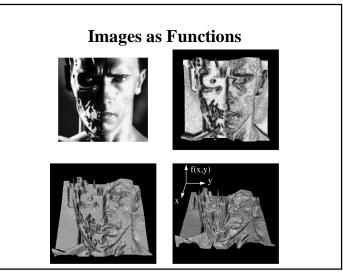


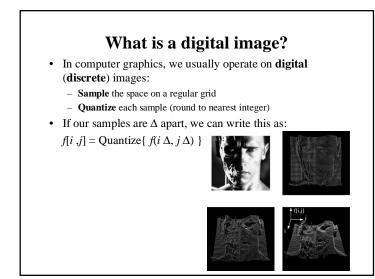
Definitions

- Many graphics techniques that operate only on images
- **Image processing**: operations that take images as input, produce images as output
- In its most general form, an **image** is a function *f* from R² to R
 - f(x, y) gives the intensity of a channel at position (x, y)
 - defined over a rectangle, with a finite range: $f: [a,b] \times [c,d] \rightarrow [0,1]$
 - A color image is just three functions pasted together: • $f(x, y) = (f_r(x, y), f_g(x, y), f_b(x, y))$

Images

- In computer graphics, we usually operate on **digital** (**discrete**) images
 - Quantize space into units (pixels)
 - Image is constant over each unit
 - A kind of step function
 - f: {0 ... *m*-1}x{0 ... *n*-1} → [0,1]
- An image processing operation typically defines a new image *f* in terms of an existing image *f*





Pixel-to-pixel Operations

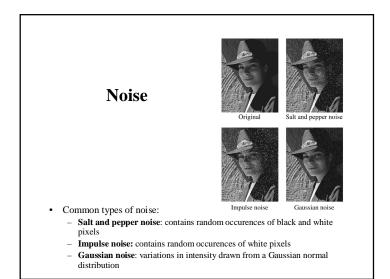
• The simplest operations are those that transform each pixel in isolation

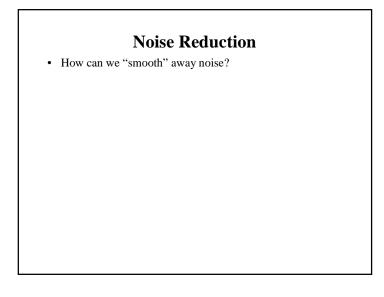
f'(x, y) = g(f(x, y))

• Example: threshold, RGB \rightarrow greyscale

Pixel Movement

- Some operations preserve intensities, but move pixels around in the image
 - f'(x, y) = f(g(x, y), h(x, y))
- Examples: many amusing warps of images





Convolution

- Convolution is a fancy way to combine two functions.
 - Think of f as an image and g as a "smear" operator
 - g determines a new intensity at each point in terms of intensities of a neighborhood of that point

$$\begin{array}{ll} h(x,y) \;=\; f(x,y) * g(x,y) \\ \\ \;=\; \int_{-\infty}^{\infty} f(x',y') g(x-x',y-y') dx' dy' \end{array}$$

• The computation at each point (*x*, *y*) is like the computation of cone responses

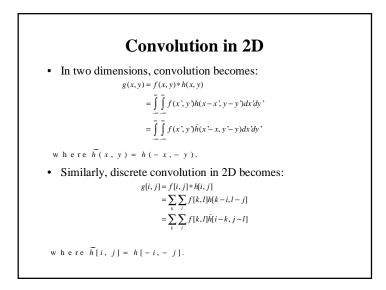
Convolution

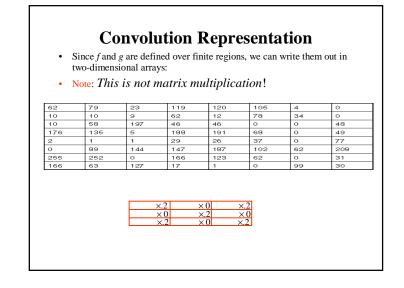
- One of the most common methods for filtering an image is called **convolution**.
- In 1D, convolution is defined as:

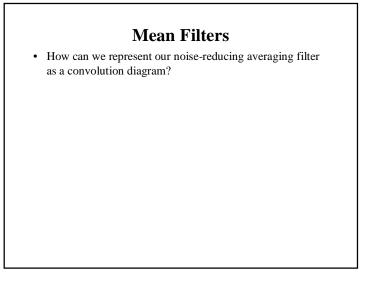
g(x) = f(x) * h(x)

