Reading

+ Foley, Section 11.2

Optional

+ Bartels, Beatty, and Barsky. An Introduction to Splines
for use in Computer Graphics and Geometric Modeling,

Curves 1987.
* Farin. Curves and Surfaces for CAGD: A Practical

Guide, 4th ed., 1997.

Curves before computers Motivation for curves
The “loftsman’s spline”: What do we use curves for?
+ long, narrow strip of wood or metal + building models

+ shaped by lead weights called “ducks’
+ gives curves with second-order continuity, usually

Used for designing cars, ships, airplanes, etc.

. . . + movement paths
But curves based on physical artifacts can’t be replicated v P

well, since there’ s no exact definition of what the curveis.

Around 1960, alot of industrial designers were working on
this problem.
¢ animation




Mathematical curverepresentation

+ Explicit y=f(x)
« what if the curveisn’t afunction?

* Implicit f(x,y,2 =0
¢ hard to work with.

+ Parametric (f(u),g(u))

Parametric polynomial curves

We'll use parametric curves where the functions are all

polynomialsin the parameter.

n K
Xu)=Y agu
k=0

n k
yu)= 3 bxu
k=0
Advantages:

+ easy (and efficient) to compute
+ infinitely differentiable

Cubic curves
Fix n=3

For simplicity we define each cubic function within the range
0<t<1

QM) =[x® y@®) z)]
QM) =at’+bt>+ct+d

Q) =at’+bt*+ct+d,
QM) =at’+bt*+ct+d,

Compact representation

Place all coefficients into a matrix

a 3 a
b, b, b
c=|* 7 T:[t3 2t 1]
¢, C C,
d, d, d,
a2,
Q=[x v 20[¢ ¢ )X
¢, C,
d, d,

d ‘=37.c=[a2 .
QO=QO=_T c=[&" 2 1 0]C

o O

=T-C




Controlling the cubic Constraining the cubics

Q: How many constraints do we need to specify to fully

determine the cubic Q(t)? Redefine C as a product of the basismatrix M and the

4-element column vector of constraints or geometry vector G

C=M-G
m m, my m, |G, G, G,
rnZl mzz rn’23 mz4 GZX GZy GZz
Q)=|t* t* t 1
[ ] m, m, my; my (G, Gy G
m41 m42 m43 m44 G4X G4y G4z
=T-M-G
9 10

Her mite Curves

Determined by

¢ endpoints P, and P,
+ tangent vectors at the endpoints R; and R,

So
QM) =T-M,-G,
Where
R By, R,
o _|Px Py Pu
"R« Ry R
R. Ry R;
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Computing Her mite basis matrix

The constraints on Q(0) and Q(1) are found by direct

substitution:
QO)=[0 0 0 1]M,G,

QW=[1 1 1 1M, G,
Tangents are defined by

QMm=[3* 2& 1 0]:M,-G,
SO constraints on tangents are:

Q@O=[0 0 1 0]M,-G,

QM=[3 2 1 0]M,-G,
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Computing Hermite basis matrix

Collecting all constraints we get

P B, R 0 001

P P P 1111

4x 4y 4z:Gh: Mh'Gh
R, R, R. 0010

Rx Ry, R, 3210
So

000 1" [2 -2 1 1
M_1111_—33—2—1
"1lo o120 |0 0 1 O
3210 1 0 0 O
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Computing a point

Given two endpoints (P,,P,) and two endpoint tangent vectors

QM) P,

(Ry, Ry:

So

2 2 1 1P

-3 3 -2 -1f|P

t)=(t® t? t 1 4
Q) [ ]o 0 1 O0fR,
1 0 0 OfR
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Blending Functions

Polynomials weighting each element of the geometry vector

2 2 1 1][m
-3 3 -2 -1||Pg
0 0 1 0||Rg
1 0 0 O0J[Ryg

Q(t):[t3 2t 1]

i By (t) +

_B,®)| 1P, P,
Rl
R4

\
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Continuity of Splines

CY: paints coincide,
velocities don't

G!: points coincide,
velocities have same direction

C points and velocities
coincide

Q: What's C??

