(ek
i) :={ek

i } ∪ θ(ek−1

i
) ∪ θ(send(m))

θ(ek
i) :={ek

i } ∪ θ(ek−1

i
)

101

Pruning causal histories

Prune segments of history that are known to
all processes (Peterson, Bucholz and
Schlichting)

Use a more clever way to encode θ(e)

102

Vector Clocks

Consider , the projection of on

 is a prefix of : – it can be
encoded using

 can be
encoded using

θi(e) θ(e) pi

θi(e) h
i θi(e) = h

ki

i

ki

θ(e) = θ1(e) ∪ θ2(e) ∪ . . . ∪ θn(e)
k1, k2, . . . , kn

Represent using an -vector such thatθ n V C

V C(e)[i] = k ⇔ θi(e) = h
ki

i

103

Update rules

pi

pi

ei

m

ei

Message is
timestamped with

m

TS(m) = V C(send(m))

V C(ei)[i] := V C[i] + 1

V C(ei) := max(V C, TS(m))

V C(ei)[i] := V C[i] + 1

104

Example

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

105

Operational
interpretation

=

=

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

V C(ei)[i]

V C(ei)[j]

106

Operational
interpretation

= no. of events executed by up to and including

=

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

piV C(ei)[i]

V C(ei)[j]

ei

107

Operational
interpretation

= no. of events executed by up to and including

= no. of events executed by that happen before of

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

piV C(ei)[i]

V C(ei)[j]

ei

pj piei

108

VC properties:
event ordering

Given two vectors and , less than is defined as:

Strong Clock Condition:

Simple Strong Clock Condition:
 Given of and of , where

Concurrency
 Given of and of , where

V V
′

V < V
′ ≡ (V "= V

′) ∧ (∀k : 1 ≤ k ≤ n : V [k] ≤ V
′[k])

ei → ej ≡ V C(ei)[i] ≤ V C(ej)[i]

e → e
′ ≡ V C(e) ≤ V C(e′)

ei ‖ ej ≡ (V C(ei)[i] > V C(ej)[i]) ∧ (V C(ej)[j] > V C(ei)[j])

ei pi pjej i != j

ei pi pjej i != j

109

VC properties:
consistency

Pairwise inconsistency
Events of and of are pairwise
inconsistent (i.e. can’t be on the frontier of the
same consistent cut) if and only if

Consistent Cut
A cut defined by is consistent if and
only if
∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n : (VC(eci

i)[i] ≥ VC(e
cj

j)[i])

(VC(ei)[i] < VC(ej)[i]) ∨ (VC(ej)[j] < VC(ei)[j])

(i != j)

(c1, . . . , cn)

ei pi pjej

110

VC properties:
weak gap detection

Weak gap detection
Given of and of , if
for some , then there exists s.t

VC(ei)[k] < VC(ej)[k]
k != j ek

¬(ek → ei) ∧ (ek → ej)

[2,2,2]

[2,0,1]
pi

pj

pk

[0,0,2]

ei pi pjej

111

VC properties:
weak gap detection

Weak gap detection
Given of and of , if
for some , then there exists s.t

VC(ei)[k] < VC(ej)[k]
k != j ek

¬(ek → ei) ∧ (ek → ej)

[2,2,2]

[2,0,1]
pi

pj

pk

[0,0,2]

ei pi pjej

[2,1,1]

[0,0,1]

[1,0,1]

112

VC properties:
strong gap detection
Weak gap detection

Given of and of , if
for some , then there exists s.t

Strong gap detection
Given of and of , if
then there exists s.t.

VC(ei)[i] < VC(ej)[i]ei pi pjej

e
′

i

¬(ek → ei) ∧ (ek → ej)

(ei → e
′

i) ∧ (e′i → ej)

VC(ei)[k] < VC(ej)[k]
k != j ek

ei pi pjej

113

VCs for Causal Delivery

Each process increments the local component
of its only for events that are notified to
the monitor

Each message notifying event is timestamped
with

The monitor keeps all notification messages in
a set M

e

VC

VC(e)

114

