

Reading

- Foley, Chapter 13.

Further reading:

- Brian Wandell. Foundations of Vision. Chapter 4. Sinauer Associates, Sunderland, MA, 1995.
- Gerald S. Wasserman. Color Vision: An Historical Introduction. John Wiley \& Sons, New York, 1978

Outline

-Spectrum and color
The eyes and brain turn an incoming emission spectrum into a discrete set of values.

The signal sent to our brain is somehow interpreted as color.
Color science asks some basic questions

- When are two colors alike?
- How many pigments or primaries does it take to match another color?

One more question: why should we care?

Light as Waves

Maxwell described the electromagnetic spectrum and showed that visible light was just part of the spectrum.

Light as Particles

At any given moment, a light source emits some relative amount of photons at each frequency.

We can plot the emission spectrum of a light source as power vs. wavelength.

Transmitting color

Color information is transmitted to the brain in three nerve bundles or channels:

- Achromatic channel $\mathrm{A}=\mathrm{M}+\mathrm{L}$
- Red-green chromatic channel $R / G=M-L$
- Blue-yellow chromatic channel $\mathrm{B} / \mathrm{Y}=\mathrm{S}$ - A

Saturation is perceived as the ratio of chromatic to achromatic response.

- Cones come in three varieties: S, M, and L .

Newton's Experiments

Newton was the first to perform a scientific experiment on color in 1666.

He built a simple colorimeter

- Hole in a shutter
- Prism to disperse white light into a spectrum
- Comb-shaped aperture to manipulate the spectrum
- Converging lens to recombine the spectrum

Newton's Experiments, cont'd

Newton defined two types of light:

- Simple: Light that cannot be furthered dispersed by a prism (now called monochromatic
- Compound: Light that can be dispersed.

He called the colors of simple lights primaries.
[This term means many things today.]

Color Matching

Conjecture: every color can be uniquely expressed as a mixing of a small number of primaries. (Why is this plausible?)
If true, this gives us a meaningful definition of color as a set of primaries and the range of possible combinations between them.

Given a choice of primaries, how can we verify the conjecture?

The Color Matching Experiment

Rods and "color matching"

A rod responds to a spectrum through its spectral sensitivity function, $r(\lambda)$. The response to a test light, $t(\lambda)$, is simply:

$$
R=\int r(\lambda) t(\lambda) d \lambda
$$

For convenience, we can also write this a s:

$$
R=\sum_{i} r\left(\lambda_{i}\right) t\left(\lambda_{i}\right)
$$

If we consider only the visible wavelengths, then we can think of the r and t samples a sdefining vectors, leading to a simple matrix equation:

What does this tell us about rod colordisc rimination?

Cones and color matching

Color is perceived through the responses of the cones to light. The response of each cone can be written simply as:

$$
\begin{aligned}
L_{t} & =\int l(\lambda) t(\lambda) d \lambda \\
M_{t} & =\int m(\lambda) t(\lambda) d \lambda \\
S_{t} & =\int s(\lambda) t(\lambda) d \lambda
\end{aligned}
$$

We can also use matrix notation, which will prove useful in a moment:

$$
\left[\begin{array}{c}
L_{t} \\
M_{t} \\
S_{t}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{l}^{\mathrm{T}} \\
\mathbf{m}^{\mathrm{T}} \\
\mathbf{s}^{\mathrm{T}}
\end{array}\right][\mathbf{t}]
$$

How many primaries do you think we'll need to match t ?

Color matching

Let's sassume that we need 3 primaries to perform the colormatching experiment.

Considerthree primaries, $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}$, with three emissive power knobs, e_{1}, e_{2}, e_{3}.

The three knobsc reate spectra of the form:

$$
e_{1} \mathbf{p}_{1}+e_{2} \mathbf{p}_{2}+e_{3} \mathbf{p}_{3}
$$

How do we set the knobs to match the test spectrum, \mathbf{t} ?