17
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Bezier Curves

Indirectly specify the tangent vectors P
by specifying two intermediate points A

R, = 3(P2 - Pl)
Rl = 3(P4 - P3)

< <
N

<
~U &:U o 0
L9 S0 U T

~U 0 JO [T

<
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Bezier basis matrix

Establish the relation between the Hermite and Besier
geometry vectors:

R1:3(P2_P1)
R1:3(P4_P3)
P11 0 o O]PR
Pl |0 0 0 1|P
=R 15|23 3 0 ofp [TMuCe
1 - 3
R,] |0 0o =3 3|P,

20




Bezier basis matrix

Q(t):T‘Mh'Gh:T'Mh'(Mhb'Gb)

Bezier Blending Functions

ak.a. Bernstein polynomials

-1 3 31 P,
=T-(My-M)-G,=T-M,-G, 3 _6 3 OI;P; P
Q(t):[t3 2t 1} =B, (t)| °
-3 3 0 0fm P,
-1 3 31 1 0 0 of" P,
3 6 3 0
M, =M M, = Bt
-3 3 0 O 1
1 0 0 O
Q(t):T'Mb'Gb
21 22
Alternative Bezier Formulation Displaying Bézier curves
How could we draw one of these things?
3. (3). _
=Y P| 1@t
Q(t) ; I(i}( ) DisplayBezier(V0,V1,V2,V3) v v
begin P /7 ; S
-1 3 31 if (FlatEnough(V0,V1,V2,V3)) ;o B
Po Line(VO,V3);
Qw=[ 2 1 1 SN 2 else / o
-3 3 0 0P do somethingsmart; e
1 0 0 off end;
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It would be nice if we had an adaptive agorithm, that would
take into account flatness.

24




Subdivide and conquer

Wy Wy o

Testing for flatness

DisplayBezier(V0,V1,V2,V3)
begin .
if (FlatEnough(VO,V1,v2,V3)) Compar_e total Ien_gth of control polygon to length of line
Line(VO,V3): connecting endpoints:
else
Subdivide(V) = L, R Vo VA + M Vol + N Ve[
DisplayBezier(L0,L1,L2,L3); Vo=V
DisplayBezier(R0O,R1,R2,R3);
end; 25 26
More complex curves L ocal control

Suppose we want to draw a more complex curve.

Why not use a high-order Bézier?

Instead, we'll splice together a curve from individual segmentsthat are
cubic Béziers.

Why cubic?

There are three properties we' d like to have in our newly constructed

lines...
$ 27

One problem with Béziersisthat every control point affects every point
on the curve (except the endpoints).

Moving a single control point affects the whole curve!

We'd like our spline to have local control, that is, have each control point

affect some well-defined neighborhood around that point. o8




I nter polation

Bézier curves are approximating. The curve does not
(necessarily) pass through al the control points. Each point
pulls the curve toward it, but other points are pulling as well.

We'd like to have a spline that isinter polating, that is, that
always passes through every control point.
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Continuity

We want our curve to have continuity. There shouldn’t be an abrupt
change when we move from one segment to the next.

There are nested degrees of continuity:

Co:

30

Ensuring continuity

Let’slook at continuity first.

Since the functions defining a Bézier curve are polynomial,
all their derivatives exist and are continuous.

Therefore, we only need to worry about the derivatives at the
endpoints of the curve.

First, we'll rewrite our equation for Q(t) in matrix form:

-1 3 -3 1][R

3 6 3 P

w=tt t?t 1 !
Q) =[ 15 3 B
1 R
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Derivatives at the endpoints

QI(O) =3V, _Vo)

Q,(l ) = 3(\/3 _Vz)
Q’(O) = 6(\/0 - 2V1 +V2)
Q”(l )=6(V;—2V, +V;)

<
A<
N

/ A N
p “e Va
Vo

In general, the nth derivative at an endpoint depends only on
the n+1 points nearest that endpoint.

32




Ensuring C2 continuity

Suppose we have a cubic Bézier defined by (VO,V1,V2,V3),
and we want to attach another curve (WO,W1,W2,W3) toit,
so that there is C? continuity at the joint.

<
A<
SN
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A-frames and continuity

Let’stry to get some geometrical intuition about what this last
continuity equation means.

If aand b are points, what is (2a-b)?

