

Image Matting

- To assemble images from parts, we associate a matte with each part
- Record which pixels belong to the foreground, which to the background
- Discard background pixels when assembling
- Problem: The matte must record more than a single bit of information per pixel

Compositing Motivation

- Sometimes, a single image needs to be constructed out of parts.
- Mixing 3D graphics with film
- adding a backdrop to a scene
- Painting objects into a scene
- Sometimes, it's just better to do things in parts - Can save time in rendering
- A small problem in one part can easily be fixed in the final image
- Need a method for building up an image from a set of components
- Ideally, invent a general "algebra" of compositing

The Alpha Channel

- To make compositing work, we store an alpha value along with color information for every pixel.
- α records how much a pixel is covered by the given color
- The set of alpha values for an image is called the alpha channel
- Transparent when $\alpha=0$
- Opaque when $\alpha=1$
- Relationship between α and RGB:
- computed at same time
- Need comparable resolution
- Can manipulate in almost exactly the same way

The Meaning of Alpha

- How might we store the information for a pixel that's 50% covered by red?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & .5
\end{array}\right]
$$

- It turns out that we'll always want to multiply the color components by α, so store ($\mathrm{R}, \mathrm{G}, \mathrm{B}, \alpha$) in premultiplied form:

$$
\left[\begin{array}{llll}
\frac{R}{\alpha} & \frac{G}{\alpha} & \frac{B}{\alpha} & \alpha
\end{array}\right]
$$

- What do the premultiplied R, G and B values look like?
- What does $(0,0,0,1)$ represent?
- What about $(0,0,0,0)$?

Compositing Assumptions

- The goal of compositing is to approximate the behaviour of overlaid images inside partially-covered pixels
- We don't know how the pixel is covered, just how much
- We need to make assumptions about the nature of this coverage
- We'll consider two cases:
- Two semi-transparent objects; alpha channel records transparency
- Two hard-edged opaque objects; alpha channel records coverage

Compositing Semi-Transparent Objects

- If we wish to composite two semi-transparent pixels over a background, things are a little easier.
- Suppose we wish to composite colors A and B with opacities α_{A} and α_{B} over a background G
- How much of G shows through A and B ?

$$
\left(1-\alpha_{A}\right)\left(1-\alpha_{B}\right)
$$

- How much of G is blocked by A and passed by B?

$$
\alpha_{A}\left(1-\alpha_{B}\right)
$$

- How much of G is blocked by B and passed by A ?

$$
\left(1-\alpha_{A}\right) \alpha_{B}
$$

- How much of G is blocked by A and B?

$\alpha_{A} \alpha_{B}$

Compositing Opaque Objects

- Assume that a pixel is partially covered by two objects, A and B. We can use α_{A} and α_{B} to encode what fractions of the pixel are covered by A and B respectively
- How does A divide the pixel?

$$
\alpha_{A}:\left(1-\alpha_{A}\right)
$$

- How does B divide the pixel?

$$
\alpha_{B}:\left(1-\alpha_{B}\right)
$$

- How does A divide B ?

$$
\alpha_{A}:\left(1-\alpha_{A}\right) ?
$$

- Compositing assumption: A and B are uncorrelated
- This lets us make educated guesses about the color of the composed pixel - Works well in practice

Pixel Pieces

- Given the compositing assumption, we can state the areas of different parts of the pixel:

- Why do these areas depend on lack of correlation?

The 12 Compositing Operators

- We can define a compositing operator by giving a 4-tuple listing what to keep in the regions $0, \mathrm{~A}, \mathrm{~B}$ and AB .
$(0,0,0,0)$
($0, \mathrm{~A}, \mathrm{O}, \mathrm{A}$)
($0,0, B, B$)
($0, \mathrm{~A}, \mathrm{~B}, \mathrm{~A}$)
($0, \mathrm{~A}, \mathrm{~B}, \mathrm{~B}$)
($0,0,0, \mathrm{~A}$)
($0,0,0, \mathrm{~B}$)
($0, \mathrm{~A}, 0,0$)
($0,0, \mathrm{~B}, 0$)
(0,0,B,A)
(0,A, $, \mathbf{B}, \mathrm{B})$
($0, A, B, 0$)
($, \mathrm{B}, \mathrm{A})$
$(0,0, \mathrm{~A})$
, , $, 0,0)$
, $, \mathrm{B}, \mathrm{A})$

Compositing Possibilities

- The contributions of A and B to the pixel divide the pixel area into four regions. When compositing, we have to choose what will be visible in each region.

Name	Description	Possibilities
0	$\bar{A} \cap \bar{B}$	0
A	$A \cap \bar{B}$	$0, A$
B	$\bar{A} \cap B$	$0, B$
$A B$	$A \cap B$	$0, A, B$

- According to this enumeration, how many binary compositing operators are there?

Computing the color

- Let's say we want to show a fraction F_{A} of A and a fraction F_{B} of B in the composite.
- What should the alpha value of the composite be?

$$
\alpha_{O}=F_{A} \alpha_{A}+F_{B} \alpha_{B}
$$

- What should the color component be in each channel?

$$
\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]_{O}=F_{A}\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]_{A}+F_{B}\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]_{B}
$$

The "plus" operator

- All the operators are all-or-nothing in region AB . Sometimes we want to show a blend of A and B in AB , for example when dissolving from one image to another.
- We define A plus B using the tuple $(0, \mathrm{~A}, \mathrm{~B}, \mathrm{AB})$ where AB represents a blend of A and B.

$$
\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]_{O}=\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]_{A}+\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]_{B}
$$

Unary Operators

- There are also some useful unary operators

$$
\begin{aligned}
\text { darken }[R, G, B, \alpha], \phi) & =[\phi R, \phi G, \phi B, \alpha] \\
\text { dissolve }([R, G, B, \alpha], \delta) & =[\delta R, \delta G, \delta B, \delta \alpha]
\end{aligned}
$$

Computing F_{A} and F_{B}

- All that remains is to compute F_{A} and F_{B}.
- Depends on and determines the compositing operator
- Can be derived by inspection of the compositing diagrams
Operation $\quad F_{A} \quad F_{B}$
clear
A
B
A over B
A in B
A plus B

Summary

- Reasons for doing compositing
- The meaning of alpha and the alpha channel
- Definition of compositing operators
- Definition and implications of the compositing assumption
- Computation of composited images
- Practical use of compositing