Color matching, cont'd
First, we compute the response to the prima ries:

$$
\begin{aligned}
{\left[\begin{array}{c}
L_{p} \\
M_{p} \\
S_{p}
\end{array}\right] } & =\left[\begin{array}{c}
\mathbf{I}^{\mathrm{T}} \\
\mathbf{m}^{\mathrm{T}} \\
\mathbf{s}^{\mathrm{T}}
\end{array}\right]\left[e_{1} \mathbf{p}_{1}+e_{2} \mathbf{p}_{2}+e_{3} \mathbf{p}_{3}\right] \\
& =\left[\begin{array}{c}
\mathbf{l}^{\mathrm{T}} \\
\mathbf{m}^{\mathrm{T}} \\
\mathbf{s}^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{lll}
\mathbf{p}_{1} & \mathbf{p}_{2} & \mathbf{p}_{3}
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\mathbf{1}\left\lceil\mathbf{p}_{1}\right. & \mathbf{l}\left\lceil\mathbf{p}_{2}\right. & \mathbf{1}\left\lceil\mathbf{p}_{3}\right. \\
\mathbf{m}\left\lceil\mathbf{p}_{1}\right. & \mathbf{m}\left\lceil\mathbf{p}_{2}\right. & \mathbf{m}\left\lceil\mathbf{p}_{3}\right. \\
\mathbf{s}\left\lceil\mathbf{p}_{1}\right. & \mathbf{s}\left\lceil\mathbf{p}_{2}\right. & \mathbf{s}\left\lceil\mathbf{p}_{3}\right.
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right]
\end{aligned}
$$

Color matching, cont'd

In orderfor the primaries to match the test, we require the cone responsesto be identical:
$\left[\begin{array}{c}L_{t} \\ M_{t} \\ S_{t}\end{array}\right]=\left[\begin{array}{c}\mathbf{I}^{\mathrm{T}} \\ \mathbf{m}^{\mathrm{T}} \\ \mathbf{s}^{\mathrm{T}}\end{array}\right][\mathbf{t}]=\left[\begin{array}{c}L_{p} \\ M_{p} \\ S_{p}\end{array}\right]$

This gives us:

$$
\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\Gamma \Gamma \mathbf{p}_{1} & 1\left\lceil\mathbf{p}_{2}\right. & \Gamma \mathbf{p}_{3} \\
\mathbf{m}\left\lceil\mathbf{p}_{1}\right. & \mathbf{m}\left\lceil\mathbf{p}_{2}\right. & \mathbf{m}\left\lceil\mathbf{p}_{3}\right. \\
\mathbf{s} \mathbf{p}_{1} & \mathbf{S}\left\lceil\mathbf{p}_{2}\right. & \mathbf{s} \mathbf{p}_{3}
\end{array}\right]^{-1}\left[\begin{array}{c}
\mathbf{1}^{\mathrm{T}} \\
\mathbf{m}^{\mathrm{T}} \\
\mathbf{s}^{\mathrm{T}}
\end{array}\right][\mathbf{t}]
$$

And finally:

Color matching, cont'd

Key observations:

1. Three primaries are "sufficient" forcolormatching
2. We can compute the knob settings using three vectors (functions). These are called the color matching functions
3. Colormatching functions are linear transforms of the cone responses.
4. All sets of colormatching functions are lineartransforms of each other.
5. The resulting knob settings can take on negative values.

Negative light

What does it mean to use a negative amount of a primary?

Example: Wright's experiments

In the late 20's, Wright found that the colors of all wavelengths could be reproduced with combinations of 3 primaries at 460,530, and 650 nm :

These functions are color-matching functions for the given primaries.

Prima ries don't have to be monochromatic. You can still derive color matching functions.

Emission Spectrum is not Color

Recall how much averaging the eye does. Light is infinite dimensional!

Different light sources can evoke exactly the same colors.
Such lights are called metamers $_{(\mathrm{B})}$

Colored Surfaces

So far, we've discussed the colors of lights. How do surfaces acquire color?

