Image Processing

Definitions

Many graphics techniques that operate only on images
Image processing: operations that take images as input,
produce images as output
In itsmost general form, an image is afunction f from R?
toR

— f(x,y) givestheintensity of a channel at position (X, y)

— defined over arectangle, with afinite range:

f: [a,b]x[c,d] — [0,1]
— A color imageisjust three functions pasted together:
c f(xy)=E(xy) f(xy). f(xy))

Images

¢ |In computer graphics, we usually operate on digital
(discrete) images
— Quantize space into units (pixels)
— Image is congtant over each unit
— A kind of step function
- f:{0... m1}x{0 ... n-1} — [0,1]
« An image processing operation typically defines anew
image f' in terms of an existing image f

I mages as Functions




What isa digital image?
¢ |In computer graphics, we usually operate on digital
(discrete) images:
— Sample the space on aregular grid
— Quantize each sample (round to nearest integer)
¢ |f our samples are A apart, we can write thisas:

f[i ,j] = Quantize{ f(i A, j A) } i .

I mage processing
« Animage processing operation typically defines a new
image g in terms of an existing image f.
¢ Thesmplest operations are those that transform each pixel
inisolation. These pixel-to-pixel operations can be

written: g(xy) =t(f(xy))

Example: threshold, RGB — grayscale

Note: atypical choice for mapping to grayscale isto apply
the Y1Q television matrix and keep the Y.

Y 0.299 0587 0114 |[R
I |=]059% -0.275 -0321||G

Q 0.212 -0528 0311 || B

Pixel-to-pixel Operations
¢ The smplest operations are those that transform each pixel
in isolation
f(xy)=g(f (xy)
¢ Example: threshold, RGB — greyscale

Pixel Movement

« Some operations preserve intensities, but move pixels
around in the image

f(xy)="fgxy), h(xy))
« Examples: many amusing warps of images




Noise

Common typ% of noise: Impulse noise Gmlssiunnuise
— Salt and pepper noise: contains random occurences of black and white
pixels
— Impulsenoise: contains random occurences of white pixels

— Gaussian noise: variations in intensity drawn from a Gaussian normal
distribution

Noise Reduction
¢ How can we"“smooth” away noise?

Convolution

Convolution is afancy way to combine two functions.
— Think of f asanimage and g asa“smear” operator

— g determinesa new intensty at each point in terms of intensities of
aneighborhood of that point

hMz,y) = flz,y)*g(z,y)
[ F@, 9@ — 2y — y)dz'dy

The computation at each point (x,y) is like the computation
of cone responses

Convolution

« One of the most common methods for filtering an image is
called convolution.

¢ In 1D, convolution is defined as:
g(x) = f(x)*h(x)

:Jf(”h(x—)‘)d’" where hi(x)=h(-x).

= T £ (x)h(x= X)dx’

e Example:




Convolution in 2D Convolution Representation
. . . e Sincefand defined finit i iteth ut i
* Intwo dimensions, convolution becomes: twréc_sm?gns»goﬁr; arrégs overtinieregions we canwritethem ot in
Ly) = f (% y)h(x, . . e
90 w(f Dhe) « Note: Thisis not matrix multiplication!
= [ ] 0 y)h(x=x,y -y )dxdy’
’:’: &2 To 23 119 iz0 105 4 o
= [ [ o yIR(x=x y- y)dxey’ e £ S Tas = i o &
T 175 135 =) 188 194 &8 ] 49
— =2 1 1 29 25 27 ] 77
whereh(x,y)=h(-x,-y). o EE] 144 147 187 1oz 62 208
L. . R R 255 252 5] 188 123 a2 o =4
e Similarly, discrete convolution in 2D becomes: 155 EE 127 LEd 1 o 9 =0
gli, j1=f[i, jl=hi, j]
=33 flkIIhk—i,l - j]
ko1
=33 fIk i -k, -1] e x9 X6
T X, 2! x 0 X.2
where h[i, jl1=h[-i,- j].
. Gaussian Salt and pepper
M %n FI Iter S noise nmse

Mean Filters

* How can we represent our noise-reducing averaging filter
as aconvolution diagram?

5x5

X7




Gaussian Filters

Gaussian filtersweigh pixels based on their distance to the
location of convolution.

glé, 5] = e~ (P*+i%/(20%)

Blurring noise while preserving features of the image
Smoothing the same in al directions

More significance to neighboring pixels

Width parameterized by ¢

Gaussian functions are separable

Gaussian Salt and pepper
noise noise

Gaussian Filters

3x3

Median Filters
A Median Filter operates over akxk region by selecting
the median intensity in the region.
What advantage does a median filter have over amean
filter?
Isamedian filter akind of convolution?

Gaussian Salt and pepper
noise noise

Median Filters

3x3

5x5
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Median

Edge Detection

« One of the most important uses of image processing is
edge detection
— Redly easy for humans
— Redly difficult for computers

— Fundamental in computer vision st
€]
— Important in many graphics applications P
¢ What defines an edge?
Ramp S
Line H
Roof /\

Gradient
¢ Thegradient isthe 2D equivalent of the derivative:

af B_f)

« Properties of the gradient
— It’savector
— Poaintsin the direction of maximum increase of f
— Magnitude israte of increase

« How can we approximate the gradient in a discrete image?

Edge Detection Algorithms

« Edge detection algorithmstypically proceed in three or
four steps:
— Filtering: cut down on noise
— Enhancement: amplify the difference between edges and non-
edges
— Detection: use athreshold operation
— Localization (optional): estimate geometry of edges beyond pixels




Edge Enhancement
* A popular gradient magnitude computation isthe Sobel operator:

—10 1
Sp=|—2 0 2
—1 0 1
1 02 1
s,—| 0 0o o
—1 —2 —1

*We canthen compute the megnitude of the vector (s,,S)

Sobel Operator

Second Derivative Operators
e The Sobel operator can produce thick edges. Idealy, we're looking
for infinitely thin boundaries.

« Anaternative approach isto look for loca extremain the first
derivative: places where the change in the gradient is highest.

*  We can find these by looking for zeroesin the second derivative

e Using smilar reasoning as above, we can derive a Laplacian filter,
which approximates the second derivative:

« Zero valuesin the convoluted image correspond to extreme gradients,
i.e. edges.

Second derivative operators

N

J(z)

/N
- threshold
N\

N

* The Sobel operator can produce thick edges. Idealy, we're looking
for infinitely thin boundaries.

« Anaternative approach isto look for loca extremain the first
derivative: places where the change in the gradient is highest.

e Q: A peak inthe firg derivative correspondsto what  in the second
derivative?




L ocalization with the Laplacian

« An equivalent measure of the second derivative in 2D is
the Laplacian: 9t 9%

Vit (xy) =20+ 00
) ax2+ay2

¢ Using the same arguments we used to compute the
gradient filters, we can derive a Laplacian filter to be:

010
A=[1 -4 1
010

e Zero crossings of thisfilter correspond to positions of
maximum gradient. These zero crossings can be used to
localize edges.

Summary

Formal definitions of image and image processing
Kinds of image processing: pixel-to-pixel, pixel
movement, convolution, others

Types of noise and strategies for noise reduction

Definition of convolution and how discrete convolution
works

The effects of mean, median and Gaussian filtering
How edge detection is done
Gradients and discrete approximations




