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Image Processing

Definitions
• Many graphics techniques that operate only on images

• Image processing: operations that take images as input, 
produce images as output

• In its most general form, an image is a function f from R2

to R
– f( x, y ) gives the intensity of a channel at position (x, y) 

– defined over a rectangle, with a finite range:
f: [a,b]x[c,d] → [0,1]

– A color image is just three functions pasted together:
• f( x, y ) = (fr( x, y ), fg( x, y ), fb( x, y ))

Images
• In computer graphics, we usually operate on digital 

(discrete) images
– Quantize space into units (pixels)

– Image is constant over each unit

– A kind of step function

– f: {0 … m-1}x{0 … n-1} → [0,1]

• An image processing operation typically defines a new 
image f’ in terms of an existing image f

Images as Functions
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What is a digital image?
• In computer graphics, we usually operate on digital 

(discrete) images:
– Sample the space on a regular grid

– Quantize each sample (round to nearest integer)

• If our samples are ∆ apart, we can write this as:

f[i ,j] = Quantize{ f(i ∆, j ∆) }

Image processing
• An image processing operation typically defines a new 

image g in terms of an existing image f.

• The simplest operations are those that transform each pixel 
in isolation.  These pixel-to-pixel operations can be 
written:

• Example: threshold, RGB → grayscale

• Note: a typical choice for mapping to grayscale is to apply 
the YIQ television matrix and keep the Y.

( , ) ( ( , ))g x y t f x y=
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Pixel-to-pixel Operations
• The simplest operations are those that transform each pixel 

in isolation
f’( x, y ) = g(f (x,y))

• Example: threshold, RGB → greyscale

Pixel Movement
• Some operations preserve intensities, but move pixels 

around in the image

f’( x, y ) = f(g(x,y), h(x,y))

• Examples: many amusing warps of images
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Noise

• Common types of noise:
– Salt and pepper noise: contains random occurences of black and white 

pixels
– Impulse noise: contains random occurences of white pixels
– Gaussian noise: variations in intensity drawn from a Gaussian normal 

distribution

Noise Reduction
• How can we “smooth” away noise?

Convolution
• Convolution is a fancy way to combine two functions.  

– Think of f as an image and g as a “smear” operator

– g determines a new intensity at each point in terms of intensities of 
a neighborhood of that point

• The computation at each point (x,y) is like the computation 
of cone responses

Convolution
• One of the most common methods for filtering an image is 

called convolution.

• In 1D, convolution is defined as:

• Example:
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Convolution in 2D
• In two dimensions, convolution becomes:

• Similarly, discrete convolution in 2D becomes:
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Convolution Representation
• Since f and g are defined over finite regions, we can write them out in 

two-dimensional arrays:

• Note: This is not matrix multiplication!

×.2 ×.2

×.2
×.2

×.2

× 0
× 0

× 0
× 0

Mean Filters
• How can we represent our noise-reducing averaging filter 

as a convolution diagram?

Mean Filters
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Gaussian Filters
• Gaussian filters weigh pixels based on their distance to the 

location of convolution.

• Blurring noise while preserving features of the image

• Smoothing the same in all directions

• More significance to neighboring pixels

• Width parameterized by σ
• Gaussian functions are separable

Gaussian Filters 

Median Filters
• A Median Filter operates over a kxk region by selecting 

the median intensity in the region.

• What advantage does a median filter have over a mean 
filter?

• Is a median filter a kind of convolution?

Median Filters
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Edge Detection
• One of the most important uses of image processing is 

edge detection
– Really easy for humans

– Really difficult for computers

– Fundamental in computer vision

– Important in many graphics applications

• What defines an edge?

Gradient
• The gradient is the 2D equivalent of the derivative:

• Properties of the gradient
– It’s a vector

– Points in the direction of maximum increase of f

– Magnitude is rate of increase

• How can we approximate the gradient in a discrete image?

Edge Detection Algorithms
• Edge detection algorithms typically proceed in three or 

four steps:
– Filtering: cut down on noise

– Enhancement: amplify the difference between edges and non-
edges

– Detection: use a threshold operation

– Localization (optional): estimate geometry of edges beyond pixels
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Edge Enhancement
• A popular gradient magnitude computation is the Sobel operator:

• We can then compute the magnitude of the vector (sx,sy)

Sobel Operators

Second Derivative Operators
• The Sobel operator can produce thick edges.  Ideally, we’re looking 

for infinitely thin boundaries.

• An alternative approach is to look for local extrema in the first 
derivative: places where the change in the gradient is highest.

• We can find these by looking for zeroes in the second derivative

• Using similar reasoning as above, we can derive a Laplacian filter, 
which approximates the second derivative:

• Zero values in the convoluted image correspond to extreme gradients, 
i.e. edges. 

Second derivative operators

• The Sobel operator can produce thick edges.  Ideally, we’re looking 
for infinitely thin boundaries.

• An alternative approach is to look for local extrema in the first 
derivative: places where the change in the gradient is highest.

• Q: A peak in the first derivative corresponds to what   in the second 
derivative?



8

Localization with the Laplacian
• An equivalent measure of the second derivative in 2D is 

the Laplacian:

• Using the same arguments we used to compute the 
gradient filters, we can derive a Laplacian filter to be:

• Zero crossings of this filter correspond to positions of 
maximum gradient.  These zero crossings can be used to 
localize edges.
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Summary
• Formal definitions of image and image processing

• Kinds of image processing: pixel-to-pixel, pixel 
movement, convolution, others

• Types of noise and strategies for noise reduction

• Definition of convolution and how discrete convolution 
works

• The effects of mean, median and Gaussian filtering

• How edge detection is done

• Gradients and discrete approximations