A surface's reflectance is its tendency to reflect incoming light across the spectrum.
perception.
The solid curve appears green indoors and out. The da shed curve looks green outdoors, but brown under incandescent light.

Reflectance is combined subtractively with incoming light. (Actually, the process is multiplicative.)

Illustration of Color Appearance

The CIE XYZ System

A standard created in 1931 by CIE, defined in terms of three color matching functions.

CIE Coordinates

Given an emission spectrum, we can use the CIE matching functions to obta in the X, Y and Z coordinates.

$$
\begin{aligned}
X & =\int \bar{x}(\lambda) t(\lambda) d \lambda \\
Y & =\int \bar{y}(\lambda) t(\lambda) d \lambda \\
Z & =\int \bar{z}(\lambda) t(\lambda) d \lambda
\end{aligned}
$$

Then we can compute chromaticity coordinates. This gives a brightness independent notion of color.

$$
\begin{aligned}
& x=\frac{X}{X+Y+Z} \\
& y=\frac{Y}{X+Y+Z} \\
& z=\frac{Z}{X+Y+Z}
\end{aligned}
$$

The CIE Chromaticity Diagram

A projection of the plane $X+Y+Z=1$.
Each point is a chromaticity value, which depends on dominant wavelength, or hue, and excitation purity, or saturation.

More About Chromaticity

Dominant wavelengths go around the perimeter of the chromaticity blob.

- A color's dominant wavelength is where a line from white through that color intersects the perimeter.
- Some colors, called nonspectral color's, don't have a dominant wavelength.

Excitation purity is measured in terms of a color's position on the line to its dominant wavelength.

Complementary colors lie on opposite sides of white, and can be mixed to get white.

Gamuts

Not every output device can reproduce every color. A device's range of reproducible colors is called its gamut

Perceptual (Non-)uniformity

The $X Y Z$ color space is not perceptually uniform!

Some modified spaces attempt to fix this:

- $L^{*} u^{*} v^{*}$
$\cdot L * a * b^{*}$

Color Spaces for Computer Graphics

In practice, there's set of more commonly-used color spaces in

computergraphics:

RG B fordisplay
CMY (orCMYK) forhardcopy

- HSV foruser selection
- YIQ fortelevision broadcas

More natural for user interaction, corre sponds to the artistic concepts of tint, shade and tone.

The HSV space looks like a cone:

Perhaps the most familia rcolor space, and the most convenient for display on a CRT

What does the RG B color space look like?

A subtractive color space used forprinting

nvolves three subtractive primaries:

- Cyan - subtracts red
- Magenta - subtracts green
- Yellow - subtracts blue

Mixing two pigments subtracts their opposites from white.
CMYK adds blacK ink rather than using equal amounts of all three.

YIQ

Used in TV broadcasting, YIQ exploits useful properties of the visual system.

- Y - luminance (taken from CIE)
- - majoraxis of rema ining color space
- Q - rema ining axis

YIQ is broadcast with relative bandwidth ratios 8:3:1

- We're best as distinguishing changes in luminance.
Small objects can be compressed into a single colord imension
Why do we devote a channel to luminance?

Summary

- How the colormatching experiment works
- The relationship between colormatching and functionscone responses
- The difference between emissive and reflective color
- The CIE XYZcolor standard and how to interpret the chromaticity diagram
- The color spaces used in computergraphics

Computers and Color

Reading

Optional

- I.E. Sutherland. Sketchpad: a man-machine graphics communication system. Proceedings of the Spring Join Computer Conference, p. 329-346, 1963.
- T.H. Myer \& I.E. Sutherland. On the design of display processors. Communications of the ACM 11(6): 410414, 1968.

Cathode ray tubes (CRTs)

Consists of:

- electron gun
- electron focusing lens
- deflection plates/coils
- electron beam
- anode with phosphor coating

CRTs, cont.