2=V -,
. , B, =2 (2 V,-V)-(2V,-V)
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Building a complex spline

Instead of specifying the Bézier control points themselves, let’s specify
the corners of the A-framesin order to build a C? continuous spline.

Eo
Es Ba

These are called B-splines. The starting set of points are called de Boor

points. 35

B-splines
Here is the completed B-spline.

- -

Bo & - -
B Ba

TR P
~3[BrsE-Ba e8]
V=B +(8,-B)

2
2= Bo +§(Bl_ Bo)
V=
What are the Bézier control points, in terms of the de Boor

ints?
points: s




Endpoints of B-splines

We can see that B-splines don’t interpolate the de Boor
points.

It would be nice if we could at least control the endpoints of
the splines explicitly.

There' s ahack to make the spline begin and end at control

points by repeating them.
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B-spline basis matrix

-1 3 -3 1
Po

3 6 3 O
n=[3 2 ¢ 1]} R
M [ ]6 -3 0 3 O0ffP
1 4 1 olfs

38

C2interpolating splines
Interpolationis areally handy property to have.

How can we keep the C? continuity we get with B-splines but get
interpolation, too?

Here' sthe idea behind C?inter polating splines. Suppose we had cubic
Béziers connecting our control points C,, C;, C,, ..., and that we
somehow knew the first derivative of the spline at each point.

[P

L=

-/‘DO
Dz
Ca I
Ca

o Dz

What are the V and W control pointsin terms of Cs and Ds?
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Finding the derivatives

Now what we need to do is solve for the derivatives. To do
thiswe' Il use the C? continuity requirement.

0=GCo 0=C
Vi =G, +3D, W, =C,+1D,
2:C1_%D1 2202_%D2
V;=C, W, =G,

6(V, - 2V, +V,) = 6(W, - 2W, + W,)

40




Finding the derivatives, cont.

Here'swhat we' ve got so far:

D,+4D,+D, =3(C,-C,)
D,+4D,+D,=3(C,-C)

Dm—2 + 4Dm—1 + Dm = 3(Cm - Cm—z)

How many equationsis this?

How many unknowns are we solving for?

41

Not quite done yet

We have two additional degrees of freedom, which we can
nail down by imposing more conditions on the curve.

There are various waysto do this. We'll use the variant
caled natural C2interpolating splines, which requires the
second derivative to be zero at the endpoints.

This condition gives us the two additional equations we need.
At the C, endpoint, itis:

6(V, - 2V, +V,) =0

42

Solving for the derivatives

Let’'s collect our m+1 equationsinto asingle linear system:

2 1 D, | [ 3C,-C,) |
141 D, | | 3c,-c,)
14 1 D, | | ac,-¢)

1 41 Drml 3(Cm_CW2)

| 1 2] D, |3C,-C,J)]

It's easier to solve than it looks.

We can use forward elimination to zero out everything below the
diagonal, then back substitution to compute each D value.
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C2interpolating spline

Once we' ve solved for thereal D;s, we can plug them in to find our Bézier
control points and draw the final spline:

Have we lost anything?




A third option

If we're willing to sacrifice C2 continuity, we can get
interpolation and local control.

Instead of finding the derivatives by solving a system of
continuity equations, we'll just pick something arbitrary but
local.

If we set each derivative to be a constant multiple of the
vector between the previous and next controls, we get a
Catmull-Rom spline.

a0

o

Catmull-Rom splines

The math for Catmull-Rom splines is pretty ssimple:
D, =C, -G,
D, = %(Cz -Cy)
D, =3(C;-C)
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Catmull-Rom basis matrix

-1 3 31
1 2 -5 4 -1
2l-1 0 1 O

0O 2 0 O

Q(t)=[t3 2t 1}

IIFPI
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Summary

*Enforcing constraints on cubic functions

*The meaning of basis matrix and geometry vector
*General procedure for computing the basis matrix
*Properties of Hermite and Bezier splines

*The meaning of blending functions

<Enforcing continuity across multiple curve segments
*How to display Bézier curves with line segments.
*Meanings of Ck continuities.

*Geometric conditions for continuity of cubic splines.

*Properties of C2 interpolating splines, B-splines, and Catmull-Rom
splines.
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