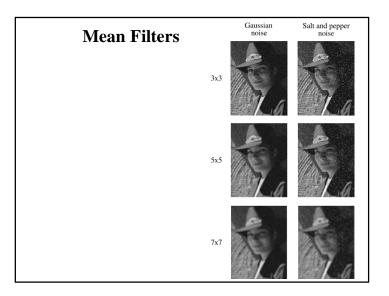
 $= \int_{-\infty}^{\infty} f(x)h(x-x)dx' \qquad \text{where } \widetilde{h}(x) = h(-x).$ $= \int_{-\infty}^{\infty} f(x)\overline{h}(x-x)dx'$

• Example:







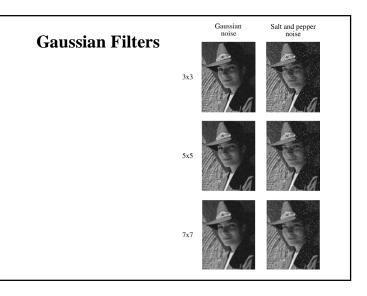


Gaussian Filters

• Gaussian filters weigh pixels based on their distance to the location of convolution.

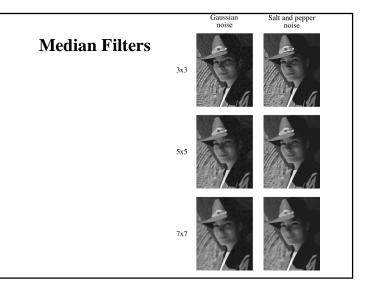
$$g[i,j] = e^{-(i^2+j^2)/(2\sigma^2)}$$

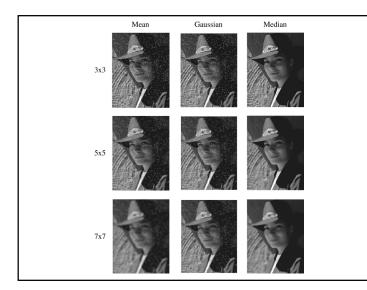
- Blurring noise while preserving features of the image
- Smoothing the same in all directions
- More significance to neighboring pixels
- Width parameterized by σ
- Gaussian functions are separable

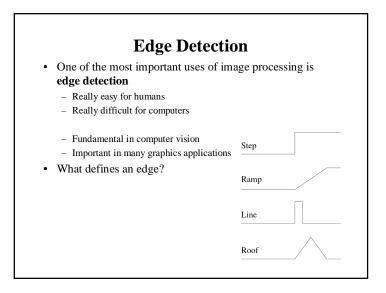


Median Filters

- A **Median Filter** operates over a *k*x*k* region by selecting the median intensity in the region.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?







Gradient

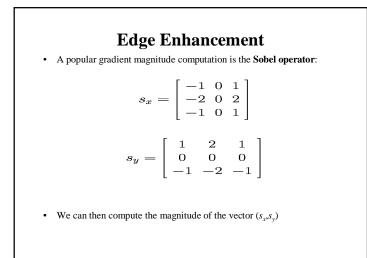
• The **gradient** is the 2D equivalent of the derivative:

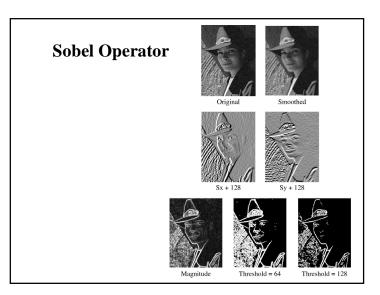
$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

- Properties of the gradient
 - It's a vector
 - Points in the direction of maximum increase of f
 - Magnitude is rate of increase
- How can we approximate the gradient in a discrete image?

Edge Detection Algorithms

- Edge detection algorithms typically proceed in three or four steps:
 - Filtering: cut down on noise
 - Enhancement: amplify the difference between edges and nonedges
 - Detection: use a threshold operation
 - Localization (optional): estimate geometry of edges beyond pixels





Second Derivative Operators The Sobel operator can produce thick edges. Ideally, we're looking for infinitely thin boundaries. An alternative approach is to look for local extrema in the first derivative: places where the change in the gradient is highest. We can find these by looking for zeroes in the *second* derivative Using similar reasoning as above, we can derive a Laplacian filter, which approximates the second derivative:

$$\Delta^2 = \left[\begin{array}{rrr} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{array} \right]$$

• Zero values in the convoluted image correspond to extreme gradients, i.e. edges.