Electrons "boil off" the heated cathode and shoot towards the anode. Electrons striking the phosphors create light through:

- fluorescence (fraction of usec)
- phosphorescence (10 to 60 usec)

Different phosphors have different:

- color
- persistence (as long as a few seconds)

The image must be refreshed to avoid flicker:

- typically need at least 60 Hz (why 60 Hz ?)
- exact frequency depends on
- persistence
- image intensity
- ambient lighting
- wavelength
- observer

Electron beam traces over screen in raster scan order.

- Each left-to-right trace is called a scan line.
- Each spot on the screen is a pixel.
- When the beam is turned off to sweep back, that is a retrace, or a blanking interval.

Resolution

The display's resolution is determined by:

- number of scan lines
- number of pixels per scan line
- number of bits per pixel

Bitmapped display $960 \times 1152 \times 1 \mathrm{~b}$	$1 / 8 \mathrm{MB}$	
NTSC TV	$640 \times 480 \times 16 \mathrm{~b}$	$1 / 2 \mathrm{MB}$
Color workstation	$1280 \times 1024 \times 24 \mathrm{~b}$	4 MB

Examples:
Laser-printed page
$300 \mathrm{dpi} \quad 8.5 \times 11 \times 300^{2} \times 1 \mathrm{~b} \quad 1 \mathrm{MB}$ $1200 \mathrm{dpi} \quad 8.5 \times 11 \times 1200^{2} \times 1 \mathrm{~b} \quad 17 \mathrm{MB}$
Film $\quad 4500 \times 3000 \times 30 \mathrm{~b} \quad 50 \mathrm{MB}$

Framebuffers

Intensity of the raster scan beam is modulated according to the contents of a framebuffer.

Each element of the framebuffer is associated with a single pixel on the screen.

Color CRT monitors

Most color monitors employ shadow mask technology:

- uses triads of red, green, and blue phosphors at each pixel
- uses three electron guns, one per color
- shadow mask used to make each kind of phosphor only "visible" from one gun

These are also known as RGB monitors.

Color CRT monitors, cont'd

A competing technology is called Trinitron (by Sony):

- uses vertical stripes of red, green, and blue phosphors at each pixel
- uses three electron guns, one per color
- uses an aperture grille to make each kind of phosphor only "visible" from one gun

Liquid Crystal Displays

Laptops typically use liquid crystal displays (LCD's).

- Light enters a vertical polarizer
- Nematic crystal twists light based on applied voltage (more voltage, less twisting)
- Light passes through horizontal polarizer

Liquid Crystal Displays

Passive matrix displays use a matrix of electrodes to control the voltages. Problem: slow to switch, overflows.

Active matrix displays have a transistor at each cell. They use a faster switching crystal and transistors that hold charge and prevent overflow.

Color filters are used to get color display.

Specifying colors

The number of color choices depends on the amount of framebuffer storage allocated per pixel.

Q: How many colors can be displayed with:

- 3 bits per pixel?
- 8 bits per pixel?
- 24 bits per pixel?

16 bpp systems often allocate 5 bits to red, 6 to green, and 5 to blue. Why does green get the extra bit?

All colors on a monitor are produced using combinations of red, green, and blue.
A monitor that allows 256 voltage settings for each of R, G, and B is known as a full-color system.
The description of each color in framebuffer memory is known as a channel.

Color tables

Color tables allow more color versatility when you only have a few bits per pixel. You get to select a small palette of from a large number of available colors.

Each framebuffer element is now an index into the color table, where the actual values of each channel are stored.

- Color table entries can be changed in software.

Double-buffering

Q: What happens when you write to the framebuffer while it is being displayed on the monitor?

Double-buffering provides a solution.

Most SGI workstations are like this.
framebuffer

Q: Why would you want this capability?

Summary

Here's what you should take home from this lecture:

- The basic components of black-and-white and color CRTs
- Computing screen resolution \& framebuffer size
- The correspondence between elements of framebuffer memory and pixels on-screen
- How color tables work
- How double-buffering works

