

Reading

• Foley, Chapter 13.

Further reading:

- Brian Wandell. *Foundations of Vision. Chapter 4.* Sinauer Associates, Sunderland, MA, 1995.
- Gerald S. Wasserman. Color Vision: An Historical Introduction. John Wiley & Sons, New York, 1978

Outline

•Spectrum and color

•Measuring color

•The CIE XYZ color space

•Color spaces for computer graphics

What is Color?

The eyes and brain turn an incoming emission spectrum into a discrete set of values.

The signal sent to our brain is somehow interpreted as *color*.

Color science asks some basic questions:

- When are two colors alike?
- How many pigments or primaries does it take to match another color?

One more question: why should we care?

Transmitting color

Color information is transmitted to the brain in three nerve bundles or **channels**:

- Achromatic channel A = M + L
- **Red-green chromatic channel** R/G = M L
- Blue-yellow chromatic channel B/Y = S A

Saturation is perceived as the ratio of chromatic to achromatic response.

them.

Color Matching Conjecture: every color can be uniquely expressed as a mixing of a small number of *primaries*. (Why is this plausible?) If true, this gives us a meaningful definition of color as a set of primaries and the range of possible combinations between Given a choice of primaries, how can we verify the conjecture?

The solid curve appears green indoors and out. The dashed curve looks green outdoors, but brown under incandescent light.

CIE Coordinates				
Given an emission spectrum, we can use the CIE matching functions to obtain the X, Y and Z coordinates. $X = \int \bar{x}(\lambda)t(\lambda)d\lambda$				
$Y = \int \overline{y}(\lambda) r(\lambda) d\lambda$				
$Z = \int \overline{z}(\lambda) t(\lambda) d\lambda$				
Then we can compute <i>chromaticity coordinates</i> . This gives a brightness independent notion of color.				
$x = \frac{X}{X + Y + Z}$				
$y = \frac{Y}{X + Y + Z}$				
$z = \frac{Z}{X + Y + Z}$				

In practice, there's a set of more commonly-used color spaces in computer graphics:

- RGB for display
- CMY (or CMYK) for hardcopy
- HSV for user selection
- YIQ for television broadcast

CMY

A subtractive color space used for printing.

Mixing two pigments subtracts their opposites from white.

CMYK adds black ink rather than using equal amounts of all three.

Summary

- How the color matching experiment works
- The relationship between color matching and functions cone responses
- The difference between emissive and reflective color
- The CIE XYZ color standard and how to interpret the chromaticity diagram
- The color spaces used in computer graphics

Reading

Optional

- I.E. Sutherland. Sketchpad: a man-machine graphics communication system. *Proceedings of the Spring Join Computer Conference*, p. 329-346, 1963.
- T.H. Myer & I.E. Sutherland. On the design of display processors. *Communications of the ACM* 11(6): 410-414, 1968.

CRTs, cont.

Electrons "boil off" the heated cathode and shoot towards the anode. Electrons striking the phosphors create light through:

- fluorescence (fraction of usec)
- phosphorescence (10 to 60 usec)

Different phosphors have different:

- color
- persistence (as long as a few seconds)

The image must be refreshed to avoid flicker:

- typically need at least 60 Hz (why 60 Hz?)
- exact frequency depends on:
 - persistence
 - image intensity
 - · ambient lighting
 - wavelength
 - observer

• When the beam is turned off to sweep back, that is a **retrace**, or a **blanking interval**.

Resolution				
The display's resolution is determined by:				
number of scan lines				
 number of pixels per scan line 				
 number 	of bits per pixel Bitmapped display	960 x 1152 x 1b	1/8 MB	
Examples:	NTSC TV	640 x 480 x 16b	1/2 MB	
	Color workstation	1280 x 1024 x 24b	4 MB	
	Laser-printed page			
	300 dpi	8.5 x 11 x 300 ² x 1b	1 MB	
	1200 dpi	8.5 x 11 x 1200 ² x 1b	17 MB	
	Film	4500 x 3000 x 30b	50 MB	

Summary

Here's what you should take home from this lecture:

- The basic components of black-and-white and color CRTs
- Computing screen resolution & framebuffer size
- The correspondence between elements of framebuffer memory and pixels on-screen
- How color tables work
- How double-buffering works